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a b s t r a c t

Forecasts of key macroeconomic variables may lead to policy changes by governments,
central banks and other economic agents. Such policy changes in turn lead to structural
changes in macroeconomic time series. We describe this phenomenon in US inflation by
introducing a logistic smooth transition autoregressive model where the regime switches
dependon theMichigan Inflation Expectation Series. Our results show that (i) forecasts lead
to regime changes and have an impact on the level of inflation; (ii) the absorption time of
shocks in the forecast of inflation is about four quarters; and (iii) a positive (negative) shock
in the forecast results in actions which increase (decrease) the inflation rate.
© 2016 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Lucas (1976) showed that macroeconometric models
with constant parameters cannot be used for evaluating
policy changes, since policy changes usually lead to
behavioral changes by economic agents, which result in
inconstant model parameters. It is well known that agents
also react to macroeconomic forecasts. This suggests that
unexpected economic forecasts may also lead to changes
in the model parameters.

Several theoretical and empirical studies have indicated
this effect of forecasts. Theoretically, Fellner (1976) ex-
plained that the public’s expectations are prone to self-
justifying skepticism about policymakers, and policymak-
ers react to that. Empirically, Givoly and Lakonishok (1979)
found that serious upward revisions in financial earnings
forecasts have significant effects on stock prices. Steiner,
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Großand Entorf (2009) showed that asset prices demon-
strate an immediate reaction to returns in macroeconomic
announcements. Moreover, they find that the reactions to
positive news are faster than those to negative news. Sin-
clair, Gamber, Stekler, and Reid (2012) showed that fore-
cast errors have an impact on the target interest rate set by
the Federal Reserve Bank.

Although the literature suggests that forecasts have
an impact in various fields, this paper focuses on US
inflation time series data. It iswell known that the dynamic
character of this series is affected by policy changes;
see for example Cogley and Sargent (2002, 2005) and
Primiceri (2005). Furthermore, inflation forecasts play an
important role, since (i) policy makers react to forecasts
due to the FED Volcker-regime inflation targeting (Clarida,
Galí, & Gertler, 2000); and (ii) companies and consumers
use inflation forecasts to decide upon future savings
and expenditure levels. Carroll (2003) states that people
update their expectations to public forecasts rather than
to past inflation rates. Furthermore, economic theory also
provides support for the impact of forecasts on the inflation
rate. It is mainly mentioned as either the expectations trap
(Christiano & Gust, 2000) or self-fulfilling expectations,
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where the public’s expectations of high inflation increase
the actual inflation rate. Albanesi, Chari, and Christiano
(2003) stated that ‘‘expectations of high or low inflation
lead the public to take defensive actions, which then make
accommodating those expectations the optimal monetary
policy’’. Both the expectations trap before 1979 (Leduc,
Sill, & Stark, 2007) and inflation targeting since the 1980s
suggest that inflation forecasts play a key role.

We describe the effects of forecasts by proposing
a nonlinear time series model which accounts for the
dynamic effects of (inflation) forecasts. The model allows
for structural breaks in the parameters based on the
relative size of a forecast of the underlying time series.
Sims and Zha (2006) describe regime switches using
an exogenous first-order Markov process, but this paper
employs a smooth transition autoregressive (STAR) model
(Chan & Tong, 1986; Teräsvirta & Anderson, 1992). The
most accurate variable for determining the current regime
is probably the value of the dependent variable itself. As
it is not feasible to use this variable to describe regime
changes, the transitions are often based on a lagged value
of the dependent variable; see Teräsvirta (1994), among
many others. In this paper, we opt for a different approach,
and predict regime changes using the level of the forecast
of the underlying dependent variable. The forecast may be
better at indicating the direction in which the time series
is heading.

The resulting model is applied to the gross domestic
product (GDP) based inflation rate of the United States
(US). The results show that inflation forecasts do indeed
lead to regime changes. That is, positive shocks in the
inflation forecast result in actions which increase the
future inflation rate. Further, it takes about four quarters
for such shocks to be absorbed.

The remainder of this paper is organized as follows. Sec-
tion 2 introduces ourmodel specification for describing the
impact of forecasts. Parameter estimation and statistical
inference are discussed in Section 3. Section 4 illustrates
our modeling approach on the US inflation rate. Finally,
Section 5 concludes.

2. Model specification

We put forward a nonlinear time series model for
US inflation which accounts for structural changes due
to forecasts of the underlying time series. As we expect
reactions to both relatively low and relatively high
forecasts, we include three regimes. Furthermore, we
expect the size of the structural change to depend on the
size of the forecast; we therefore use smooth transition
models, see Van Dijk, Teräsvirta, and Franses (2002) for a
survey.

