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Abstract This paper investigates the superiority of the Yang and Zhang (YZ) estimator over the
demeaned squared returns in detecting sudden breaks based on Inclan and Tiao (IT-ICSS) algo-
rithm using Monte Carlo simulation experiments. Our findings indicate that the IT-ICSS algo-
rithm exhibits desirable size and power properties when applied with the YZ estimator in comparison
to its use with the demeaned squared returns. Empirically, we validate the superiority of the
YZ estimator by relating the detected breaks with the major macroeconomic events using various
US dollar exchange rates. We find that the demeaned squared returns detect many spurious breaks.
© 2016 Production and hosting by Elsevier Ltd on behalf of Indian Institute of Management
Bangalore.

Introduction

This paper compares the performance of the Yang and Zhang
(2000) (YZ) estimator and demeaned squared returns when
applied with Inclan and Tiao’s (1994) iterated cumulative sum
of squares (IT-ICSS) algorithm to detect the sudden changes
in the volatility of a random process. Analysis of market risk
plays a crucial role in the financial markets literature. Vola-
tility is known to be a popular measure in evaluating finan-
cial risks, leverage effects and to examine the impact of
asymmetric shocks on markets. Volatility plays an impor-
tant role in financial markets due to its application in de-
signing investment decisions and in portfolio rebalancing and
management (Aizenman & Marion, 1999), in pricing deriva-

tives securities (Hull & White, 1987), in quantifying risk (based
on value at risk and expected shortfall) (Granger, 2002) and
in implementing trading strategies (Poon & Granger, 2003).
It is well known in the literature that the unconditional vola-
tility of tradable securities and portfolios may be signifi-
cantly affected by infrequent structural breaks or regime
shifts, which may arise due to various domestic or global mac-
roeconomic and political events (see Aggarwal, Inclan, & Leal,
1999; Kumar & Maheswaran, 2012) including terrorist attacks,
wars, sudden hike in interest rates, changes in investors’ per-
ception, crashes and crises in a market, or recession in an
economy. Hence, it is important to consider the impact of
sudden changes in volatility in the model for generating
more accurate forecasts of volatility. This can be helpful for
fund managers and investors to design investment strate-
gies, to rebalance their portfolios and to hedge their posi-
tions based on an anticipation of future movements of the
market. Regulators, policy makers and central banks also
have an interest in volatility analysis to implement policy
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measures effectively based on changes taking place in markets.
This would enable them to maintain stability in financial
markets and to assess the effectiveness of these policies de-
pending on the required goals (Poon & Granger, 2003).

There exist different methods to estimate daily uncondi-
tional volatility. The most popular method involves the use
of square of close to close returns. The returns based vola-
tility measures are well established in literature and also act
as inputs to generalised autoregressive conditional
heteroskedasticity (GARCH) class of models. However, the
squared daily return is a noisy estimate of volatility and in-
formational inefficiency (Alizadeh, Brandt, & Diebold, 2002).
Another method involves the use of high frequency intra-
day data. This measure of volatility is also known as realised
volatility which involves summing the squares of returns
sampled at shorter intervals (for example, 5 minutes or 10
minutes) for a given day. However, the high frequency data
exhibit non negligible microstructure issues, which may
prevent the researchers in analysing its informational con-
tents. On the other hand, high frequency data for many assets
may not be available or may be available for a shorter du-
ration. In addition, high frequency data are generally expen-
sive and require substantial computational resources.

The literature that started with Parkinson (1980) and
Garman and Klass (1980), and extended by Rogers and Satchell
(1991) and Yang and Zhang (2000), has highlighted the im-
portance of using opening, high, low and closing prices of
an asset for the efficient estimation of volatility. Alizadeh
et al. (2002) highlighted that range based volatility esti-
mates are highly efficient and are robust in terms of the non
negligible market microstructure issues. Among all these range
based volatility estimators, the YZ estimator proposed by
Yang and Zhang (2000) is based on multi-period open, high,
low, and close prices, is unbiased in the continuous limit,
independent of any non-zero drift, and incorporates the impact
of opening price jumps. However, the RS estimator pro-
posed by Rogers and Satchell (1991) is also unbiased regard-
less of non-zero drift. The YZ estimator also makes use the
of RS estimator for volatility estimation (see equation (5) in
the section on Methodology). The other range based volatil-
ity estimators are biased in some way if the mean return
(drift) is non-zero. The open, high, low, and close prices are
also available for most of the traded assets, indices and com-
modities, and contain more information for efficient estima-
tion of volatility.

Literature provides evidence that the volatility models,
which incorporate the impact of sudden changes in uncon-
ditional volatility provide better volatility forecasts (Kumar
& Maheswaran, 2012). The IT-ICSS test assumes that the zero
mean returns are independent over time and normally dis-
tributed. The IT-ICSS test detects both a significant in-
crease and decrease in the unconditional volatility and, hence,
can help in identifying both the beginning and the ending of
volatility regimes. The IT-ICSS test has been extensively used
in detecting sudden changes in the unconditional volatility
of time series based on close-to-close returns (Aggarwal et al.,
1999; Fernandez & Arago, 2003; Hammoudeh & Li, 2008; Malik,
2003; Malik, Ewing, & Payne, 2005). However, Aggarwal et al.
(1999), Hammoudeh and Li (2008), Malik (2003), Malik et al.
(2005), and Wang and Moore (2009) use demeaned squared
returns with IT-ICSS algorithm to detect sudden changes in
the unconditional variance.

