
International Journal of Forecasting 33 (2017) 1–10
Contents lists available at ScienceDirect

International Journal of Forecasting

journal homepage: www.elsevier.com/locate/ijforecast

Monte Carlo forecast evaluation with persistent data
Lynda Khalaf a,b,c,∗, Charles J. Saunders d

a Department of Economics and Centre for Monetary and Financial Economics (CMFE), Carleton University, Canada
b Centre interuniversitaire de recherche en économie et analyse quantitative (CIREQ), Canada
c Centre de Recherche en économie de l’Environnement, de l’Agroalimentaire, des Transports et de l’Énergie (CREATE), Université Laval,
Canada
d Department of Economics, University of Western Ontario, Canada

a r t i c l e i n f o

Keywords:
Evaluating forecasts
Model selection
Stationarity
Statistical tests
Monte Carlo
Finite sample tests

a b s t r a c t

Persistent processes, including local-to-unity and randomwalks, are commonly considered
as forecasting models of interest. However, the associated forecast errors follow non-
standard distributions that complicate forecast evaluation tests.Wepropose a finite sample
simulation-based solution to this problem. The method requires a flexible parametric null
model that can be simulated as long as a finite dimension nuisance parameter can be
specified. The size control of our method is robust to non-standard limiting distributions,
such as degenerate asymptotic distribution problems that arise from nested and unit root
models. Our simulation studies demonstrate that many of the existing forecast evaluation
methods, including various bootstraps, over-reject for highly persistent data. In contrast,
ourmethod is level correct and has good power.We extend our approach to the inversion of
forecast evaluation statistics in order to construct exact confidence sets for the benchmark
model. Confidence sets provide much more information than tests, particularly in the case
of the persistence-adjusted relevance of predictive regressors (Rossi, 2005).
© 2016 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
ie
1. Introduction

Forecast evaluationmethods and statistics allow for the
ranking and comparison of models, but inference in time
series contexts is related strongly to the degree of per-
sistence. Local-to-unity and unit roots models are persis-
tent processes that are considered commonly as models
of interest; see Alquist and Kilian (2010), Baumeister et al.
(Forthcoming), and Bernard et al. (2012) for some applica-
tions to commodity prices and macroeconomic data.

The forecast errors frompersistent processes are known
to follow non-standard distributions, see Kemp (1999) and
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Phillips (1998). Diebold and Kilian (2000) suggest using
a unit root pre-test to choose a linear or first-difference
forecasting model design. Their method provides some
improvement over an arbitrary selection of the model
structure, but the improvements rely on low-power tests
for unit roots. The forecast evaluation tests for cointegrated
andunit rootmodels thatwere examinedbyBerkowitz and
Giorgianni (2001) and Corradi et al. (2001) rely on non-
standard critical values for inference.

Rossi (2005) employs a Bonferroni method, based on
the work of Cavanagh et al. (1995) and Stock and Watson
(1988), to account for the non-standard distribution of
forecast evaluation statistics. Rossi’s method focuses on a
local-to-unity definition of the autoregressive parameters
underlying the predictive model, which approaches the
random walk forecast near the boundary even when the
predictive covariates are not irrelevant. More broadly,
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Bonferroni bounds are known to suffer from low power,
due to their conservative nature.

Outside the context of forecast evaluation, the methods
for constructing confidence intervals for autoregressive
parameters at or near unity are challenged by Phillips
(2014). Specifically, the confidence intervals based on
local-to-unity approaches surveyed by Phillips are shown
to be invalid in the stationary case, with zero asymptotic
coverage probability. This includes methods of the form
considered by Rossi (2005). Such discontinuities provide
the motivation for this paper.

Forecasting evaluations under the assumption of sta-
tionarity have resulted in several successful bootstrap ap-
proaches; see for example Giacomini and White (2006),
Hansen (2005), Harvey and Newbold (2000), Hubrich and
West (2010) and White (2000). However, stationary and
strongly persistent series cause a deterioration of the prop-
erties of these bootstrap methods, leading to forecast
evaluation tests that are severely oversized. The poor per-
formances of bootstrapmethods for local-to-unity and unit
root processes are not unexpected; Andrews (2000) and
Mikusheva (2007) demonstrate that bootstrap and sub-
sampling methods can be inconsistent.

This paper proposes a finite samplemotivated approach
for addressing the above problems, building on the Monte
Carlo (MC) testmethods of Dufour (2006). This simulation-
based procedure is exact when the null distribution of
the statistic considered can be simulated under the null
hypothesis. Complicated finite or limiting distributions,
which covers various asymptotic discontinuities, cause no
concern.

Thus, our approach leads to exact p-values for forecast
evaluation statistics, independent of the degree of persis-
tence of the data, whether stationary, local-to-unity, or
a unit root process, in spite of possible underlying non-
standard, asymmetric or degenerate distributions, and re-
gardless of whether the alternatives consist of a single or
multiple models, in which case sup-type statistics are sim-
ulated. The limiting distribution of a forecast evaluation
statistic does not even need to be known a priori.

