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a b s t r a c t

Motivated by market dynamic modelling in the Italian Natural Gas Balancing Platform, we
propose a model for analyzing time series of functions, subject to equality and inequality
constraints at the two edges of the domain, respectively, such as daily demand and
offer curves. Specifically, we provide the constrained functions with suitable pre-Hilbert
structures, and introduce a useful isometric bijective map that associates each possible
bounded and monotonic function to an unconstrained one. We introduce a functional-to-
functional autoregressivemodel that is used to forecast future demand/offer functions, and
estimate the model via the minimization of a penalized mean squared error of prediction,
with a penalty term based on the Hilbert–Schmidt squared norm of autoregressive lagged
operators. The approach is of general interest and could be generalized to any situation in
which one has to deal with functions that are subject to the above constraints which evolve
over time.
© 2016 International Institute of Forecasters. Published by Elsevier B.V. All rights reserved.
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1. Introduction

Energy markets in general, and natural gas markets
in particular, are emerging fields that pose a great
variety of forecasting problems, including load forecasting
(Hong, 2014), price forecasting (Weron, 2014), daily price
curve profile forecasting (Chen & Li, 2015), consumption
forecasting (Brabec, Konár, Pelikán, & Malı, 2008), and
many others. Motivated by price prediction in the Italian
natural gas balancing market, this paper proposes a model
for forecasting the day-to-day evolution of supply and
demand curves. The proposed model is innovative from
both the methodological and applied perspectives.

The supply and demand curves model is indeed a well-
known microeconomic model of price determination, but
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its application is typically descriptive and static rather
than strategic and predictive, which clearly does not
help gas traders with either the forecasting of future
prices or decision making and bidding. At the same time,
while the usual forecasting methods, such as classical
time series analysis, produce useful predictions of scalar
quantities of interest (e.g., prices), they do not provide the
insights into the market that are given by the supply and
demand model. Furthermore, in markets with a moderate
number of traders, the effect of a single offer or demand
cannot be incorporated directly into either the inferential
procedure or what-if simulations. For all of these reasons,
the prediction of the entire supply and demand curves, and
hence of their intersection, can be of strong interest.

We deal with this problem using a functional data anal-
ysis (FDA) approach. FDA is an extremely useful set of tools
for dealing with data that can be modeled as functions,
such as our demand and supply curves; for a quick in-
troduction, refer to Ferraty and Vieu (2006), Ramsay and
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Silverman (2002, 2005), or Sørensen, Goldsmith, and San-
galli (2013). However, our approach differs from the most
common FDA framework in two ways. First, we focus on
functions that are constrained (i.e., monotonic and with
an equality constraint on one edge of the domain and an
inequality constraint on the other edge), and second, we
embed such constraints for curves that are temporally de-
pendent. The statistical literature has focused separately
on (a) the problem of obtaining a constrained estimation
of the underlying function given some point-wise evalu-
ations of it, and (b) the problem of modeling functional
data with temporal dependence (i.e., functional time se-
ries). To the best of our knowledge, the present work is
the first to tackle the temporal dependence jointly with
constraints pertaining to monotonicity, boundedness, and
values of the function at the boundary of the domain. We
refer to this joint framework henceforth as constrained
functional time series.

Before going into detail about themathematical model-
ing and the estimationmethod that we propose herein, we
provide a brief overview of the state of the art pertaining
to both monotonic estimation and functional time series
estimation.

The problem of having monotonic estimates of un-
known functions that are observed only at a few sparse
points in the domain, possibly with some measurement
error, has been being tackled in the literature for many
decades, even before the recent outbreak of FDA. Isotonic
regression was the first approach presented in the litera-
ture, and has been the most common approach to this is-
sue for years (see for exampleMammen, 1991;Mammen&
Thomas-Agnan, 1999; Mukerjee, 1988; Passow & Roulier,
1977; Ramsay, 1988; Winsberg & Ramsay, 1980, 1981).
The basic idea is to introduce a flexible functional basis
(e.g., splines) for representing the function and estimat-
ing the coefficients of the basis expansion by minimizing
the residual sum of squares under the constraint of mono-
tonicity of the estimated functions. Typical choices rely
on the use of either an I-spline basis with a positive con-
straint on the coefficients or a B-spline basis with equally
spaced knots and a monotonicity constraint on the coeffi-
cients. A similar approach has been proposed in the frame-
work of kernel regression (Hall & Huang, 2001; Henderson,
List, Millimet, Parmeter, & Price, 2008), where the kernels
are modified locally in order to achieve monotonicity.
Another approach is the projection method (Bloch & Sil-
verman, 1997; Friedman & Tibshirani, 1984; Mammen,
Marron, Turlach, & Wand, 2001), where the unknown
monotonic function is estimated in an unconstrained fash-
ion and then projected onto the convex subspace of the
monotonic functions.

The approach that we are going to use here instead
of these is in line with the so-called transform/back-
transform method. This method is in common use in the
FDA literature, and was initially proposed by Ramsay and
Silverman (2002, 2005). Basically, the idea is to transform
the functions so as to perform an unconstrained estima-
tion, and then back-transform the estimated function to
the convex subspace of the monotonic functions. Some
very recent work (Boogaart, Egozcue, & Pawlowsky-Glahn,
2014; Egozcue, Díaz-Barrero, & Pawlowsky-Glahn, 2006;
Menafoglio, Guadagnini, & Secchi, 2014) focusing on mod-
eling the cumulative distribution functions of absolutely
continuous random variables (inspired by the pioneering
work on compositional data by Aitchison, 1982) formal-
ized this approach by imposing a suitable Hilbert struc-
ture on the set of probability density functions and an
isometric bijective map on L2 for transforming and back-
transforming functional data and conveniently mapping
the entire statistical analysis in a linear subspace of L2
(i.e., the zero-mean L2 functions). The present paper, on the
other hand, imposes a suitable pre-Hilbert structure, i.e., a
non-complete vector space provided with an inner prod-
uct, on the set of monotonic, lower and upper bounded
functions that satisfy an equality constraint on one edge
of the domain and an inequality constraint on the other,
with an associated isometric bijectivemap to L2 that allows
us to model the temporal dependence in an unconstrained
framework. In the remainder of this paper, we will refer
to this as the M2 space. To the best of our knowledge, this
is the first time that a geometry in a functional space has
been introduced and formalized in order to obtain a sound
theoretical framework for modeling the temporal depen-
dencies among constrained functional data.