In this study, we compare the size and power properties
of IT-ICSS test with respect to both the volatility proxies (the
YZ estimator and the demeaned squared returns) for various
data generating processes like the independently and iden-
tically distributed (i.i.d.) random numbers from the Gauss-
ian, Student’s t, double exponential, gamma-mixture and
generalised error distributions, the GARCH model, the sto-
chastic volatility (SV) model and the fractionally integrated
GARCH (FIGARCH) model. For the GARCH, the SV and the
FIGARCH models, the innovations have been taken from the
normal, the Student’s t and the generalised error distribu-
tion (GED) distributions. The power properties are studied by
incorporating sudden breaks at 25th percentile, 50th per-
centile and 75th percentile of the data series from i.i.d.
normal, the GARCH and the SV data generating processes. The
findings of this study indicate that YZ estimator exhibits more
desirable size and power characteristics when applied with
IT-ICSS algorithm than the demeaned squared returns. Hence,
this study proposes the use of the YZ estimator with IT-ICSS
test to detect sudden changes in volatility. On the applica-
tion side, this study detects sudden breaks in the YZ estima-
tor and the demeaned squared returns of three major
exchange rates (USD/Euro, USD/Japanese Yen and USD/GBP).

The remainder of this paper is organised as follows: Section
2 introduces the IT-ICSS algorithm and the procedure for imple-
menting the YZ estimator based extension of the IT-ICSS al-
gorithm. Section 3 presents the results of the Monte Carlo
simulation experiments to assess the performance of the IT-
ICSS algorithm based on the YZ estimator and demeaned
squared returns. Section 4 describes the application of the
YZ estimator in detecting sudden breaks in USD/Euro, USD/
Japanese Yen and USD/GBP exchange rates and section 5 con-
cludes with a summary of the main findings.

Methodology

Inclan and Tiao’s (1994) (IT) ICSS algorithm

The IT-ICSS algorithm is helpful in detecting multiple sudden
changes in the volatility of time series. The IT-ICSS algo-
rithm assumes stationary unconditional variance in a time
series for a particular regime. This algorithm is simple to
implement and is not affected by the long memory charac-
teristics of the volatility.

Suppose εt ~ i.i.d. (0, σ2), where i.i.d. means indepen-
dent and identically distributed. Suppose there are TN change
points in the volatility series with change points given as
1 < k1 < k2 < … < kTN < N, where N is the number of observa-
tions in the time series. Suppose the variance within each
regime is given by τj2, where j = 0, 1, ……, TN. Then,

σ τ κt for t2
0
2

11= < < (1a)

σ τ κ κt for t2
1
2

1 2= < < (1b)

σ τ κt TN TNfor t N2 2= < < (1c)

Inclan and Tiao (1994) applied the cumulative sum of
squares approach to detect the number of sudden changes
in the variance. The cumulative sum of the squared

D. Kumar32



observations from the start of the series to the kth point in
time is given as:

Ck t
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=
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1

where k = 1,…, N. The Dk statistic is given as:
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where CN is the sum of squared observations from the whole
sample period.

TheDk statistic oscillates around zero if there are no sudden
changes in the volatility. In this case, if Dk is plotted against
k, it looks like a horizontal line. On the other hand, if there
are sudden changes in the volatility, then theDk statistic values
drift either above or below zero. The null hypothesis of con-
stant variance is rejected if the maximum absolute value
of Dk is greater than the critical value. Hence, if maxk√(N/
2)|Dk| is more than the predetermined boundary, then k* is
taken as an estimate of the variance change point. The 95th
percentile critical value for the asymptotic distribution of
maxk√(N/2)|Dk| is 1.358 (Inclan & Tiao, 1994 and Aggarwal
et al., 1999), and hence the upper and the lower boundaries
can be set at ±1.358 in the Dk plot. If the value of the sta-
tistic falls outside these boundaries then a sudden change in
variance is identified. Another branch in this literaturemakes
useof regressionbasedapproach todetect the structural breaks
in the time series (such as Bai & Perron, 1998; Kim & Nelson,
1999; Andreou & Ghysels, 2002; Banerjee & Urga, 2005).

Extreme value estimator of variance (Yang and
Zhang (2000) (YZ) estimator)

SupposeOt, Ht, Lt and Ct are the opening, high, low, and closing
prices of an asset on day t. We define:
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Suppose varx denotes the usual estimator of σ2, i.e.
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Let ut = 2bt - xt and vt = 2ct - xt, define the extreme value
estimator varux and varvx:
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The Rogers and Satchell (1991) estimator as studied by
Maheswaran, Balasubramanian, and Yoonus (2011) is given by:

V
varux varvx

RS = +
2

(4)

Yang and Zhang (2000) propose a volatility estimator (the
YZ estimator) based on multiple period open, high, low, and
close prices that are unbiased in the continuous limit, inde-
pendent of the drift and account for opening price jumps. They
find that the YZ estimator has the minimum variance among
all estimators that have the same properties. The YZ esti-
mator is given by:

V V kV k VYZ o c RS= + + −( )1 (5)

where VRS is the RS estimator as given by equation (4). Vo and
Vc are given as:
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. The constant k is

chosen in such a way to minimise VYZ. The value of k is given
by:
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(6)

This paper suggests the use of VYZ in place of εt2 to detect
structural breaks in the variance of the time series.

Monte Carlo simulation

This section presents the extensive Monte Carlo simulation
experiments to examine the performance of the IT-ICSS (1994)
test in detecting sudden changes in volatility proxies, for
example, the YZ estimator and demeaned squared returns,
using different data generating processes (DGP) which in-
cludes both unconditional and conditional data series. The
YZ estimator represents the variance estimate of multiple
period open, high, low, and close prices. As highlighted by
Yang and Zhang (2000), the variance of the YZ estimator is
the smallest among all the extreme value volatility estima-
tors but possesses similar properties. In addition, the YZ es-
timator is unbiased regardless of the drift parameter and
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opening jumps whereas all others are biased in one way or
another if the mean return (drift) is non-zero. While the RS
estimator is also unbiased, it does not account for opening
jumps in the data (Kumar & Maheswaran, 2013; Yang & Zhang,
2000). According to Yang and Zhang (2000), the YZ estima-
tor assumes that the intraday price movements follow a geo-
metric Brownian motion.