Formally, let yt be US inflation at time t = 1, . . . , T . Let
pt|t−1 denote the forecast of yt based upon all information
up to and including time t−1. In this paper,wewill take the
Michigan Inflation Expectation Series for pt|t−1. The three-
regime smooth transition time series model is then given
by

yt = f (xt , pt|t−1; θ) + σtεt , (1)
with εt ∼ nid(0, 1) and
f (xt , pt|t−1; θ) = φ′

1xt + (φ0 − φ1)
′xtG0(pt|t−1; γ0, κ0t)

+ (φ2 − φ1)
′xtG2(pt|t−1; γ2, κ2t), (2)

where xt is a k-dimensional vector containing a vector
of ones, explanatory variables and lagged values of yt ;
φi, i ∈ {0, 1, 2}, are (k × 1)-parameter vectors; and θ
summarizes all parameters. The parameter σt describes
the potentially time-varying standard deviation of the
disturbances, which we will discuss later. The value of
the variance is assumed to be independent of the forecast
pt|t−1.

The functions G0(·) and G2(·) take values between zero
and one, depending on the level of the forecast pt|t−1, and
describe the probability as being below or above some
(economically interesting) threshold value. We opt for the
logistic function

Gi(pt|t−1; γi, κit) =
1

1 + exp(−γi(pt|t−1 − κit))
, (3)

resulting in the logistic STAR (L-STAR) model (Teräsvirta,
1994). The parameter γi determines the smoothness of
the transition function, and κit denotes the point of
inflection of the logistic curve (see Chapter 2 of Van
Dijk, 1999, for a graphical representation). It is easy to
see that G0(·) approaches one for small forecasts under
the restrictions κ0t < κ2t , γ0 < 0 and γ2 > 0. Hence, the
relevant parameter vector is φ0. For large forecasts, G2(·)
approaches one, meaning that φ2 is the relevant parameter
vector. These restrictions are not necessary for the
identification of the parameters, but other restrictionsmay
lead to different interpretations of the regime parameters.

The original STAR specification assumes the threshold
parameter κit in Eq. (3) to be constant over time. However,
as US inflation has been fluctuating over recent decades,
it is likely that the reactions to the forecast will vary over
time. For instance, a forecast that was high during the low-
inflation period of the 1990s would not have been striking
during the oil crises of the late 1970s. We therefore allow
the threshold to be time-varying, relative to the local level
of inflation. That is, agents compare the forecast to the level
of the inflation series in the near past.

We consider two specifications for the time-varying κit .
First, let κit = κi + ȳ(d)

t , where ȳ(d)
t is the average of the

dependent variable over the previous d periods. The larger
ȳ(d)
t is, the larger pt|t−1 has to be before agents will react.

This also implies that regime 0 is more likely to occur.
For the second specification of κit , imagine a large forecast
in a highly volatile period. As large changes are expected,
it is likely that the reactions to this forecast will be less
extreme than those to the same forecast in periods with
a low volatility. We therefore impose that κit = κiσt +

ȳ(d)
t . Hence, we now also account for the local level of the

variance in the inflation innovations.
In summary, the specification in Eqs. (1)–(3), where

G0(·) and G2(·) depend on the level of the forecast pt|t−1,
provides the framework for investigating the impact of
forecasts on agents’ decisions. We allow for time-varying
threshold parameters in order to take the local level of
inflation into account. The model allows us to investigate
the impact of the forecasts on macroeconomic variables of
interest.
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3. Statistical inference

We discuss inference for our smooth transition model
specification from Section 2. Section 3.1 considers param-
eter estimation, while Section 3.2 concerns testing for our
specific form of nonlinearity.

3.1. Estimation procedure

We estimate the parameters in Eqs. (1)–(3) using
weighted nonlinear least squares (wNLS); see for example
Davidson and MacKinnon (2004, Chapter 6), where the
weights follow from the time-varying variance σ 2

t . Many
macroeconomic time series display a drop in volatility in
the 1980s (Great Moderation; GM), see Kahn, McConnell,
and Perez-Quiros (2002) and Summers (2005). Lately,
there has been evidence that the ending of the Great
Moderation was due to the 2008–2009 financial crisis
(Clarida, 2010). We capture the Great Moderation period
in our STAR model in Eq. (1) by allowing for two breaks in
the variance σ 2

t and considering

σ 2
t = σ 2

1 + (σ 2
2 − σ 2

1 )(GMin(t; γgm:in, κgm:in)

−GMout(t; γgm:out , κgm:out)) + ηt . (4)

Hence, we add a transition function for the transitions
into and out of the Great Moderation stage. Since there are
not yet enough data available to permit the estimation of a
variance parameter after the GreatModeration,we assume
that the variance has returned to the same level as before
the Great Moderation. In contrast to Sensier and van Dijk
(2004), we allow for the possibility of smooth transitions
between the variance regimes using

GM(t; γgm, κgm) =
1

1 + exp(−γgm(t − κgm))
, (5)

which is again the logistic function. Hence, for γgm > 0,
the variance is σ 2

1 for the first part of the sample, σ 2
2 for

the second part, and σ 2
1 again after the Great Moderation.