In addition to testing, we also use the MC method to
produce confidence intervals for intervening parameters.
For example, for the problem analyzed by Rossi (2005), we
provide simultaneous confidence sets for the persistence
parameter and for the coefficient of the predictors under
test. As was argued by Rossi (2005), near-unit roots
confound the contributions of predictors, even when the
latter are relevant. The joint MC confidence intervals that
we propose provide much more information than tests,
an advantage that we illustrate empirically via the well-
known Meese-Rogoff puzzle.

Outside the forecasting context, the MC and MMC test
methods have also been shown to solve complications that
arise from unidentified nuisance parameters, see Dufour
et al. (2004). The MMC method has been applied suc-
cessfully in a range of areas of econometrics, with a fo-
cus on level correction or the computation of confidence
sets; refer to Beaulieu et al. (2007), Beaulieu et al. (2010b),
Beaulieu et al. (2013), Bernard et al. (2012), and Bernard
et al. (2007). To the best of our knowledge, this is the first
extension of the MMC method to the forecasting of evalu-
ation statistics.
Our second contribution is two simulation studies that
demonstrate the rejection frequency properties of our
proposed approach. The first study examines thepredictive
ability of a random walk null model, where the forecast
evaluation statistic is based on a pair of models: the
random walk benchmark model and a single alternative
model. The simulation design is inspired by the work of
Rossi (2005). In this case, ourMC testmethod is applied to a
scaled Diebold and Mariano (1995) type statistic (denoted
MSEt) and the encompassing statistic outlined by Clark
and West (2007) (denoted ENCt). To maintain a focus
on the forecast evaluation statistics, we implement the
benchmark method defined by Rossi (2005, p. 83) as the
‘‘infeasible test’’, where the confidence interval for the
local-to-unity parameter is assumed to include only the
true value. We find that all methods provide level control
in terms of size. In terms of power, the ENCt MC test has a
higher power than either theMSEt MC test or the infeasible
Rossi approach for all of our simulation settings. The MSEt
MC test method dominates the infeasible Rossi method for
larger sample sizes and for lower persistent processes.

The second simulation study considers a highly persis-
tent and parsimonious benchmark model and compare it
againstmultiple alternativemodels. The design is based on
thework of Hubrich andWest (2010). Under the null of our
proposed MMC method, the rejection frequency demon-
strates level control. In contrast, alternative methods, in-
cluding those of Giacomini and White (2006), Hansen
(2005), Harvey and Newbold (2000), Hubrich and West
(2010), and White (2000), and two encompassing reality
checks of Clark and McCracken (2012), are over-sized. The
MMC methods demonstrate good power that improve as
the sample size increases.

Lastly, we propose to invert the forecast evaluation
statistic, based on the MC test method, in order to ob-
tain exact confidence intervals on the parameters in the
forecast period. Traditional approaches to obtaining con-
fidence intervals for the benchmark model parameters as-
sume that the in-sample estimation properties are suitable
for the construction of out-of-sample bands, whichmay be
problematic as the persistence approaches unity. In con-
trast, our confidence set is constructed by collecting the set
of ‘benchmark’ models that satisfy the data. Test inversion
theory has been applied to time series and for forecasting,
aswell aswhen at or approaching unity, see Cavanagh et al.
(1995), Stock (1991), and Stock and Watson (1988), with
the in-sample properties being exploited in each case. The
idea of constructing a model confidence set was put for-
ward by Hansen et al. (2011) in the context of a finite and
discrete set of models. Our inversion produces confidence
sets for the parameters of one class of alternative models,
namely a class that can be defined broadly as parameteriz-
ing the ‘‘alternative’’ to the null hypothesis under test. To
the best of our knowledge, with the notable exception of
the study by Hansen et al. (2011), this is the first study to
construct out-of-sample confidence sets using MC and in-
version theories applied to forecast evaluation statistics.

We apply our MC test inversion to the well-known
Meese-Rogoff puzzle, and confirm that the Deutsche Mark
toUS exchange rate fails to reject the null of a randomwalk.
The confidence intervals based on MSEt , ENCt and our
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inversion do not differ much, and cover the random walk
model.

The remainder of the paper is arranged as follows. Sec-
tion 2 details our econometric procedure. Section 3 sum-
marizes a small set of forecast evaluation statistics that
are relevant to this study, including the Diabold-Mariano,
MSEt , ENCt , and maxENCt statistics. Section 4 outlines the
simulation studies, with Section 4.1 considering a single
alternative model, and Section 4.2 allowing for multiple
alternative models. Section 5 examines the Meese-Rogoff
puzzle using theMC testmethod and theMC inversion. The
final section brings together the findings of the paper.

2. Econometric setting

We consider a set of forecasting models, denoted by
M = {0, 1, . . . ,m} and indexed by i, that are used to
generate predictions of a time series yt+h, where t is the
time index andhdenotes thenumber of timeperiods ahead
that are predicted. For each timeperiod, an information set,
denotedΨt , contains both present and past observations of
relevant series. Let Yt = {y1, . . . , yt} and Xt = {x1, . . . , xt}
be the observations of the dependent and predictive
regressors, respectively, leading to the information set:

Ψt ≡ {Yt , Xt} . (1)

We assume a flexible parametric form of the models,
gi,h(•), that allows the model parameters to be estimated
based on historical information, specifically:

β̂i,t|R = gi,h (yt , Ψt−1|R) , (2)

where R indicates the number of prior observations used in
the estimation, and β̂i,t|R is a column vectorwith the length
determined by the ith model. Predictions of the series are
generated using an updated information set

ŷi,t+h|t,R = Gi,h


β̂i,t|R, Ψt


, (3)

where Gi(•) is a function for obtaining h-step-ahead
predictions for model i.