This paper explains the Monte Carlo simulation analysis in
two parts. The first part undertakes the simulation experi-
ments to examine the size properties of the IT-ICSS algo-
rithm for the YZ estimator and the demeaned squared returns
(that is, zero mean returns). The second part of the simula-
tion deals with the estimation of power properties of the
IT-ICSS algorithm for both variance proxies. Samples of varying
sizes have been taken; T = 104, T = 208, T = 416 and T = 832;
assuming weekly data for 2 years, 4 years, 8 years and 16
years, respectively. The number of Monte Carlo trials is set
to 10000 and the significance level1 is set at 5%.

To examine the size of the IT-ICSS test, this study con-
siders both unconditional and conditional data generating pro-
cesses, which do not incorporate sudden change in variance.
First, this study considers artificial data series, which do not
have any conditional dependence and this includes the se-
quence of identical and independently distributed zero mean
random numbers. Following Kumar and Maheswaran (2013),
the unconditional data series, which have been taken for
analysis include the standard normal distribution N(0,1), the
Student’s t distribution with 5 degrees of freedom (mixture
of the normal and the chi-squared distribution), the double
exponential distribution (mixture of the normal and the ex-
ponential distribution), the gamma-mixture distribution
(mixture of the normal and the chi-squared distribution), and
the generalised error distribution (with 1.3 degrees of
freedom). To simulate the YZ estimator using unconditional
data series, it is required to first simulate the RS estimator
separately. This involves generating (xi, bi, ci) using Gauss-
ian random walk with initial (open) price being zero. It is also
necessary to account for opening jumps in the simulation.
Since, for each simulation, the initial value is taken as zero
for a Gaussian random walk, the opening jumps will involve
variance of natural logarithm of xi−1. The value of k has been
calculated using equation (6) for varying sample size as sug-
gested by Yang and Zhang (2000). For standard normal dis-

tribution, (xi, bi, ci) has been used directly to estimate the
YZ estimator. Following Kumar and Maheswaran (2013), this
study also makes use of mixture of distributions to generate
random series for the Student’s t distribution and the Gamma
distribution. Suppose Y ~ χ ν

ν

2 ( ) represents a random series gen-
erated by using the chi-squared distribution with ν degrees
of freedom divided by ν. The (xit, bi

t, cit) can be generated
from a random walk of n steps, which is an inverse Gamma
mixture of the Gaussian distribution, and this gives rise to the
Student’s t distribution with ν degrees of freedom, which is
given as follows:

x
x

Y
b

b

Y
c

c

Y
i
t i

i
t i

i
t i= = =, , (7)

Similarly, the (xig, bi
g, cig) can be generated for Gamma dis-

tribution from a random walk of n steps, which is a direct
Gamma mixture of the Gaussian distribution and is given by:

x x Y b b Y c c Yi
g

i i
g

i i
g

i= ⋅ = ⋅ = ⋅, , (8)

For the case of double exponential random walk, we first
generate Z ~ Exp(1). The random walk of n steps, which
is subjected to double exponential distribution, (xie, bi

e, cie),
can be generated from (xi, bi, ci) by using the following
transformation.

x x Z b b Z c c Zi
e

i i
e

i i
e

i= ⋅ = ⋅ = ⋅, , (9)

In addition, in the case of the GED distribution, we gen-
erate i.i.d. random walk for the GED distribution (1.3 degree
of freedom) to estimate YZ estimator.

Table 1 presents the size of the IT-ICSS test for the YZ es-
timator and the demeaned squared returns (εt2) at 95% level
of confidence. Results indicate that the IT-ICSS algorithm pro-
vides appropriate rejection ratios (size) for the YZ estima-
tor for samples under consideration. The results for the YZ
estimator are slightly oversized for a few cases; however,
these over rejections are still very near to 5% (for example,
for Student’s t distribution, the results are slightly greater
than 5% and go up to 9.5% for a sample size of 208). On the
other hand, the size of the IT-ICSS test for the εt2 is appro-
priate only for the Gaussian distribution. For all other dis-
tributions, the results are severely oversized. Overall, the
results indicate that the IT-ICSS algorithm works well with the
YZ estimator for unconditional data generating processes;
however, it performs worse for the εt2 for various data gen-
erating processes.

1 We also perform similar analysis at 10% and 1% levels of signifi-
cance. The results at 10% and 1% levels of significance provide similar
inference as we obtain at 5% level of significance. Results for 10%
and 1% levels of significance will be made available upon request.

Table 1 Size of the IT-ICSS test with no conditional dependence.

YZ estimator εt
2

N = 104 N = 208 N = 416 N = 832 N = 104 N = 208 N = 416 N = 832

Normal 0.000 0.001 0.001 0.001 0.029 0.035 0.029 0.042
Student’s t 0.063 0.095 0.122 0.138 0.270 0.317 0.365 0.454
Doub_Exp 0.045 0.061 0.048 0.083 0.285 0.311 0.357 0.397
Gamma 0.009 0.010 0.003 0.003 0.126 0.151 0.166 0.152
GED 0.000 0.001 0.001 0.001 0.087 0.111 0.103 0.132

Doub_Exp and GED represent double exponential distribution and generalised error distribution.
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To test size properties of the IT-ICSS test for data series
having conditional dependence, this study makes use of
the GARCH (1,1), the stochastic volatility (SV) and the
FIGARCH(1,d,1) models with innovations from the Gaussian
distribution, the Student’s t distribution and the GED. The
following models are considered to evaluate the size prop-
erties of the IT-ICSS test for εt2:

Model 1: GARCH(1,1)

ε ω αε βt t t t t th u h h= = + +− −; 1
2

1 (10)

Model 2: Stochastic volatility

ε δt t t t t t th u h h N= ( ) = + ( )−exp . ; ; ~ , .0 5 0 0 11 ε ε (11)

Model 3: FIGARCH(1,d,1)

ε φ ε ω β νt t t
d

t th u L L L= ( ) −( ) = + − ( )[ ]; ,1 12 (12)

where ν εt t th= −2 and φ α βL L L( ) = − ( ) − ( )[ ]1 .
It is to be noted that for all the three models, this study

examines of size of the IT-ICSS test for three cases of ut. The
ut ~ iid N(0,1) for innovations from the standard normal dis-
tribution, ut ~ iid t(ν) for innovations from the standardised
Student’s t distribution with ν = 5 degrees of freedom (to
account for finite fourth moment in the data series) and ut

~ iid GED(η) for innovations from the standardised GED dis-
tribution with η = 1.3 degrees of freedom2 (to account for
thicker tail of the distribution).