The transition is halfway at t = κgm, and γgm reflects the
smoothness of this transition.

The wNLS procedure for estimating the model parame-
ters θ can be summarized by the following five steps:

1. minimize
T

t=1(yt − f (xt; θ))2 with respect to θ ,
resulting in θ̂0;

2. compute the residuals ε̂t = yt − f (xt; θ̂0);
3. use NLS on Eq. (4), replacing σ 2

t with ε̂2
t ;

4. compute the fitted values of σ 2
t using Eq. (4), resulting

in σ̂ 2
t ;

5. minimize
T

t=1(
1
σ̂t

(yt − f (xt; θ)))2 with respect to θ ,

resulting in θ̂ .

The estimator is asymptotically normally distributed.
The covariance matrix of the estimator can be computed
using

σ̂ 2
ε


T

t=1

1
σ̂ 2
t


∂ f (xt; θ)

∂θ


θ=θ̂

 
∂ f (xt; θ)

∂θ


θ=θ̂

′
−1

. (6)
Diagnostic tests on the residuals (such as heteroskedas-
ticity and serial correlation tests) can be done in a manner
similar to that for linear time seriesmodels. Since there are
unidentified nuisance parameters under the null hypothe-
sis of linearity, we cannot use standard tests to compare
our model to a linear specification. The next section intro-
duces the nonlinearity test of Luukkonen, Saikkonen and
Teräsvirta (1988) for testing for our specific type of non-
linearity.

3.2. Nonlinearity test

The first step in the modeling process is to test
for the presence of our proposed type of nonlinearity.
Comparing our model specification in Eq. (1) with a linear
model specification leads to the problem of unidentified
parameters under the null hypothesis. That is, there is no
structural change under the null, and hence, γ and κ are
not identified. Hence, standard tests do not apply. Instead,
we use the test of Luukkonen et al. (1988), which is based
on the first-order Taylor expansion around γi = 0 of the
logistic function Gi(·) in Eq. (3).

A first-order Taylor expansion of the restrictedmodel in
Eq. (1) results in

yt = φ′

1xt + β̃0xt + β̃1xtpt|t−1 + σtεt , (7)

where

β̃0 = (0.5 − 0.25γ0κ0)(φ0 − φ1) (8)

β̃1 = 0.25γ0(φ0 − φ1). (9)

It is easy to see that the additional regime is not present
in the specification if γ0 = 0 or φ0 = φ1. Hence, the
nonlinearity test boils down to testing β̃1 = 0 using a
standard Wald or t-test with a standard distribution. For
testing for an additional third regime, we use the approach
of Van Dijk and Franses (1999) with a small adjustment,
as we do not fix the smoothness and location parameters
of the first transition function in the test procedure. That
is, we allow the second regime to be located differently
when a third regime is added to the specification. These
nonlinearity tests are used in the next section to test for
STAR-type nonlinearity in US inflation data.

4. Application

We apply the model discussed in Section 2 to the
seasonally adjusted quarterly gross domestic product
deflator based US inflation rate (called US inflation
henceforth) over the period 1960.Q1–2014.Q3.1 There are
many (potentially influential) forecasts available for this
inflation series (Fama & Gibbons, 1984). This application
uses the University of Michigan Inflation Expectation
Series (henceforth called Michigan Series), which is a
widely-accepted example of an inflation forecast series
created by a large number of consumers (Curtin, 1982).

1 This dataset is available publicly at http://ww.phil.frb.org/research-
and-data/; we use the revised data series.

http://ww.phil.frb.org/research-and-data/
http://ww.phil.frb.org/research-and-data/
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Fig. 1. Seasonally adjusted quarterly GDP US inflation rate (black) and
the Michigan Inflation Expectation Series (dashed), 1960.Q1–2013.Q4.

This series is available over the whole sample period, and
shows a correlation of 0.88 with US inflation.

Section 4.1 discusses several specifications of the STAR
model in Eq. (1) to the description of US inflation.
Section 4.2 discusses the selection of the appropriate
model. Section 4.3 deals with parameter interpretation. As
themodel is nonlinear, marginal effects (Section 4.3.1) and
impulse responses (Section 4.3.2) are used.

4.1. Model specification

Fig. 1 displays a plot of the US inflation series. It is
clear from the figure that inflation peaked in the 1970s
and 1980s because of the oil crises (Byrne & Davis, 2004),
and became less volatile in the second half of the 1980s
(the Great Moderation, see Rossi & Sekhposyan, 2010).
The inflation rate is almost never negative in this period:
deflation is only found in 2009 during the latest financial
crisis.