The h-step-ahead prediction errors are given by:

êi,t+h|t,R = yi,t+h − ŷi,t+h|t,R. (4)

This estimation-prediction approach is repeated from t =

R to t = T − h, obtaining P predictions of the dependent
series, where the sample size is T = (R + h) + P +

(h − 1). Eq. (4) forms the basis of the forecast evaluation
statistics that we denote more generally as S. Selected
forecast evaluation statistics andmethods are presented in
Section 3.

Let ξK represent the nuisance parameters that interfere
with the distribution of the forecast evaluation statistic un-
der the null. The set of nuisance parameters is ξK =


ξ1,

. . . , ξk

, where k represents the total number of nuisance

parameters under the null, and ξK ∈ ΩK , where ΩK is the
nuisance parameter space. The forecast evaluation statis-
tics compare forecast errors from two or more models, but
the nuisance parameter set is defined based solely on the
benchmark (i = 0) model, for example the model param-
eters and/or the variance of the errors.
TheMonte Carlo test procedure is summarized based on
the methodology and theory presented by Dufour (2006).
The maximized Monte Carlo (MMC) p-value, denoted
p̂N(S0), is obtained as follows.

1. Compute the forecast evaluation statistic from the data,
So.

2. Draw N random draws from an assumed distribution
(e.g., normal or t distribution).

3. Under the null, simulate N Monte Carlo series based on
the benchmark model, N random draws, and a given
value of the nuisance parameters (ξK ).

4. Compute the forecast evaluation statistic for each
Monte Carlo simulation, Sw(ξK ), where w = 1, . . . ,N .
Our notation for the simulated statistic underscores the
conditioning on a given nuisance parameter value.

5. Count the number of simulated forecast evaluation
statistics that equal or exceed the statistic from thedata,

ĜN(S0|ξK ) =

N
w=1

I[0,∞](Sw(ξK ) ≥ S0|ξK ), (5)

where I[0,∞](Sw(ξK ) ≥ S0|ξK ) is an indicator function of
the form:

IA(x) =


1, if x ∈ A
0, if x ∉ A.

(6)

6. The p-value conditional on the given nuisance parame-
ter value is

p̂N(S0|ξK ) =


ĜN(S0|ξK ) + 1

N + 1


. (7)

7. Finally, the MMC p-value is obtained by maximizing
over the nuisance parameter space,

p̂N(S0) = sup
ξK∈ΩK


p̂N(S0|ξK )


. (8)

The p-value is used to define the critical region p̂N(S0) <
α, where α is the desired significance level and satisfies
0 < α < 1. The primary benefit of using the MMC p-value
procedure is that it is valid even when the asymptotic
null distribution is non-standard and depends on nuisance
parameters. The main requirement of the method is that
the null distribution of the statistic can be simulated
given a nuisance parameter set of finite dimensions. The
MMC p-value will be exact in the sense that the rejection
probability is less than or equal to α. The MMC method
can be specified as either a one- or two-tailed test. If ΩK
is the empty set, then the benchmark model is nuisance
parameter free, and Step 7 can be skipped.

TheMCdraws in Step 2 rely on a parametric assumption
such as the standard normal, which is considered in the
next sections. Coudin and Dufour (2009) show that when a
MC p-value is computed given a distributional assumption
and the underlying test statistic converges to any distribu-
tion (say F̂ ) that does not depend on this assumption, the
associated MC test will remain asymptotically valid under
any set of weaker distributional assumptions for which the
statistic still converges (not necessarily at the same rate) to
the same F̂ ; see also Beaulieu et al. (2010a).
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Regarding Step 7, normal gradient-basedmaximization
methods are ineffective at maximizing the MMC p-value
because both N and ĜN(S0|ξK ) are discrete, resulting in
non-differentiable points in p̂N(S0|ξK ). Non-gradient max-
imization routines must be employed, such as simulated
annealing (Goffe et al., 1994) and particle swarm optimiza-
tion (Kennedy and Eberhart, 1995), both of which have
been shown to be effective for functions with plateaus or
multiple local maxima, as well as for non-differentiable
functions. Bothmaximization routines are used in our sim-
ulation studies in Section 4.

The MMC method may be computationally expensive
for a simulation study, due to the requirement for a non-
gradient optimization routine. In practice, the time re-
quired for a single call to simulated annealing (minutes) and
particle swarm optimization (seconds) diminishes substan-
tially for an empirical forecasting study.