On the other hand, to evaluate the size properties of the
YZ estimator for conditional data series, this study gener-
ates random walk from respective distributions, that is, the
normal distribution, the Student’s t distribution and the
GED distribution. This can help us to take out (xt, bt, ct).

Model 1*: GARCH(1,1)

x h x h x ht t t t t t* ; *= = + ( ) + −ω α β
2

1 (13)

Topreserve the joint distribution ofmaximumandminimum
of the random walk, bt* and ct* are computed as follows:

b h bt t t* =

c h ct t t* =

Model 2*: Stochastic volatility

x h x h h Nt t t t t t t* exp . ; ; ~ , .= ( ) = + ( )−0 5 0 0 11δ ε ε (14)

Here, to preserve the joint distribution of maximum and
minimumoftherandomwalk,bt*andct*arecomputedas follows:

b e bt

h

t

t
* = 2

c e ct

h

t

t
* = 2

Model 3*: FIGARCH(1,d,1)

x h x L L x Lt t t
d

t t* ; * ,( )= ( ) −( ) = + − ( )[ ]φ ω β ν1 12 (15)

Here, νt t tx h= −( *)2 . In order to preserve the joint distri-
bution of maximum and minimum of the random walk, bt* and
ct* are computed as follows:

b h bt t t* =

c h ct t t* =

Table 2 reports the size of the IT-ICSS test for the YZ es-
timator and the εt2 for different sample at 5% level of sig-
nificance for the GARCH(1,1) conditional data generating
process with the normal distribution, the Student’s t distri-
bution and the GED distribution.

It can be seen that when the underlying distribution is
normal, the results indicate desirable size properties of the
IT-ICSS test for both volatility proxies. However, when the
underlying distribution is Student’s t, the εt2 is severely over-
sized for all possible values of β. On the other hand, the YZ
estimator exhibits desirable size properties up to β = 0.4 for
all samples under consideration. For β = 0.5, the results are
oversized for sample of size 832. For β ≥ 0.6, the rejection
frequency is greater than conventional level of significance
(5%) for all samples. However, the size of the IT-ICSS test is
still near the conventional level of significance for the YZ es-
timator than the εt2. Overall for Student’s t distribution, the
YZ estimator provides a more desirable size than εt2 for all
values of β. For the GED distribution, the YZ estimator ex-
hibits desirable size properties for all cases. On the flipside,
the εt2 exhibit desirable size up to β = 0.6 (except for sample
size of 832, the size value is 0.08 for β = 0.6). For β ≥ 0.6, the
results are substantially oversized. Overall, for the GARCH(1,1)
model, the rejection frequency related to the IT-ICSS test is
much better for the YZ estimator for different underlying dis-
tributions than the rejection frequencies obtained using εt2.

Table 3 presents the size of the IT-ICSS test for the sto-
chastic volatility model with the innovations from the Gauss-
ian, the Student’s t and the GED distributions for both the
variance estimators for varying sample sizes at 95% level of
confidence. It can be seen that the rejection frequencies of
the IT-ICSS test for the YZ estimator is properly sized for all
cases. However, the results for the IT-ICSS test for εt2 exhibit
severely oversized behaviour for all the cases under consid-
eration. Here also, the results indicate that the YZ estima-
tor exhibits desirable size characteristics for the SV model
with different underlying distributions.

Table 4 reports the rejection frequencies of the IT-ICSS
test for the FIGARCH(1,d,1) model for both the volatility
proxies. It can be seen that the results are severely over-
sized for all the cases for both the volatility estimators.
However, if the results of the YZ estimator are compared with
the results of the εt2, it can be seen that the YZ estimator ex-
hibits a less oversized behaviour than the εt2. This indicates
that the IT-ICSS test does not account for long memory in the
volatility. However, for most of the data generating pro-
cesses considered in this study, the size of the IT-ICSS test

2 We also perform analysis for different degrees of freedom less than
2 and the results provide a similar inference to what we have ob-
tained here.
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Table 2 Size of the IT-ICSS test for the GARCH(1,1) model.

