مقاله انگلیسی رایگان در مورد کربن متخلخل نانوساختاری برای ذخیره و تبدیل انرژی الکتروشیمیایی – الزویر ۲۰۱۸

مقاله انگلیسی رایگان در مورد کربن متخلخل نانوساختاری برای ذخیره و تبدیل انرژی الکتروشیمیایی – الزویر ۲۰۱۸

 

مشخصات مقاله
ترجمه عنوان مقاله کربن متخلخل نانوساختاری برای ذخیره و تبدیل انرژی الکتروشیمیایی
عنوان انگلیسی مقاله Nanostructured porous carbons for electrochemical energy conversion and storage
انتشار مقاله سال ۲۰۱۸
تعداد صفحات مقاله انگلیسی ۶ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) scopus – master journals – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
۲٫۹۰۶ در سال ۲۰۱۷
شاخص H_index ۱۴۴ در سال ۲۰۱۸
شاخص SJR ۰٫۹۲۸ در سال ۲۰۱۸
رشته های مرتبط مهندسی مکانیک، مهندسی برق
گرایش های مرتبط تبدیل انرژی، الکترونیک
نوع ارائه مقاله
ژورنال
مجله / کنفرانس سطح و فناوری پوشش ها – Surface & Coatings Technology
دانشگاه Laboratory of Catalysis and Materials – University of Porto – Portugal
کلمات کلیدی کربن متخلخل نانوساختار، خواص بافتی، شیمی سطحی، انرژی، الکترو کاتالیزورها، ابرخازن ها
کلمات کلیدی انگلیسی Nanostructured porous carbons, Textural properties, Surface chemistry, Energy, Electrocatalysts, Supercapacitors
شناسه دیجیتال – doi
https://doi.org/10.1016/j.surfcoat.2018.07.033
کد محصول E10238
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Highlights
Abstract
Graphical abstract
Keywords
۱ Introduction
۲ Nanostructured porous carbons
۳ Applications in energy conversion and storage
۴ Conclusions and outlook
Acknowledgements
Declarations of interest
References

بخشی از متن مقاله:
ABSTRACT

The various methods that have been reported for the synthesis of nanostructured carbons are reviewed, emphasizing sol-gel processing, soft-templating and hydrothermal procedures. Hybrid materials can be obtained by incorporation of nanosized carbon components, such as carbon nanotubes or graphene-derived materials. In addition, the carbon surface chemistry can be tuned by functionalization with surface groups and/or by doping with heteroatoms, in order to suit specific applications. Nanostructured porous carbons can play a decisive role towards the development of efficient and cost-effective electrochemical devices for energy conversion and storage. In this article, we focus on novel electrocatalysts for fuel cells and electrolysers, and electrodes for electric double layer capacitors.

Introduction

Activated carbons are widely used as adsorbents and in other industrial applications, due to their large surface areas and high stability, both in acidic and basic media. They are obtained from carbonaceous precursors (such as peat, coal, wood, coconut shell) by carbonization (pyrolysis in the absence of oxygen) and subsequent partial gasification (with steam, carbon dioxide, air, or their mixtures), or by carbonization in the presence of substances that minimize the formation of tars (zinc chloride, phosphoric acid, potassium hydroxide) followed by washing [1,2]. These top-down production routes (named “physical” and “chemical” activation, respectively) lead to a well-developed porous structure with pores of different sizes, which are classified, according to their widths, as micropores (< 2 nm), mesopores (2–۵۰ nm) and macropores (> 50 nm) [3]. The high adsorption capacity of activated carbons stems from their large micropore volumes, which may range from 0.15 to 0.50 cm3 g−۱ . Unless special activation procedures are used, the volume of mesopores is relatively low (< 0.10 cm3 g−۱ ), and they account for < 5% of the adsorption capacity. Macropores are not generated during activation; they are already present in the carbon precursors, thus facilitating the access of reactants during the activation procedure. The volume of macropores in activated carbons can range from 0.20 to 0.50 cm3 g−۱ . Due to the large dimensions of the macropores, their surface area (and adsorption capacity) is negligible (< 2 m2 g−۱ ); however, their presence is essential for providing access of the adsorptives to the inner pores where adsorption occurs [2]. The different types of pores are arranged in a hierarchical pattern, with the micropores branching off from the mesopores, and these from the macropores, which in turn open out to the external surface of the particles [1], as shown in Fig. 1. However, the high temperature processes used in the production of activated carbons cannot achieve the fine control of pore size and pore size distribution needed for more sophisticated applications.

ثبت دیدگاه