When modeling this US inflation series, we first
consider a simple linear ARX model, where we include
an intercept and the Michigan Series. There are many
potential predictors of inflation (Groen, Paap, & Ravazzolo,
2013; Stock & Watson, 2007), but this simple structure
allows us to focus fully on regime changes in the inflation
series due to inflation forecasts. According to the Schwarz
(1978) information criterion, the appropriate lag order is 2.
LM-tests indicate that there is no serial correlation in the
residuals.

Next, we consider several STAR specifications (Eqs. (1)–
(3)), where we include the Michigan Series both in the
switching function and as a regressor. We begin by assum-
ing constant κ threshold parameters, but it is clear from
Fig. 1 that a constant threshold parameter results in a fit-
ted model with the two oil crises in regime 2, where infla-
tion, and hence forecasts of inflation, are high. However, a
large forecast in this high inflation period is different from
a large forecast in the 1990s. We therefore also consider
time-varying threshold parameters, as discussed in Sec-
tion 2. A grid search over d = 1, . . . , 20 in ȳ(d)

t shows that
d = 8 generally yields the best fit in terms of root mean
squared errors. This suggests that agents compare the level
of the forecast to the level of US inflation over the previ-
ous two years. Finally, for reasons of comparison, we also
add to our analysis a regular STAR model with yt−1 as the
switching variable.
4.2. Model selection

Beforewe can adopt themodel specification in Eqs. (1)–
(3), we test for our specific form of nonlinearity. Panel
(a) of Table 1 displays the results for the nonlinearity
test described in Section 3.2. The starting point for these
tests is the ARX(2) specification. The first row shows
that the hypothesis of linearity is rejected in favor of an
additional regime. Further, a third regime is a significant
improvement in the specifications with κit = κi + ȳ(d)

t .
Hence, these results are in favor of our three-regimemodel
specification.

Panel (b) of Table 1 shows that there is no indication of
severe misspecification in the nonlinear models. Ramsey
(1969) RESET-tests indicate that there is no neglected
nonlinearity in the series. LM-tests for first- and first-to-
second-order serial correlation in the residuals (Breusch,
1978; Godfrey, 1978) do not indicate misspecification.
Likewise, tests for first- and first-to-second-order ARCH
effects (Engle, 1982) do not find heteroskedasticity in
the residuals. In summary, these test results provide a
justification for using the model as explained in Section 2.

For model selection purposes, we compare the fits
of the model specifications, that is, the regular STAR
model and the influential forecast model, for all threshold
specifications. However, standard likelihood ratio tests
cannot be used because these models are non-nested. We
therefore opt for the test of Vuong (1989), based on the
assumption of normality of the disturbances. Furthermore,
we use a nonparametric sign test on the absolute value of
the residuals (Dixon & Mood, 1946). Table 2 displays the
test statistics.

The test of Vuong (1989) does not favor the nonlinear
specifications over the linear ARX(2)-model, because of
the large number of additional parameters. However,
the nonlinearity test in Table 1, which is especially
designed for comparing linear AR models with STAR
models, indicated that adding nonlinearity improves the
model. The nonparametric sign test shows more support
for this claim concerning the ARX(2)-specification. The
Vuong (1989) and sign tests do not result in one nonlinear
specification that is obviously favored, although the RMSEs
of the residuals are smallest for the STAR model that uses
the Michigan Series to describe the regime switches and
includes a time-varying threshold parameter κt = κ + ȳ(d)

t ,
see the first row of the second panel of Table 2.

We also consider an out-of-sample forecasting exercise
where we split the sample into two parts. The first part
runs from 1960.Q1 to 1989.Q4 (approximately half of the
sample, at a convenient cut-off point), and is used to
estimate the model parameters. The second part starts at
1990.Q1, and is used to evaluate the models’ forecasting
performances, for one-step-ahead forecasts. As the limited
estimation sample does not allowus to estimate the ending
of the Great Moderation, we base the estimate of the
variance on the whole sample. The second panel of Table 2
displays the rootmean squared prediction errors (RMSPEs)
for all model specifications. Again, the smallest average
forecast error is found for themodel that uses theMichigan
Series to describe the regime changes and includes a time-
varying threshold parameter κt = κ + ȳ(d)

t . The forecasts
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Table 1
Nonlinearity and misspecification tests (p-values) for the six model specifications.

κt = κ κt = κ + ȳ(d)
t κt = κσt + ȳ(d)

t

STAR MS STAR MS STAR MS

Panel (a): Luukkonen et al. (1988) tests
Nonlinearity Second regime 0.070 0.147 0.035 0.029 0.061 0.043

Third regime 0.030 0.045 0.036 0.050 0.110 0.195

Panel (b): Misspecification tests
RESET test 0.857 0.754 0.938 0.555 0.843 0.546
Serial correlation First order 0.960 0.964 0.668 0.956 0.347 0.951

First-to-second order 0.962 0.965 0.761 0.945 0.424 0.967

ARCH effects First order 0.669 0.535 0.109 0.642 0.602 0.042
First-to-second order 0.909 0.799 0.272 0.884 0.166 0.043

Notes: The tests are the adjusted nonlinearity test by Luukkonen et al. (1988), the RESET test of Ramsey (1969), the serial correlation test by Breusch (1978)
and Godfrey (1978), and the ARCH LM-test for heteroskedasticity by Engle (1982).
Table 2
Vuong (1989) and sign tests for comparing the six different specifications and an ARX(2)-model (p-values in parentheses).