ω = 0.1 and α = 0.1

Β YZ estimator εt
2

N = 104 N = 208 N = 416 N = 832 N = 104 N = 208 N = 416 N = 832

Normal
0.1 0.004 0.002 0.000 0.001 0.002 0.001 0.001 0.001
0.2 0.001 0.002 0.002 0.000 0.001 0.001 0.001 0.000
0.3 0.005 0.003 0.008 0.002 0.001 0.004 0.000 0.000
0.4 0.003 0.003 0.013 0.005 0.002 0.003 0.003 0.001
0.5 0.007 0.009 0.016 0.012 0.005 0.005 0.001 0.002
0.6 0.014 0.016 0.020 0.027 0.012 0.009 0.013 0.011
0.7 0.026 0.061 0.053 0.059 0.032 0.029 0.038 0.043
Student’s t
0.1 0.007 0.009 0.013 0.019 0.177 0.232 0.296 0.369
0.2 0.015 0.016 0.013 0.019 0.166 0.261 0.328 0.418
0.3 0.020 0.025 0.019 0.027 0.177 0.258 0.348 0.449
0.4 0.030 0.038 0.050 0.058 0.242 0.325 0.384 0.479
0.5 0.040 0.044 0.061 0.092 0.239 0.356 0.454 0.574
0.6 0.087 0.124 0.171 0.214 0.298 0.436 0.550 0.681
0.7 0.183 0.289 0.410 0.499 0.408 0.592 0.731 0.806
GED
0.1 0.004 0.000 0.000 0.002 0.018 0.014 0.010 0.006
0.2 0.002 0.004 0.004 0.003 0.013 0.017 0.009 0.008
0.3 0.003 0.002 0.001 0.006 0.015 0.014 0.013 0.019
0.4 0.006 0.007 0.005 0.014 0.023 0.027 0.027 0.022
0.5 0.009 0.014 0.006 0.014 0.041 0.039 0.034 0.040
0.6 0.021 0.018 0.035 0.025 0.038 0.063 0.064 0.080
0.7 0.039 0.046 0.051 0.057 0.083 0.119 0.133 0.162

Table 3 Size of the IT-ICSS test for the stochastic volatility (SV) model.

Δ YZ estimator εt
2

N = 104 N = 208 N = 416 N = 832 N = 104 N = 208 N = 416 N = 832

Normal
0.1 0.001 0.000 0.000 0.000 0.065 0.065 0.089 0.061
0.2 0.000 0.000 0.000 0.003 0.060 0.078 0.091 0.077
0.3 0.001 0.000 0.000 0.001 0.066 0.075 0.074 0.082
0.4 0.000 0.004 0.004 0.001 0.064 0.077 0.098 0.105
0.5 0.002 0.000 0.005 0.003 0.096 0.091 0.108 0.111
0.6 0.006 0.008 0.013 0.014 0.099 0.107 0.116 0.151
0.7 0.029 0.027 0.034 0.043 0.140 0.168 0.183 0.229
Student’s t
0.1 0.002 0.001 0.002 0.000 0.266 0.364 0.425 0.467
0.2 0.001 0.001 0.003 0.002 0.273 0.382 0.425 0.480
0.3 0.000 0.002 0.000 0.003 0.255 0.401 0.425 0.523
0.4 0.001 0.002 0.000 0.001 0.293 0.383 0.447 0.508
0.5 0.004 0.003 0.005 0.007 0.303 0.397 0.439 0.495
0.6 0.007 0.008 0.011 0.014 0.302 0.405 0.467 0.525
0.7 0.025 0.027 0.047 0.049 0.366 0.474 0.549 0.587
GED
0.1 0.001 0.000 0.002 0.002 0.169 0.200 0.238 0.242
0.2 0.001 0.001 0.002 0.002 0.182 0.202 0.237 0.267
0.3 0.000 0.001 0.003 0.002 0.160 0.219 0.230 0.272
0.4 0.000 0.002 0.003 0.001 0.201 0.223 0.254 0.282
0.5 0.001 0.005 0.002 0.007 0.223 0.265 0.284 0.297
0.6 0.007 0.014 0.019 0.014 0.226 0.277 0.324 0.324
0.7 0.022 0.031 0.042 0.034 0.270 0.322 0.375 0.405
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for the YZ estimator is much better than the size of the test
associated with the εt2.

Tables 5 to 7 report the power of the IT-ICSS test, for both
the volatility estimators with data generating processes from
the i.i.d. standard normal, the GARCH(1,1) model and the SV
model, when breaks are incorporated at 50th percentile, 25th
percentile and 75th percentile of the series for varying sample
sizes at 95% confidence level. To generate εt2, we first gen-
erate the sample for a given data generating process (i.i.d.
standard normal, GARCH(1,1) (equation (10)) and SV (equa-
tion (11))). Based on the xth percentile (50th, 25th and 75th)
analysis, we keep the first half of sample as it is and change
the standard deviation of the second half of the sample by
multiplying by a factor (1 + λ), where λ indicates the per-
centage change in the volatility of the series. On the other
hand, to generate the YZ estimator, we first generate the pure
Gaussian random walk to take out (x, b, c). This (x, b, c) is
directly used to find YZ estimator for the case of i.i.d. stan-
dard normal distribution. Moreover, we use equations (13) and
(14) to generate the YZ estimator for the GARCH(1,1) and the
stochastic volatility (SV) data generating process. Here also,
we change the standard deviation of the second half of the
sample by multiplying it by (1 + λ).

Table 5 reports the power of the IT-ICSS test when a sudden
change in volatility is incorporated at 50th percentile of the
series from the i.i.d. standard normal, the GARCH(1,1) model
(with ω = 0.1, α = 0.1 and β = 0.6) and the stochastic vola-
tility model (with δ = 0.6) at 95% level of confidence for both

the variance estimators. The results indicate desirable power
properties of the IT-ICSS test for both volatility estimators.
However, the power properties are better for YZ estimator
when a sudden change of more than 100% is incorporated in
volatility for all data generating processes under consideration.

Tables 6 and 7 report the power of the IT-ICSS test when
a sudden change in volatility estimators is incorporated at the
25th and 75th percentile of the series from various data gen-
erating processes. For the i.i.d. standard normal DGP (for both
25th and 75th percentile cases), the YZ estimator exhibits
better power for a sample of size of 832 when there is a sudden
change in volatility by 30% (or more). Here also, the power
properties are better for the YZ estimator when a sudden
break of greater than 100% is incorporated in volatility for
samples of different sizes. For the GARCH and the SV model,
the results find higher power for the YZ estimator for sample
sizes 832, 416, 208 and 104 when there is a sudden change
in volatility by 50%, 100%, 150% and 200%, respectively. This
indicates that as sample size increases, the YZ estimator pro-
vides better power for the IT-ICSS algorithm. Overall, the
power properties of the YZ estimator and the εt2 are compa-
rable; however, the YZ estimator provides more desirable
power properties than the εt2.