3. Forecast evaluation statistics and bootstraps

The forecast evaluation statistics are derived from the
estimated forecast errors, êi,t+h|t,R, where the main objec-
tive is to find the model with the lowest forecast variance
or to determine whether all models have equivalent fore-
cast variances. The Diebold and Mariano (1995) statistic
(DM) is constructed as the mean squared prediction error
(MSPE),

σ̂ 2
i|h,R = P−1

T−h
t=R

ê2i,t+h|t,R, (9)

of a benchmark model, indexed by i = 0, less that of an
alternativemodel, indexed by j = 1, . . . ,m, and is given by

DM j|h,R = σ̂ 2
0|h,R − σ̂ 2

j|h,R. (10)

The DM statistic is suitable for pairwise comparisons of
forecasting models. Diebold and Mariano (1995) present a
variant of the DM statistic that is scaled by the long-run
variance. The mean squared error t-statistic (MSEt) scales
the errors by the variance of the difference in squared er-
rors:

MSEtj|h,R =

P−1
T−h
t=R


ê20,t+h|t,R − ê2j,t+h|t,R



V

ê20,t+h|t,R − ê2j,t+h|t,R

 . (11)

An alternative loss function is based on forecast en-
compassing, and takes into account the covariance of the
benchmark and the alternative forecast errors. The encom-
passing t-statistic (ENCt) is computed as

ENCtj|h,R =

P−1
T−h
t=R


ê0,t+h|t,R(ê0,t+h|t,R − êj,t+h|t,R)



V

ê0,t+h|t,R(ê0,t+h|t,R − êj,t+h|t,R)

 . (12)

These statistics are used to compare pairs of competing
models, and form the basis for statistics that compare
more than two models against a benchmark model. When
comparing multiple models, the null hypothesis is based
on whether or not at least one alternative model exhibits a
statistically lower forecast variance than the benchmark.

Formultiplemodels, we focus on themaximumencom-
passing t-statistic test (maxENCt), which tests whether
any alternative model beats the benchmark model, and is
computed as

maxENCth,R = argmax
{j∈1,...,m}

{ENCtj|h,R}, (13)

for a set of m ≥ 2 competing models. The conditional
predictive ability (CPA) test put forward by Giacomini and
White (2006) and the equal predictive ability (EPA) test
of Harvey and Newbold (2000) are also available for test-
ingmultiple competingmodels. While these statistics may
fall asymptotically into the family of normal distributions,
their distributional properties are known to be nonstan-
dard in the presence of high persistence and finite samples.

Several bootstrap methods have been put forward to
help account for distorted critical values. Hubrich and
West (2010) present a non-parametric bootstrap method
which exploits Clark and West’s (2007) proposition that
the adjusted squared predicted errors share critical values
with the standard normal distribution.

The reality check (RCMSE) outlined by White (2000)
uses theMSPE as a basis formodel comparisons, combining
this with the block bootstrap of Politis and Romano (1994).
Hansen (2005) provides an enhanced version of the reality
check, applying a Student-type adjustment (RCMSEt) that
improves upon White’s version in terms of power, while
retaining similar size properties. In keeping with the
spirit of Clark and McCracken (2012), we include two
encompassing reality check bootstrap methods that are
constructed by replacing the MSPE with the ENC statistic,
or the ENCt for a Student-type version.

4. Simulation study

Wedemonstrate the properties of theMMC testmethod
using two simulation studies. The first study examines the
case of a single alternative model with a random walk
benchmark model, which is inspired by Rossi (2005). The
second study considers multiple alternative models with a
local-to-unity benchmark model.

4.1. A single alternative model

We employ the simulation design described by Rossi
(2005), which is

y1,t = β1y2,t + u1,t , u1,t = ρ1u1,t−1 + ϵ1,t ,

y2,t = u2,t , u2,t = ρ2u2,t−1 + ϵ2,t ,

ρ1 = 1 −
c1
T

, and ρ2 = 1 −
c2
T

,

where the objective is to determine whether the regressor
(y2,t ) has any predictive power. The errors are drawn
independently from an uncorrelated standard normal
distribution; all methods are scale-invariant, so a unit
variance is appropriate both for this design and for the
Monte Carlo method outlined in Section 2. Thus, draws
from this model require values to be set for ρ and β1.
Following Rossi, and without loss of generality, we assume
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Table 1
Rejection frequency under the null: one-step-ahead predictions, 10%
level.

P = 40 P = 100 P = 200

MC-ENCt
R = 40 0.101 0.084 0.083
R = 100 0.087 0.097 0.100
R = 200 0.110 0.097 0.107

MC-MSEt
R = 40 0.101 0.093 0.088
R = 100 0.088 0.090 0.097
R = 200 0.108 0.108 0.107

Infeasible Rossi (2005)
R = 40 0.064 0.066 0.041
R = 100 0.047 0.052 0.052
R = 200 0.049 0.050 0.041

that c1 = c2 = c , and thus ρ1 = ρ2 = ρ; however, this
could be relaxed, and is designed merely to simplify the
simulation settings. The benchmark model is the random
walk forecast, which can be derived from the model above
via the boundary restriction

H0 : β1 = 0, and ρ = 1. (14)

Nevertheless, a (right-tailed) MC p-value can be obtained
easily as described above, by drawing from the random
walk benchmark. The latter is nuisance-parameter free
except for the scale, so assuming scale invariance of the
MSEt and ENCt statistics, we obtain MC p-values for both
using unit variance.

This method extends naturally to a test inversion
framework, where the null hypothesis sets β1 and ρ to
any combination of relevant values and recomputes the
statistic conformably. Inverting the resulting test involves
retaining the parameter values that are not rejected
via our proposed MC p-values, which produces exact
simultaneous confidence sets for β1 and ρ. Section 5
describes this MC inversion approach in greater detail via
an empirical example using exchange and interest rates.