ARX(2) κt = κ κt = κ + ȳ(d)
t κt = κσt + ȳ(d)

t

STAR MS STAR MS STAR MS

ARX(2) 1.857 2.966 4.168 1.079 3.146 0.639
(0.063) (0.003) (0.000) (0.281) (0.002) (0.523)

κt = κ STAR 0.417 0.779 0.701 −0.457 0.900 −0.317
(0.007) (0.436) (0.483) (0.648) (0.368) (0.751)

MS 0.422 0.555 −0.030 −1.382 0.181 −1.175
(0.011) (0.052) (0.976) (0.167) (0.856) (0.240)

κt = κ + ȳt−1|t−d STAR 0.431 0.550 0.518 −1.070 0.193 −0.930
(0.021) (0.068) (0.294) (0.284) (0.847) (0.352)

MS 0.440 0.532 0.514 0.477 1.392 0.060
(0.039) (0.172) (0.343) (0.250) (0.164) (0.952)

κt = κσ̂t + ȳt−1|t−d STAR 0.413 0.537 0.500 0.505 0.532 −1.044
(0.005) (0.140) (0.500) (0.446) (0.172) (0.296)

MS 0.385 0.468 0.436 0.431 0.472 0.454
(0.000) (0.172) (0.029) (0.021) (0.209) (0.088)

RMSE 1 0.896 0.915 0.908 0.847 0.922 0.859
RMSPE 1 0.974 1.034 1.097 0.966 1.077 0.994

Notes: The upper-triangular matrix in the table shows the results for the Vuong (1989) test. A positive test value indicates that the model presented in
the row is better than that in the column. The lower-triangular matrix displays the sign test results. A test value smaller than 0.5 indicates that the model
presented in the row is better. ‘STAR’ stands for the regular STARmodel and ‘MS’ stands for the model with the Michigan Series as influential forecasts. The
root mean squared (prediction) error (RMS(P)E) for the ARX(2) specification is normalized to 1.
of this specification are better than the same regular STAR
model in 63 cases out of 99. The specification outperforms
a simple ARX(2) specification in 57 cases.

4.3. Parameter interpretation

Tables 3 and 4 display the parameter estimates of
the model specifications. We focus the interpretation of
the estimation results on the specification selected in
Section 4.2, which is shown in Panel (b) of Table 4. We
can see at first glance that the estimates of γi are relatively
large, indicating fast transitions between regimes.

Interpreting individual parameter estimates directly is
difficult, because the structure of the model is highly non-
linear. We therefore consider several graphs in our inves-
tigation of the features of US inflation and the impacts of
forecasts. Fig. 2 plots the values of the transition functions
over time. The spikes in the transition function for regime
2 during the oil crises show that the model can distin-
guish between high and moderate forecasts during these
crises. Since ȳ(d)

t is relatively large just after these crises,
the low forecast regime dominates. Inflation targeting led
Fig. 2. Transition functions for the preferred model specification.

to a steady US inflation rate in the 1990s. Since the Michi-
gan Series overestimates inflation in this period, regime 2
is the steady regime in this Great Moderation era.

The parameter estimates of the time-varying variance
are shown in Table 4. These imply that a decrease in
variance took place in the fourth quarter of 1985, which
fits with the existing literature (Kahn et al., 2002). The
transition to this Great Moderation era is relatively fast.
The variance of the error term is about 60% smaller in this
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Table 3
WNLS parameter estimates of the three model specifications with yt−1 as the transition variable (standard errors in parentheses).

Regime 0 Regime 1 Regime 2

Panel (a): κt = κ

κ 0.602 (0.013) 1.224 (0.898)
γ −181.272 – 399.271 –
c 0.255 (0.165) −0.167 (0.117) 0.131 (0.188)
yt−1 0.357 (0.263) 0.095 (0.134) 0.362 (0.185)
yt−2 −0.114 (0.171) 0.250 (0.100) −0.261 (0.149)
MSt−1 −0.485 (0.189) 0.623 (0.117) −0.097 (0.142)
κgm:in 1985.Q2 (4.287)
γgm:in 5.888 –
κgm:out 2006.Q3 (2.411)
γgm:out 5.889 –
σ 2
1 0.057 (0.006)

σ 2
2 − σ 2

1 −0.039 (0.007)