The findings from the Monte Carlo simulation experi-
ments indicate that the YZ estimator provides desirable size
and power characteristics for the IT-ICSS test. The εt2 exhib-
its substantial size distortion and lower power in capturing
sudden changes in the volatility. The daily open, high, low,

Table 4 Size of the IT-ICSS test for the FIGARCH(1,d,1) model.

ω = 0.1, ϕ = 0.05 and d = 0.75

Β YZ estimator εt
2

N = 104 N = 208 N = 416 N = 832 N = 104 N = 208 N = 416 N = 832

Normal
0.1 0.622 0.756 0.857 0.895 0.766 0.908 0.989 0.997
0.2 0.606 0.755 0.859 0.892 0.749 0.921 0.970 0.997
0.3 0.596 0.751 0.862 0.894 0.760 0.908 0.984 0.999
0.4 0.566 0.704 0.847 0.896 0.740 0.912 0.979 0.999
0.5 0.545 0.746 0.870 0.890 0.694 0.895 0.968 0.998
0.6 0.489 0.677 0.847 0.893 0.635 0.856 0.977 0.997
0.7 0.380 0.655 0.820 0.889 0.539 0.813 0.956 0.999
Student’s t
0.1 0.612 0.742 0.843 0.890 0.803 0.935 0.982 0.996
0.2 0.593 0.745 0.844 0.892 0.791 0.926 0.985 0.998
0.3 0.584 0.734 0.847 0.890 0.787 0.915 0.979 0.999
0.4 0.591 0.727 0.848 0.891 0.797 0.910 0.985 0.998
0.5 0.535 0.711 0.833 0.889 0.752 0.909 0.987 0.999
0.6 0.483 0.713 0.838 0.891 0.729 0.910 0.981 0.999
0.7 0.475 0.670 0.835 0.887 0.673 0.856 0.978 0.995
GED
0.1 0.601 0.764 0.850 0.888 0.787 0.928 0.988 1.000
0.2 0.593 0.768 0.851 0.892 0.808 0.906 0.984 0.996
0.3 0.595 0.733 0.856 0.891 0.776 0.923 0.979 0.996
0.4 0.591 0.730 0.854 0.890 0.758 0.929 0.984 0.999
0.5 0.549 0.757 0.849 0.896 0.719 0.908 0.985 0.996
0.6 0.494 0.705 0.851 0.895 0.736 0.898 0.976 0.999
0.7 0.470 0.719 0.841 0.886 0.642 0.878 0.967 0.994
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Table 5 Power of the test when there is a change in a variance at 50th percentile of the series.

Λ YZ estimator εt
2

N = 104 N = 208 N = 416 N = 832 N = 104 N = 208 N = 416 N = 832

i.i.d. Normal
0.2 0.018 0.101 0.507 0.969 0.155 0.358 0.618 0.929
0.3 0.088 0.525 0.971 1.000 0.315 0.669 0.928 0.999
0.4 0.308 0.885 1.000 1.000 0.534 0.864 0.990 1.000
0.5 0.594 0.990 1.000 1.000 0.685 0.952 1.000 1.000
1 0.999 1.000 1.000 1.000 0.991 1.000 1.000 1.000
1.5 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GARCH (1,1) with ω = 0.1, α = 0.1 and β = 0.6
0.2 0.038 0.066 0.132 0.297 0.180 0.242 0.341 0.495
0.3 0.047 0.115 0.278 0.616 0.184 0.298 0.478 0.704
0.4 0.060 0.233 0.508 0.865 0.222 0.417 0.614 0.849
0.5 0.113 0.314 0.699 0.954 0.283 0.476 0.742 0.933
1 0.420 0.847 0.994 1.000 0.535 0.826 0.987 1.000
1.5 0.767 0.990 1.000 1.000 0.762 0.954 1.000 1.000
2 0.915 1.000 1.000 1.000 0.887 0.990 1.000 1.000
SV with δ = 0.6
0.2 0.017 0.040 0.115 0.272 0.149 0.195 0.281 0.445
0.3 0.033 0.104 0.296 0.602 0.165 0.281 0.446 0.683
0.4 0.072 0.195 0.497 0.847 0.239 0.357 0.588 0.848
0.5 0.101 0.317 0.699 0.976 0.286 0.477 0.737 0.946
1 0.447 0.883 0.999 1.000 0.560 0.839 0.981 1.000
1.5 0.754 0.987 1.000 1.000 0.771 0.976 1.000 1.000
2 0.924 1.000 1.000 1.000 0.906 1.000 1.000 1.000

Table 6 Power of the test when there is a change in a variance at 25th percentile of the series.

Λ YZ estimator εt
2

N = 104 N = 208 N = 416 N = 832 N = 104 N = 208 N = 416 N = 832

i.i.d. Normal
0.2 0.001 0.004 0.066 0.488 0.063 0.128 0.305 0.657
0.3 0.003 0.034 0.431 0.991 0.087 0.268 0.630 0.948
0.4 0.008 0.121 0.902 1.000 0.178 0.442 0.875 1.000
0.5 0.011 0.396 0.994 1.000 0.230 0.602 0.972 1.000
1 0.361 1.000 1.000 1.000 0.633 0.998 1.000 1.000
1.5 0.935 1.000 1.000 1.000 0.930 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 0.998 1.000 1.000 1.000
GARCH (1,1) with ω = 0.1, α = 0.1 and β = 0.6
0.2 0.013 0.033 0.060 0.146 0.125 0.181 0.247 0.384
0.3 0.023 0.046 0.108 0.295 0.140 0.228 0.341 0.503
0.4 0.019 0.078 0.172 0.519 0.146 0.272 0.408 0.660
0.5 0.032 0.092 0.322 0.781 0.181 0.254 0.505 0.767
1 0.186 0.554 0.896 0.998 0.269 0.565 0.881 0.998
1.5 0.265 0.782 0.998 1.000 0.388 0.756 0.977 1.000
2 0.544 0.913 1.000 1.000 0.496 0.885 0.997 1.000
SV with δ = 0.6
0.2 0.007 0.016 0.032 0.108 0.123 0.150 0.202 0.296
0.3 0.010 0.033 0.089 0.240 0.116 0.177 0.271 0.472
0.4 0.014 0.046 0.171 0.470 0.144 0.202 0.383 0.646
0.5 0.020 0.081 0.280 0.798 0.169 0.276 0.505 0.790
1 0.078 0.571 0.882 1.000 0.250 0.531 0.882 0.995
1.5 0.143 0.791 0.996 1.000 0.395 0.776 0.987 1.000
2 0.545 0.897 1.000 1.000 0.493 0.896 0.999 1.000
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and close prices for most traded assets are readily avail-
able. Hence, this study recommends the use of the YZ esti-
mator with the IT-ICSS test in detecting sudden changes in
the volatility associated with the tradable asset.