The Bonferroni approach of Rossi (2005) is also included
in our study. Rossi focuses on the contributions of the
included regressors to predictions in the context of local-
to-unitymodels.We allow for comparability by simulating
the infeasibility test, as defined by Rossi (2005, p. 83),
where the local-to-unity parameter is fixed to the true
value but the underlying level correction is maintained (to
5%). Thus, c is zero or the random walk in Table 1, and
can be inferred from c = T (ρ − 1) in Table 2. Methods
used to construct confidence intervals for the local-to-
unity parameter have come a long way over the last
decade. Even recently, Phillips (2014) questioned the
practice of constructing confidence sets under a local-to-
unity setting, proving that stationary series could have
zero asymptotic coverage probabilities. By simulating the
infeasiblity test, we side-step this debate regarding local-
to-unity parameter estimation and return our focus to the
objective of forecast evaluation methods.

The rejection frequencies presented in Tables 1–3 are
based on 1000 simulations and draws from the standard
normal distribution, and we use N = 199 for the MC test
method. For simulations under the null, the benchmark
model is the random walk, so ρ = 1 or c = 0. Under
the alternative, we present two settings ρ = 0.9 and
ρ = 0.99, so the local-to-unity parameter can be inferred
from c = T (ρ − 1). We allow for additional predictive
ability under the alternative by setting β1 = −0.05 to
parallel the simulation design of Rossi (2005),while Table 3
also sets β1 = −0.2, to examine the effect of a stronger
predictive ability. For the infeasible Rossi (2005) method,
the critical values for the DM statistic are computed via
1000 simulations under the null, and as a right-tail test the
critical value is the 95th percentile of these simulations.

The simulation results for the rejection frequency under
the null are presented in Table 1. When applied to the
MSEt and ENCt statistics, the proposed MC test method
demonstrates rejection frequencies that are level correct.
The infeasible Rossi (2005) method is close to the 5% level,
which would be 10% once the level (5%) of the local-to-
unity bounds estimation is taken into consideration. In
summary, all of the methods presented provide adequate
level control.

Tables 2 and 3 present the rejection frequencies under
the alternative. When applied to the MSEt and ENCt
statistics, our method results in good power, with similar
patterns for a variety of P and R settings. Table 2 presents
the case with weak predictive ability, where we find
that the ENCt and MSEt MC test methods dominate the
infeasible test. For the stronger predictive ability presented
in Table 3, the ENCt MC test method dominates the other
approaches. The MSEt MC test method dominates the
infeasible test of Rossi for ρ = 0.9, but this dominance is
only for longer time serieswith higher levels of persistence
(ρ = 0.99).

4.2. Multiple alternative models

The simulation study of Hubrich and West (2010)
employs a VAR data generation process (DGP) where the
null model parameter is 0.5. This study uses the same
framework but increases the null model parameter to 0.99,
which introduces amuch higher degree of persistence into
the DGP. We examine the possibility that the bootstrap
method of Hubrich and West (2010) may be biased in
the presence of highly persistent data. This may have
implications for their US inflation analysis, since their
results indicate a highly persistent process, due to changes
in the mean and volatility of price series in general, see
Hendry and Hubrich (2011) and Stock and Watson (2007).

This simulation study determineswhether or not a sub-
set of the disaggregate series provides additional informa-
tion when forecasting the aggregate, when all series are
highly persistent. Consider the aggregate series yt as the
sum of D disaggregate components, yd,t , where d = 1,
. . . ,D, so that

yt =

D
d=1

yd,t . (15)

The benchmark model is

yt = µ0 + φ0,0,t|Ryt−1 + e0,t , (16)

which is nested by m alternative models (say m = 2 or
m = 4) of the following form,

yt = µj + φ0,j,t|Ryt−1 + β1,j,t|Ryj,t−1 + ej,t . (17)
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Table 2
Rejection frequency under the alternative: one-step-ahead predictions, 10% level and
β = −0.05.

ρ = 0.9 ρ = 0.99
P = 40 P = 100 P = 200 P = 40 P = 100 P = 200

MC-ENCt
R = 40 0.272 0.441 0.576 0.120 0.108 0.126
R = 100 0.393 0.717 0.924 0.135 0.140 0.161
R = 200 0.530 0.881 0.995 0.146 0.167 0.225

MC-MSEt
R = 40 0.260 0.416 0.563 0.118 0.122 0.121
R = 100 0.309 0.570 0.839 0.135 0.140 0.153
R = 200 0.346 0.618 0.917 0.141 0.172 0.194

Infeasible Rossi (2005)
R = 40 0.055 0.072 0.066 0.065 0.067 0.057
R = 100 0.072 0.063 0.060 0.070 0.051 0.073
R = 200 0.061 0.060 0.065 0.061 0.074 0.080
Table 3
Rejection frequency under the alternative: one-step-ahead predictions, 10% level and
β = −0.20.

ρ = 0.9 ρ = 0.99
P = 40 P = 100 P = 200 P = 40 P = 100 P = 200

MC-ENCt
R = 40 0.496 0.693 0.868 0.288 0.385 0.510
R = 100 0.617 0.935 0.993 0.327 0.567 0.666
R = 200 0.646 0.955 1.000 0.315 0.513 0.778

MC-MSEt
R = 40 0.443 0.665 0.834 0.244 0.330 0.447
R = 100 0.439 0.820 0.967 0.260 0.466 0.587
R = 200 0.412 0.736 0.970 0.249 0.381 0.620

Infeasible Rossi (2005)
R = 40 0.150 0.242 0.272 0.172 0.222 0.289
R = 100 0.237 0.322 0.403 0.234 0.331 0.480
R = 200 0.249 0.349 0.432 0.264 0.394 0.512
The DGP for the disaggregates is a VAR(1) with a D × D
matrix of autoregressive parameters, Φ , a mean vector
µ ≡ (u1, . . . , uD)

′, where µd = 1 for all d, and zero mean
i.i.d. disturbances Ut ≡ (u1,t , . . . , uD,t)

′, giving:

Yt ≡ (y1,t , . . . , yD,t)
′
= µ + ΦYt−1 + Ut . (18)

For the simulations, the disturbances are drawn from
an i.i.d. normal distribution, though using a Student’s
t-distribution with low degrees of freedom results in
notionally similar results. When determining the size of
each of the test statistics with persistent data, we assume
a common value of φ = 0.99 for the diagonal elements of
Φ , and D = 3; specifically:

Φ =

0.99 0 0
0 0.99 0
0 0 0.99


. (19)

Furthermore, each disaggregate of yt follows an AR(1) pro-
cess. Since yt is the arithmetic sum of the disaggregates, it
toowill follow anAR(1) processwith a lag parameter value,
φ = 0.99.

It is assumed in the power simulations that at least
one of the disaggregate components Granger-causes the
aggregate in Eq. (18), and as such Φ is updated to:

Φ =

0.99 −0.008 0
0.2 0.5 0
0 0 0.99


. (20)
This design allows for low persistence in one of the series,
and high persistence in the other disaggregates.

A similar design is usedwhen the number of alternative
models is expanded to m = 4 and the number of disag-
gregates also expands to D = 4. In this case, the size sim-
ulations in the matrix in Eq. (19) are replaced with Φ =

0.99ID. In the power simulations, the matrix in Eq. (20) is
replaced with:

Φ =

0.99 −0.008 0 0
0.2 0.5 0 0
0 0 0.99 0
0 0 0 0.99

 . (21)

For both the size and power simulations, 1000 replications
of the null DGP are used to compute the p-values associ-
ated with each test, and other test-specific settings follow.

The MMC procedure allows for some flexibility; for the
simulation study, N = 99, and the simulated annealing
program was edited to reduce computation time. Specif-
ically, if the evaluation of the p-value exceeded the nom-
inal size (α), then the simulated annealing procedure was
halted and returned an indicator to retain the null hypoth-
esis. The maxENCt test statistic from the null DGP can be
shown by simulation to be invariant in terms of the stan-
dard deviation of the error term draws (Ut ), the constant
term (µ), and the initial value of the disaggregates (yd,0).
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Table 4
Rejection frequency under the null: one-step-ahead predictions, 10% level.

m = 2 m = 4
P = 40 P = 100 P = 200 P = 40 P = 100 P = 200

R = 40 HW2010 0.183 0.258 0.332 0.189 0.265 0.346
CPA 0.173 0.200 0.238 0.240 0.226 0.240
EPA 0.339 0.382 0.425 0.275 0.309 0.339
RCMSE 0.060 0.027 0.005 0.097 0.045 0.018
RCMSEt 0.060 0.028 0.005 0.093 0.037 0.017
RCENC 0.223 0.287 0.348 0.326 0.380 0.450
RCENCt 0.237 0.297 0.369 0.315 0.370 0.442

R = 100 HW2010 0.168 0.161 0.226 0.193 0.183 0.233
CPA 0.232 0.166 0.174 0.325 0.227 0.208
EPA 0.413 0.352 0.365 0.364 0.325 0.297
RCMSE 0.115 0.047 0.031 0.167 0.088 0.056
RCMSEt 0.121 0.050 0.030 0.178 0.089 0.057
RCENC 0.217 0.229 0.280 0.278 0.288 0.334
RCENCt 0.227 0.243 0.286 0.276 0.285 0.331

R = 200 HW2010 0.132 0.143 0.134 0.188 0.202 0.158
CPA 0.210 0.195 0.168 0.324 0.289 0.228
EPA 0.389 0.373 0.353 0.372 0.398 0.336
RCMSE 0.113 0.081 0.035 0.189 0.145 0.088
RCMSEt 0.129 0.085 0.038 0.215 0.164 0.089
RCENC 0.188 0.170 0.163 0.269 0.274 0.281
RCENCt 0.205 0.185 0.170 0.271 0.279 0.267

Note: the statistics are from Hubrich and West (2010) [HW2010], Giacomini and White (2006) [CPA],
Harvey and Newbold (2000) [EPA], White (2000) [RCMSE], Hansen (2005) [RCMSEt], and Clark and
McCracken (2012) [RCENC and RCENCt].
The only nuisance parameter determined is the common
value φ.

The Hubrich and West (2010) bootstrap method
(HW2010) is implemented in the same manner as in their
paper, where the p-value is computed based on the ordinal
rank of the maxENCt statistic in a set of 50,000 bootstrap
replications. The precise p-value was not required for
the simulation study, so the replications were terminated
when the decision on the null hypothesis could not be
reversed. Their approach was replicated in this study in
order to isolate the effect of highly persistent data on the
p-value.

The critical values for the CPA test are taken from the
standard χ2(m) at the 10% level. The critical values for the
EPA test are taken from the standard F(m − 1, P − m + 1)
distribution at the 10% level.

All four reality check simulations, RCMSE, RCMSEt ,
RCENC and RCENCt , use 1000 stationary bootstrap replica-
tions and a geometricmean block size of two,which are the
same assumptions used by both Hubrich and West (2010)
and White (2000).

4.2.1. Simulation results
Tables 4 and 5 present the simulation results for fore-

casting models that are nested at the unit root bound-
ary. The rejection frequency under the nulls of various
forecast evaluation methods are given in Table 4. The
encompassing-based methods, HW2010, CPA, EPA, RCENC
and RCENCt , are almost universally oversized, with mod-
est improvements as R increases. The two MSPE-based re-
ality checks (RCMSE and RCMSEt) appear to achieve level
control for specific combinations of in-sample and out-
of-sample sizes. However, these rejection frequencies de-
crease substantially as P rises.
TheHW2010 approach is oversized for all combinations
of R, P and m examined in this study, and the rejection
frequencies rise as P increases. They also increase with
m, but this change is modest for the small set of models
examined in this study. As R increases, the severity of the
oversized results in their nonparametric bootstrapmethod
diminishes, to the point that it is almost correctly sized
with R = 200 and m = 2, and all of the values of P tested.
It is not universally apparent that the properties shown by
Hubrich and West (2010) can be achieved in this local-to-
unity setting, even with a very large R.

The CPA method’s rejection frequency results are con-
siderably oversized for all combinations of R, P and m
examined here. Unlike the findings of Hubrich and West
(2010), the CPA results do not display any observable pat-
terns. For m = 2, the rejection frequency results generally
improve as R increases, but such is not the case for m = 4,
where the patterns are erratic. Increasing the number of
alternative models uniformly increases the rejection fre-
quencies under the null, but the relative increase varies.
When m = 4 and R > 40, an increase in P results in an
improvement in rejection frequencies, however, with the
m = 2 results, this pattern is only apparent for R = 100
and R = 200. Hubrich and West (2010) found that the re-
jection frequencies were higher under the null of the CPA
method than under that of the HW2010, but such was not
the case for the results shown in Table 4. Although this
is somewhat surprising, since CPA is a two-tailed test and
HW2010 is one-tailed test, it is not improbable, since the
latter statistic takes the supremum.

The commonly utilized reality check, RCMSE, is nor-
mally a very conservative test, with suitable level control.
However, the rejection frequencies shrink as P increases,
but rise as m and R increase. Similar properties are ob-
served for RCMSEt . These tests appear to have reasonable
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Table 5
Maximized Monte Carlo rejection frequency: one-step-ahead predictions, 10% level.

m = 2 m = 4
P = 40 P = 100 P = 200 P = 40 P = 100 P = 200

Under the null
R = 40 0.076 0.089 0.092 0.080 0.091 0.071
R = 100 0.068 0.067 0.081 0.086 0.076 0.084
R = 200 0.067 0.061 0.063 0.087 0.079 0.065

Under the alternative
R = 40 0.362 0.588 0.787 0.192 0.310 0.465
R = 100 0.337 0.645 0.851 0.194 0.344 0.543
R = 200 0.332 0.601 0.834 0.177 0.323 0.504

Rejection frequencies based on the maxENCt statistic.
level control when P/R = 1, but over-reject for P < R and
under-reject for P > R.

The MSPE-based statistics used in the common reality
check methods are inappropriate for nested models, due
to non-standard distributions. The encompassing reality
checks provide more sensible responses to increases in
R, P and m, but the tests are heavily oversized under
all conditions examined. The ENC-based reality check
bootstrap outlined by Clark andMcCracken (2012) displays
good level control properties for a set of nested models,
but their simulation setting was stationary and did not
consider a case that was close to the unit root boundary.

The EPA test is heavily oversized under all conditions
examined. The empirical size results have the following
properties: the size decreases asm increases, but increases
in P and/or R fail to show any systematic effect on the size.

These methods do not provide level control, as they are
based on standard asymptotic critical values or bootstrap
methods that become inconsistent at the boundary. The
rejection frequencies for the leading methods under the
alternative will be uninformative without level control.

Table 5 presents the rejection frequencies of the MMC
method applied to the maxENCt statistic. The rejection
frequencies under the null are modestly conservative for
low values of R and generally more conservative as R
increases, and are level correct in the sense of Dufour
(2006). The simulations indicate that the MMC method is
robust to increases in the number of alternative models.
It also exhibits good level control, as P increases for a
given R. The MMC method provides simulations under the
conditions of finite values of R, P , and T , with the former
two being at the discretion of the analyst.

The rejection frequency of the MMC method under the
alternative (power) is promising even under the highly
persistent process examined. As the number of out-of-
sample observations (P) increases, the rejection frequency
increases under all simulation settings. As the number of
alternativemodels increases, we observe a reduction in the
rejection frequency for all combinations of R and P consid-
ered in our study. The number of in-sample observations
has a marginal and erratic effect on the rejection frequen-
cies under the alternative. In our simulation design, the
only nuisance parameter is the lagged dependent coeffi-
cient. The supremum of the MMCmethod ensures that the
resulting p-value is not conditional on nuisance parame-
ters, which appears to promote a degree of independence
from the in-sample observations.
5. Inverting the Meese-Rogoff puzzle

Simply put, the Meese-Rogoff puzzle is the fact that
a random walk model provides better forecasts of real
exchange rates (ϵ) than a model based on fundamentals.
Thus, a structural forecasting model of the quarterly real
DeutscheMark–USDollar exchange rate from1973 to 1998
is defined as

ϵt+h = β0 + ρϵt + β1Xt + νt+h, (22)

where X is the real interest rate differential between the
two countries. The benchmark forecasting model is the
random walk for forecasting the real exchange rates:

ϵt+h = ϵt + νt+h. (23)

Because of scale-invariance, MC random walk draws with
a unit variance are appropriate. The MC test is based
on one-step-ahead predictions at the 5% level, and all
parameters for the alternativemodel are estimated viaOLS.
The number of in-sample observations is a rolling window
of 60 quarters (R = 60 and P = 42).

Our Monte Carlo test method fails to reject the
hypothesis of a random walk, with p-values of 0.2125 and
0.225 based on the MSEt and ENCt statistics, respectively.

Our Monte Carlo test method extends naturally to a
Monte Carlo inversion framework for constructing an exact
confidence set for the benchmark model parameters. Our
MC inversion method sets the parameters ρ, β0, and β1, to
known values ρ̄, β̄0, and β̄1, respectively, so that the null
and alternative hypotheses are redefined as
H0 : ρ = ρ̄ and β0 = β̄0 and β1 = β̄1

HA : ρ ≠ ρ̄ or β0 ≠ β̄0 or β1 ≠ β̄1.
(24)

The random walk model is clearly a special case, where
ρ = 1, β0 = 0 and β1 = 0.

The MC test method is applied to the benchmark
model or null defined by Eq. (24). The forecast evaluation
statistic from the data is obtained by imposing the null
for the benchmark model, and the alternative model
is estimated. The Monte Carlo series and statistic are
constructed by imposing the null model. Screening over a
reasonable range of parameter values, the confidence set
is constructed by retaining all points that are not rejected
under the null at the desired significance level.

Our approach to constructing this confidence set is
unique, since we are inverting a forecast evaluation statis-
tic that is based on out-of-sample predictions, whereas
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Table 6
Meese-Rogoff inversion: Deutsche Mark–US Dollar exchange rate.

ρL ρU ρ = 1
β1 = 0 β1,L β1,U

Inv-MSEt 0.9804 1.0175 −0.0078 0.0088
Inv-ENCt 0.9833 1.0175 −0.0068 0.0058

most inversion methods invert an in-sample statistic. To
the best of our knowledge, our approach is the first to use
inversion of a statistic based on an out-of-sample series to
obtain inference onmodel parameters. Further, theMC test
method is exact in the sense of Dufour (2006), and the ex-
actness is conferred to the confidence set constructed via
our inversion.

We apply our Monte Carlo inversion to the Meese-
Rogoff puzzle for the Deutsche Mark–US Dollar exchange
rate, and the results are presented in Table 6. The forecast
evaluation statistics that we invert are the MSEt and
ENCt statistics. Our primary objective is to determine
whether a model based on fundamentals (real interest
rate differentials) can predict the real exchange rate better
than the random walk. Table 6 presents the confidence
interval for a parameter estimate conditional on a given
(meaningful) value of the other parameter. Thus, the first
two columns are the upper (ρU ) and lower (ρL) limits of
the lag-dependence parameter estimate conditional on the
real interest rate differential having no predictive ability.
The last two columns are the upper (β1,U ) and lower (β1,L)
limits of the predictive ability parameter where the model
has a unit root. As expected, the null of a randomwalk is an
interior point for the confidence intervals that support the
p-values presented above, and the spread of these intervals
is similar for the MSEt and the ENCt statistics.

6. Final remarks

The simulation results show that forecast evaluation
methods that rely on asymptotic and bootstrap-based
critical values do not achieve level control with finite and
highly persistent data. In the worst case, the rejection
frequencies under the alternative can be spurious. Under
the same conditions, the MMCmethod provides both level
control and good power.

The versatility of our proposed method yields level-
correct inference under non-standard asymptotics, includ-
ing degenerate asymptotic null distributions. Concretely,
the MMC method is well-suited for parsimonious null
models with a finite-dimensional set of nuisance parame-
ters.While this paper focuses on a simple (though popular)
forecasting model, the method could be extended to more
complex models as long as the design of such models al-
lows them to be simulated. Possible interesting extensions
of the method using alternative null models could include
time-varying-parameter models, like those of Harvey and
Luati (2014), or even jump-diffusion models.
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