The literature dealing with the temporal dependencies
among functional data is more recent, dating to the end
of last century. The pioneering contribution to the topic is
that of Bosq (1991), who derived a functional Yule–Walker
estimator for time-dependent functional data. Functional
autoregressive models (FAR) are the most commonly used
approach for modeling temporal dependencies among
functional data, due to both their ease of interpretation and
their good performances in applications (Elezović, 2009).
In FAR models, autoregressive parameters are replaced by
Hilbert–Schmidt operators, and thus, model estimation is
defined by the estimation of the autoregressive operators.
Various different methods have been presented in the lit-
erature; for recent surveys, see Hormann and Kokoszka
(2012) and Horváth and Kokoszka (2012). Autoregressive
operators are linked directly with lagged autocovariance
operators (e.g., Kargin & Onatski, 2008), and thus one pos-
sible approach would be to estimate the lagged autoco-
variance operators from the functional time series, and
then to estimate the autoregressive operators accordingly.
However, sample autocovariance operators are typically
replaced by reduced rank approximations because of the
infinite dimensionality of functional data, and in order to
obtain more stable estimates. A spread approach relies on
functional principal component decomposition (e.g., Aue,
Norinho, &Hörmann, 2015;Hyndman& Shang, 2009;Hyn-
dman & Ullah, 2007; Shang, 2013) and the use of reduced
numbers of principal components. Other alternative re-
duced rank approximations that have been presented in
the literature are based on wavelet expansions of the orig-
inal data (Antoniadis & Sapatinas, 2003) and on predictive
factors (Kargin & Onatski, 2008).

Another approach to the estimation of the autoregres-
sive operators is the direct minimization of the mean
squared error of prediction. However, the minimization
problem has to be approached with some care in order
to avoid over-fitting, due to the infinite dimensionality of
functional data. For instance, Fan and Zhang (2000) and
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Elezović (2009) used a two-step approach: (i) estimate a
concurrent functional autoregressive model (i.e., a model
in which the cross-effects between different parts of the
domains are set to zero), which is actually a continuous
family of point-wise scalar autoregressive models; and
(ii) smooth the autoregressive functions thus obtained, to
take into account the effects of neighboring points of the
domain in determining the value at a given point of the
function in the next period.

The present paper, on the other hand, targets the
minimization of the mean squared error of prediction
directly, and from a perspective that is more consistent
with current research in FDA, by introducing a penalty
term involving the squared Hilbert–Schmidt norm of
the autoregressive operators into the objective function.
Under this approach, a full rank operator is obtained by
shrinking the set of degenerative solutions (that onewould
obtain without penalty) toward a temporal independence
scenario (that one would obtain by setting the penalty
constant to infinity). Specifically, we prove the existence
and uniqueness of the estimators, and provide their
explicit expressions. To help the intuition, the theory
is presented in the framework of univariate (i.e., real-
valued) functional time series. Its extension tomultivariate
functional time series (as are in fact used in the application)
comes naturally, and thus is not detailed here.

The rest of the paper is structured as follows. Section 2
begins by introducing the space M2(a, b) and an isomet-
ric bijective map to a subspace of L2(a, b), and describes
the M2-FARmodel in detail, with a particular emphasis on
model estimation and the choice of the autoregressive or-
der. Section 3 describes our motivating context, discusses
the application of our methodology to the Italian Natural
Gas Balancing Platform data, and shows the potential of
this new approach in terms of new trading opportunities.
Section 4 summarizes the results and discusses possible
generalizations.

2. Model and methods

2.1. The space M2(a, b): geometry and mapping functions

Let M2(a, b) be the family of differentiable functions
g : [a, b] → [0, 1] such that (i) g(a) = 0, g(b) < 1,
and (ii) 0 < mg ≤ g ′(s) ≤ Mg < +∞ for all s ∈ [a, b].
Previous conditions also imply that M2(a, b) ⊂ L2(a, b)
and that all functions belonging to M2(a, b) increase
monotonically and are bounded. Note that if condition
g(b) < 1 is replaced with g(b) = 1, we obtain exactly
the same conditions that are required to define the pre-
Hilbert space that leads to the definition of the Bayes space
geometry introduced and developed by Boogaart et al.
(2014), Egozcue et al. (2006), and Menafoglio et al. (2014).
With respect to the curves studied in those works (that are
valued one at the right edge of the domain), the curves that
we are dealing with are subject to a right-censoring effect,
whichmeans that they are valued less than one at the right
edge of the domain of observation.
We first introduce a suitable bijective map from
M2(a, b) to a subspace of L2(a, b). This map is such that,
for any g ∈ M2(a, b),

f (s) = log


g ′(s)
1 − g(s)


(1)

is its image, which belongs to L2(a, b). By applying the
exponential function and integrating between a and s ∈

[a, b] on both sides of Eq. (1), we obtain the inverse
transformation:

g(s) = 1 − exp


−

 s

a
exp (f (u)) du


. (2)

Note that the direct transformation looks at g as a
cumulative distribution function of a scalar absolutely-
continuous random variable and maps it to the natural
logarithm of the corresponding hazard function. Thus, we
will call it the log-hazard transformation and its inverse
transformation the anti-log-hazard transformation, and
will refer to them as logH and logH−1, respectively. In
particular, we have that constant functions in L2(a, b) are
linked to exponential functions inM2(a, b): ∀c ∈ R f (s) =

c ↔ g(s) = 1 − e−ec (s−a), with the special case of the
null function in L2(a, b), which is linked to the exponential
function with unitary decay rate in M2(a, b) (i.e., f (s) =

0 ↔ g(s) = 1 − e−(s−a)). This map is not related
to our specific motivating problem, but is introduced for
mathematical tractability, which allows it to be used in
different application contexts as well.

In the rest of this section, we will build an entire
geometry on M2(a, b), which makes the log-hazard
transformation isometric with respect to the geometry
induced by the usual inner product in L2(a, b). We start
makingM2(a, b) a vector space that defines the operations
of addition and scalar multiplication.

Definition 1. Let g1, g2 ∈ M2(a, b), α ∈ R. We define
• the addition of g1 and g2 as the operation

⊕ : M2(a, b)× M2(a, b) → M2(a, b), given by

(g1 ⊕ g2) (s)

= 1 − exp


−

 s

a

g ′

1(u)
1 − g1(u)

·
g ′

2(u)
1 − g2(u)

du


; (3)

• the scalar multiplication of g1 by α as the operation
⊙ : R × M2(a, b) → M2(a, b), given by

(α ⊙ g1) (s) = 1 − exp


−

 s

a


g ′

1(u)
1 − g1(u)

α
du

.

(4)

Note that the neutral element of addition ⊕ is 1 −

e−(s−a) (i.e., the cumulative distribution function of the
exponential distributionwith a unitary decay rate), and the
neutral element of scalar multiplication ⊙ is 1.

We are now introducing a suitable geometry in
M2(a, b) to make the log-hazard transformation an isom-
etry between M2(a, b) and the image of the log-hazard
transformation logH


M2(a, b)


embedded in L2(a, b).

Specifically, we are defining an inner product in the func-
tional vector space M2(a, b) and the corresponding norm
and distance.
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Definition 2. Let g1, g2 ∈ M2(a, b). We define the inner
product of g1 and g2 as ⟨·, ·⟩M2 : M2(a, b)×M2(a, b) → R,
given by

⟨g1, g2⟩M2 =

 b

a
log


g ′

1(s)
1 − g1(s)


log


g ′

2(s)
1 − g2(s)


ds. (5)

Definition 3. Let g1, g2 ∈ M2(a, b). The metric dM2(·, ·) :

M2(a, b) × M2(a, b) → R+

0 and the norm ∥ · ∥M2 :

M2(a, b) → R+

0 induced by the inner product in Eq. (5)
are defined as:

dM2(g1, g2) =

 b

a


log


g ′

1(s)
1 − g1(s)



− log


g ′

2(s)
1 − g2(s)

2

ds

1/2

, (6)

∥g1∥M2 =

 b

a


log


g ′

1(s)
1 − g1(s)

2

ds

1/2

. (7)

Note that even though the functional vector spaceM2(a, b)
is closed with respect to linear combinations of elements,
as defined in Eqs. (3) and (4), it is not complete with
respect to the metric dM2 , induced by the inner product
⟨g1, g2⟩M2 defined in Eq. (5). For example, monotonic non-
decreasing step-wise functions belong to the closure of
M2(a, b), not to M2(a, b) itself. This makes M2(a, b) just
a pre-Hilbert space. It is quite straightforward to make it
Hilbert, requiring the closing of the space and – relying on
the separability of L2(a, b) – the defining of the operations
of addition and scalar multiplication consistently with
Eqs. (3) and (4) on the closure. Nevertheless, this extension
(which would make logH an isometric bijective map over
the entire space L2(a, b)) is outside the scope of this
work with the pre-Hilbert nature of M2(a, b) the minimal
condition to make the estimation and prediction process
described in the next section self-consistent. Indeed, as
Lemma1 shows, the predictions provided by the estimated
model are linear combinations, in the sense defined in
Eqs. (3) and (4), of functions in M2(a, b) that are
guaranteed to be in M2(a, b). Fig. 1 summarizes all
relationships between M2(a, b) and L2(a, b).

2.2. Functional autoregressive model

Here, we describe the model that we use for dealing
with temporal dependence. The model can be formulated
coherently on either the original data in the spaceM2(a, b)
or the log-hazard transformed data in L2(a, b). To help the
intuition, we report the latter formulation here, as it is
the one that is used in practice for computation. We will
denote this model M2-FAR. Let {ft}Tt=1 be a collection of
random functions in L2(a, b) (here, the log-hazard trans-
formed functions ft = logH(gt)) generated sequentially
through discrete time t . We assume that ft(s) depends on
the values that are assumed earlier by the random func-
tions potentially appearing in the sequence at each domain
Fig. 1. Relationships between M2(a, b) and the image in L2(a, b) of the
map logH.

location s ∈ [a, b]. Let us model this temporal dependence
conditionally through a (non-concurrent) autoregressive
functional time series. Specifically, a functional autoregres-
sive model of order p (FAR(p)) is defined as

ft = α +

p
j=1

Ψjft−j + ϵt , (8)

or equivalently

ft(s) = α(s)+

p
j=1

 b

a
ψj(s, u)ft−j(u)du + ϵt(s)

∀s ∈ [a, b], (9)

where theHilbert–Schmidt operatorΨj plays the role of the
jth lagged autoregressive parameter. The bivariate func-
tion ψj(s, u) ∈ L2{(a, b) × (a, b)} is its kernel, which de-
termines the impact of ft−j(u) on ft(s). Finally, ϵt are the
innovation terms,which are i.i.d. zero-mean finite-variance
random functions, and α is a non-centrality function.

The order p can be selected by following various dif-
ferent approaches. For example, Kokoszka and Reimherr
(2013) propose a multistage testing procedure that ex-
ploits the FAR representation in terms of functional
principal components, and derives the approximated dis-
tributions of suitable test statistics. Another approach
extends classical time series identification tools to the
functional framework. In scalar time series analysis, it is
common practice to look at the autocorrelation and par-
tial autocorrelation of the time series prior the analysis.
Indeed, following the classical Box–Jenkins approach, the
first step of the modeling procedure consists of evaluating
the autocorrelation and partial autocorrelation functions
for different values of the lag, and deciding which (if any)
autoregressive or moving average components should be
used (Box, Jenkins, & Reinsel, 2013). We perform a similar
investigation in the FAR framework by introducing mea-
sures of the functional autocorrelation and functional par-
tial autocorrelation that play the same roles as their scalar
counterparts. Define the functional autocorrelation func-
tion of lag k of a functional time series {ft}Tt=1 by

Rk(s, u) =
E[(ft (s)− E[ft (s)])(ft+k(u)− E[ft+k(u)])]

E[(ft (s)− E[ft (s)])2]E[(ft+k(u)− E[ft+k(u)])2]
, (10)
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which expresses the correlation between ft(s) and ft+k(u).
Even though one could integrate Eq. (10) and obtain a
scalar measure of the autocorrelation, which can be plot-
ted as a function of k in a standard correlogram, we instead
focused on the visual comparison of the functional auto-
correlation function in Eq. (10) along k, in order to obtain
a better understanding of the dependence across functions
observed at different times. In analogy with the definition
of scalar partial autocorrelation, define the functional par-
tial autocorrelation function of order k > 2 as

Γk(s, u) =
E[rk∗t (s) r

k
t+k(u)]

E[(rk∗t (s))2]E[(rkt+k(u))2]
, (11)

with Γ0(s, u) = R0(s, u), Γ1(s, u) = R1(s, u), and where
{rpt+k} are the functional residuals of the functional autore-
gressive model of order p in Eq. (8) at time t + k, and {rp∗t }

are the functional residuals of the functional autoregres-
sive model of order k in Eq. (8) at time t , fitted to the re-
versed series.

2.3. Model estimation and prediction

As was mentioned in the introduction, we estimate the
lagged autoregressive operators Ψj and the non-centrality
function α by direct minimization. Specifically, we obtain
the estimates as the solution of the following penalized
minimization problem:

min
α∈L2 ∩ {Ψj}

p
j=1 ⊆ HS

 T
t=p+1

ft −


α +

p
j=1

Ψjft−j

2
L2

+ λ
p

j=1 ∥Ψj∥
2
HS

 .
(12)

The first term of the objective function is the sum
of the squared residuals between the observed values
and their predictions according to the L2 metric. The
lower this term, the better the fit of the predictions to
the data. The second term, on the other hand, is the
sum of the squared Hilbert–Schmidt norms of the lagged
autoregressive operatorsΨj. The lower this term, the lower
the autocorrelation associated with the estimated model.
Finally, λ is a positive penalty constant which defines the
relative weights of the two terms in the objective function.

It is of interest to discuss the two limit cases λ → +∞

and λ → 0+. As the penalty constant gets bigger,
the estimated model is shrunk towards models with less
memory (i.e., models in which the effect of the last p
functions on the present function is weaker). In fact, when
λ → +∞, the estimated model is the trivial model with
Ψ̂j = 0 (i.e., the null operator) for j = 1, . . . , p and
α̂ =

1
T−p

T
t=p+1 ft . In M2(a, b), this model describes a

sequence of i.i.d. random functions, thus trivially leading
to the prediction of future curves using the Fréchet M2-
mean of the observed curves:

ĝT+1(s) = 1 − exp


−

 s

a

T
t=p+1


g ′
t(s)

1 − gt(s)

 1
T−p

ds


.

(13)

At the other extreme, when λ → 0+, the estimated
model converges to an interpolating model, and in
particular (consistently with Theorem 1 below) to the one
with the minimal Hilbert–Schmidt norms of the lagged
autoregressive operators Ψj. As is common practice in
FDA, a suitable value of the penalty constant λ can be
selected either by minimizing the prediction residual sum
of squares on a test sample or heuristically by looking, in
this case, at the smoothness/roughness of the kernels of
the estimated lagged autoregressive operators Ψj, and/or
of the predicted functions (i.e., the so-called Goldilocks’
method). If one desires little bias in the estimates, small
values of λ might be favoured. On the other hand, if more
robust estimates are desired, larger values of λ might be
favoured. Either way, the following theorem proves the
existence and uniqueness of the estimators of α and Ψj for
j = 1, . . . , p, for any choice of the value of λ, and also
provides their explicit expressions. Its proof is reported in
the Appendix.

Theorem 1 (Existence, Uniqueness, and Explicit Expression
of the Estimators). For any λ > 0, j = 1, . . . , p, and s, u ∈

[a, b], there is always a unique solution of the minimization
problem in Eq. (12), which is equal to:

ψ̂j(s, u) =

T
t=p+1


P−1
λ (ft − f̄)


(j − 1)(b − a)+ u


×


ft(s)− f̄[0](s)


;

α̂(s) = f̄[0](s)−

p
j=1

 b

a
ψ̂j(s, u)f̄[j](u)du;

where f̄[j] =
1

T−p

T
t=p+1 ft−j; ft ∈ L2


a, b + p(b − a)


is

the function obtained by chaining ft−1, . . . , ft−p, i.e., ft

(j −

1)(b − a) + s


= ft−j(s); f̄ =
1

T−p

T
t=p+1 ft ; and Pλ :

L2

a, b+p(b−a)


→ L2


a, b+p(b−a)


is the HS operator

with kernel
T

t=p+1


ft(s̃)− f̄(s̃)


ft(ũ)− f̄(ũ)


+ λ


and

with s̃ and ũ ∈

a, b + p(b − a)


.

Finally, before moving on to the Italian natural gas
market application that motivated this research, we want
to point out the coherence of the entire working pipeline,
from the time series {g1, . . . , gT } ∈ M2(a, b) to the
prediction of the future function gT+1, which is the final
aim of the work. The following lemma states that the
joint use of the geometry introduced in Section 2.1 and
the model estimation procedure described in this section
guarantees that the plug-in predictions will satisfy all of
the constraints that characterize functions that belong to
M2(a, b). Its proof is reported in the Appendix.

Lemma 1 (Linearity of Predictions). The plug-in prediction

ĝT+1 = logH−1


α̂ +

p
j=1

Ψ̂j logH

gT+1−j


is a linear combination in M2(a, b) of {g1, . . . , gT }, and thus
belongs to the space M2(a, b).

Remark 1. Note the estimation method (i.e., the mini-
mization of Eq. (12)) proposed here is introduced for the
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estimation of functional autoregressive models. Neverthe-
less, it is trivial to extend it to the estimation of functional-
to-functional non-concurrent regressionmodels simply by
replacing the function ft with a generic functional response
yi and the p lagged functions ft−1, . . . , ft−p with p generic
functional regressors x1i, . . . , xpi:

min
α∈L2 ∩ {Ψj}

p
j=1 ⊆ HS


n

i=1

yi − 
α +

p
j=1

Ψjxji
2

L2
+ λ

p
j=1

∥Ψj∥
2
HS


,

with {yi}i=1,...,n being the functional responses and
{xji}{j=1,...,p i=1....,n} being the functional regressors. This
makes our estimation method a functional generalization
of ridge regression (Hastie, Tibshirani, & Friedman, 2009).

3. Application to the Italian natural gas balancing
platform

3.1. Context

The natural gas market has been studied and discussed
extensively over the last decade, from the economic,
political, and environmental viewpoints. In Europe, for
example, several legislative and infrastructural measures
have been undertaken for the regulation of the market.
Two such measures are the legal splitting of pipeline
managers and gas shippers, and the legislation requiring
obligatory third party access to transmission, distribution,
storage and liquefied natural gas capacity data (European
Union, 2003).

While favouring a liberal market, such measures have
created several new logistic challenges. In Italy, and vari-
ous other markets, the national pipeline is no longer con-
trolled solely by the national main natural gas shipper,
causing uncertainty in the physical balancing of the net-
work. Under this scenario, several shippers inject natu-
ral gas into the network from various different exporting
countries, such as Algeria or Russia. The gas is then con-
sumed by civil, industrial, and thermo-electric stations
across the country. The role of the pipeline manager, Snam
s.p.a., is to balance injections and consumption via storage
or other measures. In fact, the responsibility for possible
imbalances is assigned to each shipper, which has to pre-
dict its injection and withdrawal amounts and communi-
cate these forecasts to Snam daily, with a penalty for any
imbalances, whether positive or negative.

In this setting, the Italian Natural Gas Balancing
Platform (PB-GAS)was introduced in December 2011,with
the ultimate aim of achieving a self-balancing system. The
PB-GAS provides a platform on which Snam, shippers, and
traders can perform a physical balancing of the pipeline
network and procure gas on a day-ahead basis. It is
a system in which gas operators sell and buy natural
gas virtually, regardless of its physical location. The PB-
GAS is managed by the energy regulatory Gestore Mercati
Energetici (GME), with Snam acting as central counterpart
for all daily offers. The regulation fixes the upper and lower
bounds of the price at 0 and 23 Euro/GJ, respectively. Each
day, Snam submits a demand bid or supply offer for a
volume of gas that corresponds to the overall imbalance
of the system, with a price equal to 23 or 0 Euro/GJ
respectively, while the operators submit demand bids and
supply offers for the storage resources that they have
available.

In this situation, demand bids and supply offers are
sorted by price, from the highest to the lowest and from
the lowest to the highest respectively, so that the demand
and offer curves are obtained as the cumulative sum of
the quantities in GJ. Henceforth, we refer to offer curves
rather than supply curves, since the former are built from
the actual prices and quantities that the traders offer in
the auction, while the latter represent individual traders’
marginal cost curves. The selection of bids/offers accepted
on the PB-GAS is based on an auction mechanism, so
that every offer to the left of the intersection of the two
curves is accepted and exchanged at the resulting price.
Bidding a demand (offer) at the maximum (minimum)
permitted price allows Snam to be always on the left of
the intersection, and thus to exchange the volume of the
imbalance deterministically.

As part of balancing the network, shippers can also take
advantage of the market from a speculative perspective,
buying natural gas at a lower price or selling excess gas at
a higher price, with respect to their benchmark supplying
indexes. It is clear that forecasting tools are critically
important for individual shippers’ decision-making. For
example, simple price prediction is the first procedure
to implement. However, the pointwise or interval price
forecast alone is of limited utility when the shape of
tomorrow’s curves, and thus the resulting equilibrium
price, can be modified strongly by the effect of a single
bid. It would be much more useful to have predictions
of the entire demand and offer curves. Such tools would
allow traders to see the effects of their bids on the shape of
tomorrow’s curve, and on the price itself, directly.

3.2. Data description

The data used in our analysis are from the first thirteen
months of the PB-GAS, namely from December 1st, 2011,
to December 31st, 2012. The data are available from
the website of Gestore Mercati Energetici (2013). The
original data are reported in XML format, with a single
entry representing an awarded bid, with its own code,
date, trader name, type (sell or buy), awarded price, and
awarded quantity. We build the offer (and demand) curve
for each day by ordering the selling bids increasingly
(decreasingly) by price and obtaining the values of the
quantities by cumulating each single awarded quantity.

Before applying the model described in Section 2, the
raw data are converted to functional data in M2(a, b),
with a = 0 and b = 1.2 × 107 GJ, which can be
considered as a conservative upper bound for the range
of investigation. Specifically, the smoothed versions of
the offer (and demand) curves are obtained by means
of a local polynomial regression, as implemented in the
R function locpoly of KernSmooth (Wand and Ripley,
2015). Additional details are reported in the Appendix. The
legislative upper bound of 23 Euro/GJ allows us to scale
the curves by 23−1 without loss of information in order
to constrain them vertically between zero and one. The
scaled offer and reverse-demand curves naturally satisfy
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Fig. 2. Smoothed functional time series of (a) demand and (b) offer curves. Color denotes time, with the oldest curves being darkest and the most recent
ones brightest. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
the requirement of being exactly zero in a. To preserve this
constraint in the smoothed curves, before performing the
local polynomial smoothing, we added an artificial point
on the negative x-axis for each curve in order to make the
local polynomial regression output equal to zero for the
offer and to one for the demand when the quantity is zero.
The smoothed functional time series obtained are plotted
in Fig. 2.

3.3. Results

Let gD
t (s) and gS

t (s) be the scaled demand and offer
curves of day t , respectively, expressing the price as a
function of quantity.We apply themethodology presented
in Section 2 to models {1 − gD

t }
T
t=1 and {gS

t }
T
t=1. In

particular, we estimate theM2-FAR(p)models described in
the previous section separately for the two time series, for
different choices of the autoregressive order p. Moreover,
since it is reasonable to assume that the past curves of
both demand and supply will influence the future demand
and supply curves jointly, we also estimate bivariate M2-
FAR(p) models. As in classical time series analysis, the
multivariate extension is naturally:

f Dt = αD
+

p
j=1

Ψ DD
j f Dt−j +

p
j=1

Ψ DS
j f St−j + ϵDt ,

f St = αS
+

p
j=1

Ψ SS
j f St−j +

p
j=1

Ψ SD
j f Dt−j + ϵSt ,

where {f Dt }
T
t=1 and {f St }

T
t=1 are the the logH transformations

of {1 − gD
t }

T
t=1 and {gS

t }
T
t=1, respectively; Ψ

DD
j , Ψ SS

j , Ψ DS
j ,

and Ψ SD
j are the lagged operators. For fixed values of p, the

latter bivariate FAR (BFAR) model has the computational
complexity of a univariate FAR model of order 2p. The
penalization parameter has been fixed at λ = 10−7 for
all p and for both FAR and BFAR models. The particular
choice of λ has only a minor impact on the results
of the analysis. Indeed, the performances obtained are
qualitatively comparable for values of λ ranging from 10−5

to 10−9.
As for the choice of the M2-FAR order p, the method

of Kokoszka and Reimherr (2013) cannot be applied in
a straightforward way in our setting, which also consid-
ers bivariate FAR models. Thus, we follow two different
approaches. The first one is to look at the functional au-
tocorrelation and functional partial autocorrelation plots
obtained from Eqs. (10)–(11) and reported in Figs. 3 and 4.
The plots show the sample autocorrelation function and
the partial autocorrelation function, respectively, for k =

0, 1, . . . , 4 and for the demand series only. Qualitatively
similar results were obtained for the offer series.

Fig. 3 shows that the autocorrelation is persistent for
increasing lags as well, which is a typical feature of scalar
autoregressivemodels. Some details of the autocorrelation
function are amenable to an application interpretation.
First, a higher autocorrelation is registered in the first
part of the curves domain, which is the region in which
the demand and offer curves typically intersect. It is clear
that yesterday’s price influences the bids (and thus the
shape of the curves) of today, so it is natural to expect a
high autocorrelation in this part of the domain. Second,
the autocorrelation also remains high for increasing lags,
mostly around the diagonal of the plots in Fig. 3. This
means that the values of the curves at point s are
influenced mainly by the curves observed previously in
the neighborhood of s. The structure described by Fig. 4
suggests that the main dependence of curve t on the past
comes from the curve observed at t − 1. In fact, the
dependence of the curve at time t on the curve at time t−2
is basically zero. This suggests that a lag-1 model may be
appropriate for fitting our data.

As a second approach, we consider data-driven mea-
sures. For example, we can assess the model’s goodness-
of-fit for increasing values of the autoregressive order p.
This also allows us to compare the univariate and bivari-
ate models. The comparison is carried out using different
functionalmeasures of the discrepancies between the orig-
inal and predicted curves. Given our modeling approach,
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Fig. 3. Sample functional autocorrelation function for the demand series, k = 0, 1, . . . , 4.
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Fig. 4. Sample functional partial autocorrelation function for the demand series, k = 0, 1, . . . , 4.
the most natural measure is the M2 root mean squared er-
ror, defined as

M2-RMSE =

 1
T − p

T
p+1

d2
M2(gt , ĝt).

Note that, thanks to the isometric nature of the log-hazard
transformation, this coincides with the L2 root mean
squared error between the predicted transformed curves
and the original transformed ones. We also computed
other standard measures of the goodness-of-fit, namely
the L2 root mean squared error, the L1 mean absolute
error and the L∞ mean absolute error on the original scale,
defined as

L2-RMSE =

 1
T − p

T
p+1

∥gt − ĝt∥2
L2
,

L1-MAE =
1

T − p

T
p+1

∥gt − ĝt∥L1 ,

L∞-MAE =
1

T − p

T
p+1

∥gt − ĝt∥L∞ .

The results are reported in Tables 1–2. The autoregres-
sive order p has similar impacts on the estimation of both
the demand and offer curves (i.e., for a fixed value of p,
the errors for the demand and offer curves are of roughly
the same order of magnitude) for both the M2-FAR and
M2-BFAR specifications. Specifically, the bivariate model
performs dramatically better than either of the univariate
ones for a fixed value of p, due to the obvious dependence
between the supply and demand curves. In particular, the
performances of M2-BFAR(1) and M2-FAR(2) are compa-
rable. As a reference, we also fit a functional version of the
simple exponential smoothing model (FES), but it is out-
performed by all of the M2-FAR and M2-BFAR specifica-
tions. Note that the models in lines 3–7 of the two tables
have the same accuracies to three decimal places for the
indexes calculated on the original scale of the functions.
Details of the implementation and tuning of the FES model
are provided in the Appendix.

As additional measure of the goodness-of-fit, we also
consider an application-driven approach. Aswas discussed
in Section 3.1, the prediction of the whole curve is more
informative than simple price forecasting. However, price
forecasts are a byproduct of our procedure (they can be
obtained easily as the intersection of the two predicted
curves), and it is desirable that such predictions be reliable.
We calculate the predicted daily prices and quantities, and
compare themwith the real prices and quantities achieved
through the daily bids, in terms of root mean squared
errors (RMSE), as reported in Table 3.

We now focus on price prediction, since, as has been
said, it is likely to be the chief feature of interest to a trader.
As benchmarks, we fitted a scalar exponential smoother
(SES) to time series of prices using the ses function of
the R package forecast (Hyndman, 2016; Hyndman &
Khandakar, 2008)with thedefault specification, alongwith
the FES model. The RMSE of the price from the univariate
M2-FAR(1) model (i.e., 2.03 Euro) is much larger than
those of the prices from the FES and SES models (i.e., 0.31
and 0.20 Euro, respectively). On the other hand, the M2-
FAR(2) model outperforms the two benchmark methods,
providing an RSME of price of 0.18 Euro. However, if
focussing on quantity, the univariate approach based on
M2-FAR(p) model turns out to be unable to achieve
an RMSE that is comparable to or better than those
from the two benchmark methods. In this sense, the
bivariate approach is key to outperforming the benchmark
methods for both price and quantity prediction. Indeed,
the M2-BFAR(1) model achieves RMSEs on both prices and
quantities (0.18 Euro and 2.16 · 105 GJ, respectively) that
are lower than those from the FES and SES models. Given
the models’ performances for predicting both the offer
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Table 1
Functional errors between the predicted and original demand curves.

M2-RMSE L2-RMSE L1-MAE L∞-MAE

FES 7.00 × 103 4.86 × 103 5.78 × 106 5.09 × 100

M2-FAR(1) 6.13 × 102 4.08 × 103 4.37 × 106 2.60 × 100

M2-FAR(2) 1.06 × 10−3 4.85 × 102 4.00 × 105 1.51 × 100

M2-FAR(3) 1.09 × 10−4 4.85 × 102 4.00 × 105 1.51 × 100

M2-BFAR(1) 3.57 × 10−4 4.85 × 102 4.00 × 105 1.51 × 100

M2-BFAR(2) 1.15 × 10−5 4.85 × 102 4.00 × 105 1.51 × 100

M2-BFAR(3) 2.36 × 10−6 4.85 × 102 4.00 × 105 1.51 × 100
Table 2
Functional errors between the predicted and original offer curves.

M2-RMSE L2-RMSE L1-MAE L∞-MAE

FES 6.25 × 103 7.63 × 103 8.90 × 106 8.29 × 100

M2-FAR(1) 4.74 × 102 3.85 × 103 5.04 × 106 1.91 × 100

M2-FAR(2) 6.26 × 10−4 3.53 × 102 2.83 × 105 8.78 × 10−1

M2-FAR(3) 6.07 × 10−5 3.53 × 102 2.83 × 105 8.78 × 10−1

M2-BFAR(1) 3.66 × 10−4 3.53 × 102 2.83 × 105 8.78 × 10−1

M2-BFAR(2) 1.32 × 10−5 3.53 × 102 2.83 × 105 8.78 × 10−1

M2-BFAR(3) 2.63 × 10−6 3.53 × 102 2.83 × 105 8.78 × 10−1
Table 3
RMSEs for the price (in Euro) and quantity (in GJ), obtained as crossing
point between the estimated curves.

Quantity (GJ) Price (Euro)

FES 347,473 0.31
SES 239,356 0.20
M2-FAR(1) 336,430 2.03
M2-FAR(2) 336,053 0.18
M2-FAR(3) 336,053 0.18
M2-BFAR(1) 216,228 0.18
M2-BFAR(2) 216,228 0.18
M2-BFAR(3) 216,228 0.18

and demand curves and the price and quantity, and also
considering the suggestion of Fig. 4, we therefore choose
the M2-BFAR(1) model as the final model for our analysis.

3.4. Trading example

To conclude the analysis, we provide an example of
the tremendous additional insights that traders can obtain
from the whole-curve forecasts. Consider the prediction
for day T , reported in panel (a) of Fig. 5. Suppose that
a given trader is aware that he is going to buy a large
quantity Q of natural gas tomorrow, for both legislative
and logistic reasons (for full details, please refer to the PB-
GAS normative, on Gestore Mercati Energetici’s website).
The trader can lower the price by submitting an extra
supply offer for a small quantity, that eventually he is going
to buy above Q . For example, assume that he submits an
offer of 240,000 GJ at 7.20 Euro. The modified curve is
represented by a dotted line in panel (a) of Fig. 5, while
panel (b) shows a zoomed view of the neighbourhood of
the intersection. In this case, the price is lowered from
7.65 to 7.43 Euro, leading the trader to save Q × 0.22
Euro. To help us understand which is the most convenient
action, panel (c) of Fig. 5 reports the price obtained as a
function of the price and quantity of the extra bid. If a
trader wants to move the intersection point, the lower the
offered price, the higher the offered quantity needs to be.
Evidently, prices above the estimated one affect the shape
of the curve after the intersection, and therefore have no
consequences from a practical viewpoint.

4. Discussion

Motivated by the analysis of functional time series
of demand and offer curves in the Italian natural gas
market, we have proposed a model for functional time
series that preserves particular features of the curves,
such as monotonicity and the equality and inequality
constraints at the edges of the domain. A bijective map
that associates each possible constrained function with
an unconstrained one is introduced, and an isometry
between the space of the constrained functions and L2, a
suitable geometry, is developed in order to achieve this.
Specifically, we provide the constrained functions with
a suitable pre-Hilbert structure. The transformed curves
are then modeled by means of a functional autoregressive
model. The autoregressive lagged operators and the
non-centrality function of the model are obtained by
minimizing the squared L2 distance between the functional
data and functional predictions, with a penalty term based
on the Hilbert–Schmidt squared norm of autoregressive
lagged operators. We have proved that a unique solution
always exists, and that it is linear on the data with
respect to the introduced geometry, thus guaranteeing
that the plug-in predictions of future functional data
satisfy all required constraints. We also provide explicit
expressions for estimates and predictions. The model can
be generalized easily to the modeling of multivariate
functional data or the inclusion of scalar covariates, or
other functional predictors that are available at the time
of prediction. The inclusion of a trend and/or seasonality
term in the model would be tricky in terms of estimation
but might lead to further improvements in the predictive
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Fig. 5. What-if simulations: (a) curve prediction (continuous lines) and a offer perturbation (dotted line), (b) zooming in on the neighborhood of the
intersections, where the horizontal dashed lines represent the prices obtained as default and those after the bid perturbation; (c) price heatmap (brighter
colors for a higher resultant price) obtained as a function of the price and quantity of an extra bid. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.)
performance, and would certainly be worthy of future
investigation.

The method has been applied successfully to data on
the Italian Natural Gas Balancing Platform, revealing that
tomorrow’s curves are influenced strongly by those of
today. The prediction of tomorrow’s curves is of critical
interest for gas traders, as it allows for what-if simulations
that can assist decision making if one wants to behave
speculatively in this market.
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Appendix

A.1. Proofs

Proof of Theorem 1. Let us begin by showing that the
minimization with respect to α is trivial. Indeed, for fixed
values of Ψj for j = 1, . . . , p, the minimization of the
objective function is obtained byminimizing the first term
in Eq. (12) with respect to α, thus trivially obtaining

α̂ =
1

T − p

T
t=p+1


ft −

p
j=1

Ψjft−j


= f̄[0] −

p
j=1

Ψjf[j].

Hence, the minimization of Eq. (12) can be carried out
on the simplified objective function depending only on Ψj
for j = 1, . . . , p (obtained using Eq. (12), by replacing α
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with α̂):
T

t=p+1

(ft − f̄[0])−

p
j=1

Ψj(ft−j − f̄[j])
2
L2

+ λ

p
j=1

∥Ψj∥
2
HS . (A.1)

The proof of the existence and uniqueness of the mini-
mizers comes by noticing that Ψj for j = 1, . . . , p being
Hilbert–Schmidt operators, the second term in Eq. (A.1) can
be computed as λ

p
j=1


k∈N ∥Ψjφk∥
2
L2 , with {φk}k∈N be-

ing an arbitrary orthonormal basis of L2(a, b). This latter
identity points out that the simplified objective function in
Eq. (A.1) is a positive definite quadratic form with respect
to {Ψj}j=1,...,p, and thus it admits a unique minimum. It is
obtained by linear combination with the positive coeffi-
cients (i.e., one and λ) of a semi-positive definite quadratic
form (i.e., the first term) and a positive definite quadratic
form (i.e., the second term).

The explicit expressions of the estimators can be ob-
tained by noticing that, according to the Fubini–Tonelli
Theorem, ∥Ψj∥

2
HS =

 b
a

 b
a ψ

2
j (s, u)du


ds, and thus the

minimization of Eq. (A.1) can be carried out separately for
each value of s ∈ [a, b]; i.e., minimizing:

T
t=p+1


ft(s)− f̄[0](s)


−

p
j=1

 b

a
ψj(s, u)


ft−j(u)− f̄[j](u)


du

2

+ λ

p
j=1

 b

a
ψ2

j (s, u)du (A.2)

with respect to {ψj(s, ·)}j=1,...,p for all s ∈ [a, b]. Focusing
on the case p = 1, the minimization problem in Eq. (A.2)
can be seen as a continuous version of a ridge-regression-
like minimization. Thus, we have

ψ̂1(s, ·) =

T
t=p+1


P−1
λ (ft−1 − f̄[1])


(·)

ft(s)− f̄[0](s)


,

with Pλ being the HS operator with kernel
T

t=p+1


ft−1(s)− f̄[1](s)


ft−1(u)− f̄[1](u)


+ λ


.

The explicit solution for p ≥ 2 is obtained directly by
chaining the functions ft−1, . . . , ft−p, for t = p + 1, . . . , T ,
in a unique function ft defined on the auxiliary domain
a, b+p(b− a)


, and replicating the proof as in p = 1. �

Proof of Lemma 1. The plug-in prediction of fT+1 is de-
fined as

f̂T+1 = α̂ +

p
j=1

Ψ̂jfT+1−j.

We now show that f̂T+1 is a linear combination in L2(a, b)
of {f1, . . . , fT }. Let u∗

j =

(j−1)(b−a)+u


; then, by simple
computation, we have

α̂(s) = f[0](s)−

T
t=p+1


p

j=1

 b

a


P−1
λ (ft − f̄)


u∗

j


× f̄[j](u)du


ft(s)− f̄[0](s)


,

and find that
p

j=1


Ψ̂jfT+1−j


(s) is equal to

T
t=p+1


p

j=1

 b

a


P−1
λ (ft − f̄)


u∗

j


fT+1−j(u)du



×


ft(s)− f̄[0](s)


,

meaning that f̂T+1(s) is equal to

f[0](s)+

T
t=p+1

 p
j=1

 b

a


P−1
λ (ft − f̄)


u∗

j


×


fT+1−j(u)− f̄[j](u)


du


ft(s)− f̄[0](s)

.

Thanks to the isometry between the space M2(a, b) and
logH


M2(a, b)


, ĝT+1 = logH−1(f̂T+1) is a linear combina-

tion in M2(a, b) of

{gt = logH−1(ft), t = 1, . . . , T },

which belongs to M2(a, b) being M2(a, b) a space vector
with respect to the addition in Eq. (3) and the scalar mul-
tiplication in Eq. (4). �

A.2. Details on the smoothing of the raw data

The smoothed versions of the offer (and demand)
curves are obtained by means of local polynomial re-
gression, as implemented in the R function locpoly of
KernSmooth (Wand and Ripley, 2015), with degree 0 and
Gaussian kernel. When dealing with smoothing, the choice
of the bandwidth parameter is important. Here, we fixed it
to 6000 for all curves. This choice has been made subjec-
tively by eye, but turns out to be an acceptable compromise
between smoothness and coherence for the raw data. De-
spite being subjective, this choice-by-eye is used widely,
and is satisfactory in many situations (see Wand & Jones,
1994, Section 3.1). The derivatives of the smoothed func-
tions are obtained via numerical derivation.

A.3. Functional exponential smoother

Exponential smoothing is a useful method for produc-
ing one-step-ahead predictions for classical time series. A
functional version of it can be written as

ĝt+1(s) = α

∞
j=0

(1 − α)jgt−j(s),

where α ∈ (0, 1), and thus the bounds and themonotonic-
ity constraint are preserved in the one-step-ahead predic-
tion. In our application, we estimated α using least squares
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estimation, by means of the optim function of R and the
ses function of packageforecast (Hyndman, 2016). Two
different values have been obtained for the two functional
time series, namely 0.44 and 0.55 for the demand and offer
series, respectively.
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