Empirical application

It is clear from the Monte Carlo simulation experiments that
the YZ estimator performs better than the demeaned squared
returns in detecting changes in unconditional volatility when
applied with the IT-ICSS test. Now, to examine how the YZ
estimator performs on data against the demeaned squared
returns in detecting sudden changes in volatility, daily data
of three widely traded exchange rates—USD/Euro, USD/
Japanese Yen and USD/GBP—is used. All data have been ob-
tained from the Bloomberg database. The period of study for
USD/Euro is from April 1999 to February 2013 (3631 obser-
vations), and for USD/Japanese Yen and USD/GBP it is from
January 1989 to February 2013 (6301 observations each). The
sample period for each exchange rate starts from the date
when the open, high, low, and close prices are available. Fig. 1
reports the volatility regimes associated with the YZ estima-
tor (left column) and the demeaned squared returns (right
column) based on the IT-ICSS algorithm.

Table 8 reports the break points detected in the YZ esti-
mator using the IT-ICSS algorithm (also see left column of
Fig. 1). Six break points are detected in the USD/Euro and
the USD/GBP exchange rates and eight break points are de-
tected in the USD/Japanese yen exchange rates. This indi-

cates the presence of (n + 1) distinct volatility regimes in
the time series of the YZ estimator, where n represents the
number of break points in the unconditional variance. The
time points of the sudden breaks in the YZ estimator series
of the exchange rates are associated with various macroeco-
nomic events. In September 1992, under the impact of specu-
lative currency trades related to pounds, the British
government withdrew the pound from the European Ex-
change Rate Mechanism as the British government was not
able to keep the value of a pound above the agreed upon lower
limit. This incident, known as Black Wednesday, impacted
trade in pounds till the end of 1993. The impact of the Mexican
peso crisis in 1994–1995 was not limited to Mexico alone, but
also impacted the US dollar exchange rates relative to various
other exchange rates, which can be seen in USD/Japanese yen
exchange rates. The impact of the Asian financial crisis, which
hit many Asian markets such as Thailand, Indonesia, South
Korea, Philippines, and other Asian countries, also ad-
versely impacted the USD/Japanese yen exchange rates. In
1997–98, the devaluation of the Russian ruble relative to the
US dollar also impacted other US dollar exchange rates. Under
the impact of the dot-com bubble by the end of 1999, many
markets around the globe experienced sudden changes in vola-
tility, which also affected the volatility of various exchange
rates during the period of 2000. In addition, the dot-com
bubble burst adversely impacted the major Asian markets
which also affected the Japanese yen exchange rates. The
terrorist attack of 11 September 2001 in the US affected the
global markets severely and resulted in the collapse of major
global markets, thereby affecting the US dollar exchange rates.

Table 7 Power of the test when there is a change in a variance at 75th percentile of the series.

Λ YZ estimator εt
2

N = 104 N = 208 N = 416 N = 832 N = 104 N = 208 N = 416 N = 832

i.i.d. Normal
0.2 0.015 0.051 0.261 0.762 0.109 0.242 0.420 0.777
0.3 0.053 0.298 0.820 0.999 0.223 0.486 0.755 0.977
0.4 0.221 0.685 0.994 1.000 0.404 0.712 0.961 1.000
0.5 0.456 0.932 1.000 1.000 0.526 0.866 0.987 1.000
1 0.995 1.000 1.000 1.000 0.956 1.000 1.000 1.000
1.5 1.000 1.000 1.000 1.000 0.999 1.000 1.000 1.000
2 1.000 1.000 1.000 1.000 1.000 1.000 1.000 1.000
GARCH (1,1) with ω = 0.1, α = 0.1 and β = 0.6
0.2 0.020 0.056 0.106 0.201 0.148 0.212 0.266 0.415
0.3 0.047 0.094 0.191 0.410 0.167 0.258 0.391 0.553
0.4 0.047 0.159 0.292 0.666 0.224 0.343 0.481 0.699
0.5 0.085 0.236 0.499 0.850 0.256 0.360 0.618 0.835
1 0.343 0.700 0.961 1.000 0.469 0.710 0.934 0.997
1.5 0.630 0.933 1.000 1.000 0.656 0.890 0.994 1.000
2 0.839 0.995 1.000 1.000 0.777 0.968 0.999 1.000
SV with δ = 0.6
0.2 0.019 0.029 0.067 0.141 0.143 0.181 0.252 0.331
0.3 0.034 0.066 0.148 0.375 0.161 0.230 0.344 0.521
0.4 0.063 0.113 0.304 0.650 0.198 0.311 0.479 0.711
0.5 0.074 0.213 0.486 0.876 0.254 0.369 0.589 0.850
1 0.333 0.707 0.981 1.000 0.466 0.735 0.937 0.996
1.5 0.635 0.949 0.998 1.000 0.663 0.915 0.996 1.000
2 0.842 0.994 1.000 1.000 0.786 0.971 1.000 1.000
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The higher volatility experienced by all US dollar exchanges
rates during the period of 2007–09 can be related to the
impact of the global financial crisis, which initiated a period
of recession in all major markets. In addition, the sudden
changes in the volatility of exchange rates during the period
2009–12 are affected by the impact of crises in various Eu-
ropean economies.

Table 9 presents the sudden changes detected in the de-
meaned square return based on the IT-ICSS algorithm (also

see right column of Fig. 1). It can be seen that many breaks
detected in the demeaned square return by the IT-ICSS al-
gorithm are spurious in nature. In addition, the IT-ICSS test
detects more number of breaks in demeaned squared returns
than the YZ estimator. Seven break points are detected in
the USD/Euro exchange rates, fifteen break points in the USD/
Japanese Yen exchange rates and eight break points are de-
tected in the USD/GBP exchange rates. It can be seen that
many breaks cannot be related to macroeconomic events and
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Figure 1 Time plots for YZ estimator (left column) and demeaned squared returns (right column) with a band of three times the
average volatility in the given regime.
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Table 8 Change points detected based on the YZ estimator with the IT-ICSS algorithm.

Index Number of breaks Break date detected Reason

USD/Euro 6 24-09-2001 Impact of September 11 terrorist attack
17-06-2004 –
06-08-2008 Impact of global financial crisis
25-06-2009 Bull rally after global financial crisis
22-04-2010 Impact of European debt crisis
15-11-2011 Recession due to problems in Greece

USD/Yen 8 14-11-1995 Impact of crisis in Mexico
08-05-1997 Impact of Asian financial crisis
01-03-1999 Impact of Russian debt crisis
17-04-2000 Impact of dot-com bubble burst
26-07-2007 Impact of global financial crisis
05-09-2008 Impact of global financial crisis
02-04-2009 Bull rally after global financial crisis
24-05-2010 Impact of European debt crisis

USD/GBP 6 09-09-1992 Impact of Black Wednesday
05-10-1993 Impact of speculative currency trades against

the European Exchange Rate Mechanism
08-08-2008 Impact of global financial crisis
14-07-2009 Bull rally after global financial crisis
03-02-2011 Impact of crisis in Europe
17-01-2012 Impact of crises in Greece and Italy

Table 9 Changes detected with the demeaned squared returns with IT-ICSS algorithm.

Index Number of breaks Break date detected Reason

USD/Euro 7 01-07-2004 –
26-07-2006 –
09-11-2007 Impact of global financial crisis
06-08-2008 Impact of global financial crisis
24-06-2009 Bull rally after global financial crisis
26-04-2010 Impact of European debt crisis
15-11-2011 Recession due to problems in Greece

USD/Yen 15 22-04-1991 –
10-06-1993 –
21-02-1994 –
01-03-1995 –
05-10-1995 Impact of crisis in Mexico
07-05-1997 Impact of Asian financial crisis
11-06-1998 -
17-02-1999 Impact of Russian debt crisis
03-04-2000 Impact of dot-com bubble burst
24-02-2005 –
26-07-2007 Global financial crisis
15-09-2008 Global financial crisis
19-12-2008 Global financial crisis
12-08-2009 Bull rally after global financial crisis
16-09-2010 Impact of European debt crisis

USD/GBP 8 02-09-1992 Impact of Black Wednesday
03-02-1993 –
18-10-1993 Impact of speculative currency trades against

the European Exchange Rate Mechanism
08-08-2008 Global financial crisis
11-02-2009 –
26-10-2009 Impact of crisis in Dubai
02-02-2011 Impact of crisis in Europe
12-01-2012 Impact of crises in Greece and Italy
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hence are deemed spurious. These findings are in line with
the findings from Monte Carlo simulation experiments where
it has been shown that the IT-ICSS test exhibit superior size
and power properties with the YZ estimator in comparison
to the demeaned squared returns.

These findings are also supported by the findings of Schwert
(1989) and Kumar and Maheswaran (2013), which say that vola-
tility breaks detected in volatility based on close to close
returns may be difficult to relate to macroeconomic events.
Hence, in this context, this study proposes the use the YZ es-
timator based onmulti-period open, high, low, and close prices
for volatility estimation.

Conclusion

This paper examines the performance of the multiple period
drift-independent Yang and Zhang (2000) volatility estima-
tor, the YZ estimator and the demeaned squared returns in
detecting sudden breaks in volatility using the IT-ICSS algo-
rithm by means of Monte Carlo simulation experiments. Using
data generating processes from sequence of i.i.d. random
numbers (the Gaussian, the Student’s t, the double expo-
nential, the gamma-mixture and the generalised error dis-
tributions), the generalised autoregressive conditional
heteroskedasticity model, the stochastic volatility model and
the fractionally integrated GARCH model, this study as-
sesses the size and power properties of the YZ estimator and
the demeaned squared returns. The findings from Monte Carlo
simulation experiments indicate that the YZ estimator ex-
hibits outstanding size and power characteristics when used
with the IT-ICSS algorithm. However, the demeaned squared
return exhibits oversized behaviour and severe size distor-
tion for most of the data generating processes taken for simu-
lation experiments. This indicates that the IT-ICSS algorithm
can detect appropriate sudden breaks in the YZ estimator;
however, the sudden breaks detected in the demeaned
squared returns may be spurious. To confirm the findings of
simulation experiments, this study applies the IT-ICSS algo-
rithm on the YZ estimator and the demeaned squared returns
of the USD/Euro, the USD/Japanese yen and the USD/GBP ex-
change rates to detect sudden changes in the respective vola-
tility proxies. The empirical findings indicate that most of the
sudden breaks detected in the YZ estimator can be related
to major macroeconomic events. On the other hand, the IT-
ICSS algorithm detects too many breaks in the demeaned
squared returns, and most of the detected breaks cannot be
related to any macroeconomic events and are probably
spurious.
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