Panel (b): κt = κ + ȳ(d)
t

κ −0.366 (8.895) 0.340 (0.024)
γ −589.077 – 589.926 –
c 0.128 (0.430) −0.125 (0.041) −0.491 (0.242)
yt−1 −0.219 (0.295) 0.482 (0.090) −0.130 (0.372)
yt−2 −0.176 (0.277) 0.128 (0.078) 0.156 (0.320)
MSt−1 0.347 (0.531) 0.384 (0.061) 0.302 (0.167)
κgm:in 1985.Q3 (1.909)
γgm:in 5.888 –
κgm:out 2006.Q3 (3.122)
γgm:out 5.879 –
σ 2
1 0.058 (0.008)

σ 2
2 − σ 2

1 −0.040 (0.008)

Panel (c): κt = κσt + ȳ(d)
t

κ −0.172 (0.030) 0.319 (0.135)
γ −589.928 – 589.927 –
c −0.101 (0.150) −0.121 (0.042) −0.247 (0.128)
yt−1 −0.090 (0.197) 0.454 (0.100) −0.360 (0.415)
yt−2 −0.089 (0.159) 0.180 (0.083) 0.196 (0.344)
MSt−1 0.266 (0.185) 0.355 (0.065) 0.427 (0.206)
κgm:in 1985.Q3 (2.255)
γgm:in 5.878 –
κgm:out 2006.Q3 (3.188)
γgm:out 5.884 –
σ 2
1 0.058 (0.007)

σ 2
2 − σ 2

1 −0.040 (0.008)

Note: The parameters of regimes 0 and 2 are different from those in regime 1.
period. The results indicate that Great Moderation seems
to end in 2006.Q3.2

We shed more light on the effect of forecasts by
decomposing the change in US inflation into three parts.
The first part concerns the effect of changes in explanatory
variables when holding the regime constant (average
absolute effect of 0.11). The second part is the error term
(average absolute effect of 0.15). The third part describes
the effect of the forecast-based regime switches (average
absolute effect of 0.16). Panel (a) of Fig. 3 displays the
decomposition over time in percentage points. The effects
of the forecast-based regime switches are largest about
41% of the time.

To compare these resultswith a standard STAR, Fig. 3(b)
shows the same graph for a transition variable of yt−1.

2 There is some evidence that the Great Recession did not imply the
end of the Great Moderation, see Gadea-Rivas, Gomez-Loscos, and Perez-
Quiros (2014), among others. Unreported results show that a model
specification without the ending of the Great Moderation yields results
similar to those reported below.
Regime switches for a regular STAR have the largest
effect 40% of the time, which corresponds to our forecast-
based specification. However, there are clear differences
over time. The greatest difference is found in the 1990s,
where shocks have a greater impact on inflation in the
standard STAR specification, while our new specification
captures part of these shocks as regime switches. In
general, the forecast-based regime specification seems
to be especially valuable in economically stable periods,
while the specifications are largely comparable in other
periods. Hence, lagged inflation seems to contain similar
information about regime switches as inflation forecasts
in non-stable periods, whereas forecasts are better at
signaling regime changes in stable periods.

4.3.1. Marginal effects
We analyze the differences in dynamic patterns across

the three regimes by consideringmarginal effects.Marginal
effects are defined as the change in y caused by a one stan-
dard deviation increase in x, where x denotes lagged val-
ues of US inflation or the Michigan Series. Note that the



1312 K. Bel, R. Paap / International Journal of Forecasting 32 (2016) 1306–1316
Table 4
WNLS parameter estimates of the three model specifications with the Michigan Series as the transition variable (standard errors in parentheses).

Regime 0 Regime 1 Regime 2

Panel (a): κt = κ

κ 0.612 (0.741) 1.262 (0.546)
γ −454.839 – 454.855 –.
c 0.896 (1.198) −0.046 (0.089) −0.041 (0.128)
yt−1 −0.717 (1.245) 0.335 (0.086) 0.226 (0.142)
yt−2 −0.520 (0.602) 0.236 (0.082) −0.239 (0.130)
MSt−1 −1.042 (1.864) 0.311 (0.105) 0.131 (0.137)
κgm:in 1985.Q3 (3.927)
γgm:in 5.888 –.
κgm:out 2006.Q3 (2.935)
γgm:out 5.889 --.
σ 2
1 0.058 (0.006)

σ 2
2 − σ 2

1 −0.040 (0.007)

Panel (b): κt = κ + ȳ(d)
t

κ 0.063 (0.034) 0.362 (0.014)
γ −497.681 – 125.679 –.
c 0.150 (0.140) −0.195 (0.094) 0.067 (0.119)
yt−1 0.290 (0.161) 0.095 (0.119) 0.596 (0.174)
yt−2 −0.338 (0.151) 0.291 (0.108) −0.118 (0.176)
MSt−1 0.001 (0.230) 0.642 (0.185) −0.421 (0.222)
κgm:in 1985.Q4 (30.316)
γgm:in 2.989 –.
κgm:out 2006.Q3 (2.432)
γgm:out 5.342 –.
σ 2
1 0.053 (0.006)

σ 2
2 − σ 2

1 −0.035 (0.007)

Panel (c): κt = κσt + ȳ(d)
t

κ 0.263 (0.024) 0.362 (0.058)
γ −497.701 – 496.890 –.
c 0.000 (0.181) −0.166 (0.163) 0.098 (0.172)
yt−1 −0.069 (0.202) 0.364 (0.179) 0.250 (0.211)
yt−2 −0.104 (0.210) 0.182 (0.190) 0.139 (0.228)
MSt−1 0.265 (0.310) 0.411 (0.278) −0.266 (0.294)
κgm:in 1985.Q3 (6.912)
γgm:in 5.882 –.
κgm:out 2006.Q3 (2.196)
γgm:out 5.889 –.
σ 2
1 0.053 (0.006)

σ 2
2 − σ 2

1 −0.035 (0.007)

Note: The parameters of regimes 0 and 2 are different from those in regime 1.
(a) Transition variable: Michigan Series. (b) Transition variable: yt−1 .

Fig. 3. Percentage decomposition of the absolute effect of changes over time (yt − yt−1) in US inflation for the preferred model specification.
change in x can also cause regime switches to occur. Thus,
marginal effects differ over time, as is plotted in Fig. 4.
Furthermore, Table 5 displays the average marginal effects
weighted with the regimes.

Table 5 shows that, on average, the first lag of inflation
has a larger impact in the outer regimes. This indicates that
agents relymore on the near past in periodswith relatively
large or small forecasts. On the other hand, the second lag
of inflation has a smaller absolute impact in these outer
regimes. Thus, the distant past is less important to agents
in economically uncertain periods.

The last panel of Fig. 4 shows the marginal effect of a
positive change in pt|t−1. On average, this effect is positive
for all regimes. That is, an increase in the (influential)
Michigan Series forecast adjusts the inflation rate upward.
Thus, the behavior of agents is such that the inflation rate
follows the influential forecast, which is in line with the
expectations trap literature (Christiano & Gust, 2000).



K. Bel, R. Paap / International Journal of Forecasting 32 (2016) 1306–1316 1313
(a) Marginal effect of yt−1 . (b) Marginal effect of yt−2 . (c) Marginal effect of pt|t−1 .

Fig. 4. Marginal effects of a one standard deviation increase in the explanatory variables and pt|t−1 for the preferred model specification.
Table 5
Descriptive statistics of the marginal effects, as displayed in Fig. 4.

yt−1 yt−2 pt|t−1

5% Average 95% 5% Average 95% 5% Average 95%

0.056 0.242 0.408 −0.028 0.109 0.172 −0.011 0.135 0.330
Regime 0 0.224 0.227 0.228 −0.028 −0.027 −0.023 −0.014 0.259 0.513
Regime 1 0.056 0.070 0.192 0.145 0.169 0.172 −0.055 0.111 0.286
Regime 2 0.295 0.396 0.408 0.102 0.104 0.125 0.095 0.112 0.113

Notes: The first row shows the equally weighted marginal effects. The second to fourth rows show the weighted marginal effect where the weights are
based on the probability of being in the specific regime. 5% stands for the 5% percentile, while 95% stands for the 95% percentile.
4.3.2. Impulse response analysis
We interpret the dynamic properties of the model

using generalized impulse response functions (GIRF; Koop,
Pesaran, & Potter, 1996).We examine the impact of a shock
δ for different information sets Ωt in a similar way as Van
Dijk (1999). The GIRF is defined as

GIRF y(h, δ, Ωτ ) = E[yτ+h|ετ = ετ + δ, Ωτ ]

− E[yτ+h|Ωτ ], (10)

where τ denotes the timing of the shock, h is the horizon,
and Ωτ is the information set at time τ . Hence, the
impulse response function denotes the dynamic effect of
a shock δ at time τ on future values of yt . We average
over all possible information sets Ωτ , and split the results
depending on the regime at time τ . Note that a shock may
also affect future regimes, and thus, the analysis takes full
advantage of the nonlinearity of the model specification.
Furthermore,we define theπ-absorption time of the shock
as the number of time periods before π% of the shock is
absorbed (Van Dijk, Franses, & Boswijk, 2007); that is

Ay(π, δ, Ωt) =

∞
m=0


1 −

∞
h=m

Iy(π, h, δ, Ωt)


, (11)

where

Iy(π, h, δ, Ωt) = I[|GIRFy(h, δ, Ωt)| ≤ π |δ|], (12)

with I[A] being an indicator function that is one if the
argument is true and zero otherwise.

Fig. 5 displays the impulse response functions for pos-
itive and negative shocks in yτ for different regimes. The
differences across regimes are relatively small, although
the reaction to a shock in regime 2 has a longer absorption
time. That is, it takes more than one quarter to absorb 50%
of the shock. Across all regimes, it takes an average of three
to nine quarters for 90% of the shock to be absorbed. Hence,
an innovative shock has a small but relatively long-lasting
effect on future US inflation.
Given the structure of the model, it is perhaps more
interesting to examine the effect of a shock to the forecast
pt|t−1:

GIRF p(h, δ, Ωτ ) = E[yτ+h|Ωτ , pτ |τ−1

= pτ |τ−1 + δ] − E[yτ+h|Ωτ ]. (13)

Fig. 6 shows the effects of such shocks of various
magnitudes and for different regimes at time τ . It can be
seen that a negative shock to the forecast has negative
effects on future inflation rates. The differences between
regimes are small, although the absorption time is larger
in the outer regimes than in the intermediate regime.
Hence, uncertainty in the outer regimes causes agents
to react more to forecasts. Further, shocks in regime 2
last the longest (it is approximately four quarters before
90% is absorbed). In summary, the reactions to forecasts
correspond to the expectations trap literature: positive
(negative) shocks to forecasts accommodate an increase
(decrease) in future US inflation.

Finally, we consider the hypothetical situation where
we impose a shock on the forecast which makes the fore-
cast equal to the realization. This analysis investigates the
importance of forecast accuracy and determines whether
an improved forecast accuracy could have circumvented
extreme events. Fig. 7 displays impulse response functions
for five data points where the forecast pt|t−1 was inaccu-
rate. For example, the lower inflation rate between the oil
criseswould have been higher if the inflation rate had been
forecast correctly in 1975.Q1. Further, if US inflation had
been forecast correctly in 1979.Q1, the inflation ratewould
have been lower for approximately two years. Finally, the
financial crisis peaked in the second quarter of 2009, and
theMichigan Serieswas not able to capture this downward
spike in inflation. If the forecast pt|t−1 had been correct, the
inflation rate would have been lower for a long time pe-
riod. This hypothetical analysis shows the importance of
accurate forecasts: where forecasts have been inaccurate,
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(a) δ = −σ̂τ . (b) δ = −2σ̂τ .

(c) δ = σ̂τ . (d) δ = 2σ̂τ .

Fig. 5. Impulse response analysis for various shocks δ in yt for the preferred model specification.
(a) δ = −σ̂τ . (b) δ = −2σ̂τ .

(c) δ = σ̂τ . (d) δ = 2σ̂τ .

Fig. 6. Impulse response analysis for various shocks δ in pt|t−1 for the preferred model specification.
amore accurate forecastwould have considerably changed
agents’ reactions, and therefore future inflation rates.

In summary, we find that the model we propose in
Section 2 is capable of capturing the familiar aspects of US
inflation. Marginal effects and impulse response analyses
show that agents take the forecast of the dependent
variable into account when they take action in the
economic market. In particular, the model shows that
agents follow the direction of the forecast.
5. Concluding remarks

In this paper we have introduced a STAR-type time
seriesmodel for inflation,where regime switches are based
on the relative size of the forecast of the underlying series.
The specification allows low and high inflation forecasts to
have different impacts on future values of inflation.

Themodel is applied to GDP deflator-based US inflation
rate, where we use the Michigan Inflation Expectation
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Fig. 7. Impulse response analysis of a shock in pτ |τ−1 that makes the
forecast exactly equal to the dependent variable. Five quarters where
the forecast of inflation is far from the realization are displayed ((−)
underestimation, (+) overestimation).

Series as inflation forecasts. Since the level of inflation
changes over time, we include a time-varying threshold
parameter in the L-STAR specification, such that the
relative size of the forecast determines regime changes.
Our empirical results show that (i) forecasts lead to regime
changes, and have an impact on the level of inflation;
(ii) forecasts seem to signal regime switches better
than lagged inflation in economically stable periods, and
similarly well in other periods; (iii) a positive (negative)
shock to the inflation forecast results in actions that
increase (decrease) the inflation rate, which is in line with
the expectations trap literature; (iv) the absorption time
of shocks in the forecast of inflation is about four quarters;
and (v) a counterfactual scenario where forecasts during
the financial crisis in 2009 were assumed to be correct
would have resulted in a lower level of inflation in the
subsequent quarters.

The model and analysis in this paper are applicable
to (macroeconomic) variables that are likely to react
to forecasts. The impacts of forecasts of other key
variables is a topic for future study. Furthermore, the
current assumption is that the reaction to one-step-ahead
forecasts takes place in thenext quarter. However, in actual
fact, agents’ reactions may be slow. Hence, today’s forecast
may lead to regime changes in later quarters.
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