مقاله انگلیسی رایگان در مورد مدل مارکوف برای نگهداری ترانسفورماتور قدرت – الزویر ۲۰۱۸

elsevier

 

مشخصات مقاله
ترجمه عنوان مقاله مدل مارکوف برای نگهداری ترانسفورماتور قدرت
عنوان انگلیسی مقاله A Markovian model for power transformer maintenance
انتشار مقاله سال ۲۰۱۸
تعداد صفحات مقاله انگلیسی ۸ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) scopus – master journals – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۳٫۶۱۰ در سال ۲۰۱۷
شاخص H_index ۸۸ در سال ۲۰۱۸
شاخص SJR ۱٫۲۷۶ در سال ۲۰۱۸
رشته های مرتبط مهندسی برق
گرایش های مرتبط برق قدرت
نوع ارائه مقاله
ژورنال
مجله / کنفرانس سیستم های برق الکتریکی و انرژی – Electrical Power and Energy Systems
دانشگاه Institute for Manufacturing at the University of Cambridge – UK
کلمات کلیدی ارزش اطلاعات، تعمیر و نگهداری مبتنی بر شرایط، مهندسی قابلیت اطمینان و ترانسفورماتور قدرت
کلمات کلیدی انگلیسی Value of information, Condition-based maintenance, Reliability engineering and power transformer
شناسه دیجیتال – doi
https://doi.org/10.1016/j.ijepes.2017.12.024
کد محصول E9882
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Highlights
Abstract
Keywords
Nomenclature
۱ Introduction
۲ Deterioration of power transformers
۳ Deterioration and maintenance models for power transformers
۴ Value of monitoring
۵ Conclusion
Acknowledgement
Appendix A
References

بخشی از متن مقاله:
ABSTRACT

The condition of the insulation paper is one of the key determinants of the lifetime of a power transformer. The winding insulation paper may deteriorate aggressively and result in the unexpected failure of power transformers, especially under the presence of high moisture, oxygen, and metal contaminants. Such types of scenarios can be prevented if the deterioration is detected on time. Various types of condition monitoring techniques have been developed to detect transformer condition such as dissolved gas analysis (DGA) and frequency response analysis (FRA). They are non-intrusive and provide early warning of accelerated deterioration both chemically and mechanically. However, the accuracy of those techniques is imperfect, which means periodic inspection is still indispensable. In this paper, we discuss the value of continuous condition monitoring for power transformers and present a way to estimate this value. Towards this, a continuous-time Markov decision model is presented to optimize periodic inspections, so that the cost is minimized and the availability is maximized. We then analyze the performance based on the information from both discrete inspection and continuous condition monitoring using DGA and FRA. The result shows the dissolved gas analysis can improve the availability and operation cost, while frequency response analysis can only improve the availability of power transformers.

Introduction

Power transformers are critical assets in a power transmission network. A failure of a power transformer also may cause cascading failure and catastrophic blackout in the power grid. The necessity of increasing reliability and availability of power transformers can be analyzed directly from a financial point of view. Between 1997 and 2001, the total losses caused by power transformer failure in the US were over 286 million [1]. Moreover, the aging population of power transformers has increased since 1975 [2]. These imply that it is expected to have an increase in power transformer failure, and the resulting load curtailment if the maintenance strategy remains the same. In literature, various types of maintenance models have been developed to address the problem of power transformer maintenance. Aldhubaib and Salama have developed a reliability centered maintenance and replacement approach to optimize maintenance and replacement to increase the lifetime of power transformers and reduce annual cost [3]. Dhople et al. proposed a set-theoretic method for capturing the uncertainty in Markov reliability and reward model to maximize the availability of power transformers [4]. Abu-Elanien et al. developed a decision support system to determine the life expectancy of transformers from techno-economic perspective [5]. Lima et al. designed a two-level framework of fault diagnosis and decision making for power transformers with considering the loss for life caused by overload condition [6]. Abiri-Jahromi et al. have developed a two-stages maintenance management model that contains both mid-term and shortterm maintenance to maximize the serviceability of power transformers [7]. Koksal and Ozdemir have improved the power transformer maintenance using a Markovian model [8]. As to the condition state of a power transformer is considered to be discrete, most of the developed models are based on the Markovian deterioration model. However, the deterioration of power transformers is oversimplified and modeled by Markov chain with a single deteriorating path. Such an approach is inaccurate because it overlooks the complexity of the deterioration of power transformers, such as the acceleration deterioration of insulation paper caused by high moisture. Because of this, the effective of condition-based maintenance that solely relies on the periodic inspection is over-estimated. Therefore, to re-estimate the value of continuous monitoring, it is essential to improve the deterioration model of power transformers. In practice, the accuracy of the condition monitoring is imperfect and may be interfered by operation signals and external signals. Therefore, even for the power transformers that have already installed the condition monitoring devices, periodic inspection can still provide additional value to triangulate the estimated condition information by condition monitoring. The objective of the paper is twofold: optimize the condition-based maintenance for power transformers; explore the value of online monitoring from the perspective of the lifecycle of power transformers.

ارسال دیدگاه

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *