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The mean absolute percentage error (MAPE) is one of the most widely used measures of
forecast accuracy, due to its advantages of scale-independency and interpretability. How-
ever, MAPE has the significant disadvantage that it produces infinite or undefined values
for zero or close-to-zero actual values. In order to address this issue in MAPE, we propose
a new measure of forecast accuracy called the mean arctangent absolute percentage error
(MAAPE). MAAPE has been developed through looking at MAPE from a different angle. In
essence, MAAPE is a slope as an angle, while MAPE is a slope as a ratio, considering a trian-
gle with adjacent and opposite sides that are equal to an actual value and the difference
between the actual and forecast values, respectively. MAAPE inherently preserves the phi-
losophy of MAPE, overcoming the problem of division by zero by using bounded influences
for outliers in a fundamental manner through considering the ratio as an angle instead of a
slope. The theoretical properties of MAAPE are investigated, and the practical advantages
are demonstrated using both simulated and real-life data.

© 2016 The Authors. Published by Elsevier B.V. on behalf of International Institute of
Forecasters. This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
na
1. Introduction

The mean absolute percentage error (MAPE) is one
of the most popular measures of the forecast accuracy.
It is recommended in most textbooks (e.g., Bowerman,
O’Connell, & Koehler, 2004; Hanke & Reitsch, 1995), and
was used as the primary measure in the M-competition
(Makridakis et al., 1982). MAPE is the average of absolute
percentage errors (APE). Let At and Ft denote the actual and
forecast values at data point t , respectively. Then, MAPE is
defined as:

MAPE =
1
N

N
t=1

At − Ft
At

 , (1.1)
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whereN is the number of data points. To bemore rigorous,
Eq. (1.1) should be multiplied by 100, but this is omitted
in this paper for ease of presentation without loss of gen-
erality. MAPE is scale-independent and easy to interpret,
whichmakes it popular with industry practitioners (Byrne,
2012).

However, MAPE has a significant disadvantage: it pro-
duces infinite or undefined values when the actual values
are zero or close to zero, which is a common occurrence
in some fields. If the actual values are very small (usually
less than one), MAPE yields extremely large percentage er-
rors (outliers), while zero actual values result in infinite
MAPEs. In practice, data with numerous zero values are
observed in various areas, such as retailing, biology, and
finance, among others. For the area of retailing, Fig. 1
(Makridakis, Wheelwright, & Hyndman, 1998) illustrates
typical intermittent sales data. Many zero sales occur dur-
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Fig. 1. Three years of monthly sales of a lubricant product sold in large containers. Data source: ‘Product C’ fromMakridakis et al. (1998, Ch. 1). The vertical
dashed line indicates the end of the data used for fitting and the start of the data used for out-of-sample forecasting.
ing the time periods considered, and this leads to infinite
or undefined MAPEs.

There have been attempts to resolve this problem by
excluding outliers that have actual values less of than one
or APE values greater than the MAPE plus three standard
deviations (Makridakis, 1993). However, this approach is
only an arbitrary adjustment, and leads to another ques-
tion, namely how the outliers can be removed. Moreover,
the exclusion of outliersmight distort the information pro-
vided, particularly when the data involve numerous small
actual values. Several alternative measures have been pro-
posed to address this issue. The symmetric mean absolute
percentage error (sMAPE), proposed byMakridakis (1993),
is amodifiedMAPE inwhich the divisor is half of the sumof
the actual and forecast values. Another measure, the mean
absolute scaled error (MASE), was proposed by Hyndman
and Koehler (2006). The MASE is obtained by scaling the
forecast error based on the in-sample mean absolute er-
ror using the naïve (random walk) forecast method, and
can overcome the problem of theMAPE generating infinite
or undefined values. Similarly, Kolassa and Schütz (2007)
proposed that the mean absolute error be scaled by the in-
sample mean of the series (MAE/Mean ratio) in order to
overcome the problem of division by zero.

While these alternativemeasures resolve theMAPE’s is-
sue with outliers, the original MAPE remains the preferred
method of business forecasters and practitioners, due to
both its popularity in the forecasting literature and its intu-
itive interpretation as an absolute percentage error. There-
fore, this paper proposes an alternative measure that has
the same interpretation as an absolute percentage error, but
can overcome the MAPE’s disadvantage of generating infi-
nite values for zero actual values.

Even though this paper focuses on MAPE, it is worth
reviewing the other accuracy measures used in the liter-
ature as well. In general, accuracy measures can be split
into two groups: scale-dependent measures and scale-
independent measures. As the group names indicate, the
scale-dependent measures are measures for which the
scale depends on the scale of the data. Themean square er-
ror (MSE), root mean square error (RMSE), mean absolute
error (MAE), and median absolute error (MdAE) all belong
to this category. These measures are useful when compar-
ing different forecasting methods that are applied to data
with the same scale, but should not be used when compar-
ing forecasts for series that are on different scales (Chat-
field, 1988; Fildes & Makridakis, 1988). In that situation,
scale-independent measures are more appropriate. Being
scale-independent has been considered to be a key charac-
teristic for a good measure (Makridakis, 1993). The afore-
mentioned MAPE, sMAPE, MASE, and the MAE/Mean ratio
are examples of scale-independent measures.

There have been various attempts in the literature to
make scale-dependent measures scale-independent by di-
viding the forecast error by the error obtained from a
benchmark forecasting method (e.g., a random walk). The
resulting measure is referred to as a relative error. The
mean relative absolute error (MRAE), median relative ab-
solute error (MdRAE), and geometric mean relative ab-
solute error (GMRAE) all belong to this category. Even
though Armstrong and Collopy (1992) recommended the
use of relative absolute errors, particularly the GMRAE and
MdRAE, these measures have the issue of potentially in-
volving division by zero. In order to overcome this diffi-
culty, Armstrong and Collopy (1992) recommended that
extreme values be trimmed; however, this increases both
the complexity and the arbitrariness of the calculation, as
the amount of trimming must be specified.

Relative measures are another type of scale-inde-
pendent measure. Relativemeasures are similar to relative
errors, except that relative measures are based on the
values of measures instead of errors. For example, the
relative MSE (RelMSE) is given by the MSE divided by
MSEb, where MSEb denotes the MSE from a benchmark
method. Similar relative measures can be defined using
RMSE, MAE, MdAE, MAPE, and so on. A log-transformed
RelMSE, i.e., log(RelMSE), has also been proposed, in order
to impose symmetrical penalties on the errors (Thompson,
1990). When the benchmark method is a random walk
and the forecasts are all one-step forecasts, the relative
RMSE is Theil’s U statistic (Theil, 1966, Ch. 2), which is one
of the most popular relative measures. However, Theil’s
U statistic has the disadvantages that its interpretation is
difficult and outliers can easily distort the comparisons
because it does not have an upper bound (Makridakis &
Hibon, 1979). In general, relative measures can be highly
problematic when the divisor is zero. For a more in-depth
review of other accuracy measures, refer to Hyndman
and Koehler (2006), who provide an extensive discussion
of various measures of forecast accuracy, and Hyndman
(2006), particularly for measures for intermittent demand.

The remainder of this paper is organized as follows. In
Section 2,MAPE is investigated from a different angle, with
a new measure called MAAPE being proposed as a result.
The behavior and theoretical properties of the proposed
measure are then investigated in Section 3. In Section 4,
we further explore the bias aspect ofMAAPE in comparison
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Fig. 2. Conceptual justification of AAPE: AAPE corresponds to the angle
θ , while APE corresponds to the slope as a ratio = tan(θ) =

 A−F
A

, where
A and F are the actual and forecast values, respectively.

with MAPE. Then, in Section 5, MAAPE is applied to both
simulated and real-life data, and compared with other
measures. Finally, we conclude in Section 6.

2. MAPE from a different angle: slope as a ratio vs. slope
as an angle

We investigate MAPE from a different angle and
propose a newmeasure of the forecast accuracy. Recall that
MAPE is the average of the absolute percentage error (APE).
We consider a triangle with adjacent and opposite sides
that are equal to |A| and |A−F |, respectively, where A and F
are the actual and forecast values, respectively, as depicted
in Fig. 2. In principle, APE can be viewed as the slope of the
hypotenuse. Clearly, the slope can be measured either as
a ratio of |A − F | to |A|, ranging from zero to infinity; or,
alternatively, as an angle, varying from 0 to 90°. Given that
the slope as a ratio is the APE, the slope as an angle has the
potential to be a useful measure of the forecast accuracy,
as we propose in this paper. Note that, for the slope, the
ratio is the tangent of the angle. Then, the angle θ can be
expressed using |A| and |A − F | as follows:

θ = arctan(ratio) = arctan
A − F

A

 , (2.1)

where ‘arctan’ is the arctangent (or inverse tangent)
function.

Using Eq. (2.1), we propose a new measure, called the
mean arctangent absolute percentage error (MAAPE), as
follows:

MAAPE =
1
N

N
t=1

(AAPEt) for t = 1, . . . ,N, (2.2)

where

AAPEt = arctan
At − Ft

At

 .

Recall that the function arctan x is defined for all real values
from negative infinity to infinity, and limx→∞ tan−1 x =

π/2. With a slight manipulation of notations, for the range
[0, ∞] of APE, the corresponding range of AAPE is [0, π

2 ].
3. Properties of MAAPE

This section compares MAPE and MAAPE, in order to
investigate the properties of MAAPE. Recall that APE and
AAPE are defined by components of MAPE and MAAPE,
as in Eqs. (1.1) and (2.2), respectively. Without loss of
generality, we therefore compare APE and AAPE.

Fig. 3 provides visualizations of APE and AAPE in the
upper and lower rows, respectively, with actual (A) and
forecast (F ) values that vary from 0.1 to 10 in increments
of 0.1. In the left column, the values of each measure are
presented in a color map, varying from blue (low values)
to red (high values). The actual and forecast values are on
the x- and y-axes, respectively. For example, in Fig. 3(a),
the upper-left corner presents APE values for small actual
values and large forecast values, while the lower-right
corner presentsAPE values for large actual values and small
forecast values. As expected, the APE values in the upper-
left corner are much larger than those in other regions.
In the right column, the values of each measure on the
diagonal line of the corresponding figure in the left column
(from upper-left to lower-right) are plotted. On the x-axis
in Fig. 3(b), both actual (A) and forecast (F ) values are
presented; for simplicity, the x-axis can be regarded as F/A.
Fig. 3(a) and (b) clearly illustrate the drawbacks ofMAPE: it
provides extremely large valueswhen the actual values are
small. In contrast, it can be seen clearly in Fig. 3(c) and (d)
that AAPE does not go to infinity even with close-to-zero
actual values, which is a significant advantage of MAAPE
over MAPE. It is evident from a comparison of Fig. 3(c) and
(d) with Fig. 3(a) and (b) that AAPE is less sensitive to small
actual values than APE.

Due to the value of APE going to infinity for close-to-
zero actual values, a detailed comparison of the behaviors
of APE and AAPE in Fig. 3 is not easy. Therefore, in order
to compare the behaviors of APE and AAPE in more detail,
we focus on the actual and forecast values from 1 to
10 instead. Fig. 4 visualizes the APE and AAPE values on
a diagonal line similar to those in Fig. 3(b) and (d). As
is shown in Fig. 4(a), the value of APE is significantly
larger when the forecast value is greater than the actual
value (i.e., a positive error) than for the opposite case
(i.e., a negative error). MAPE has been criticized because
it places significantly heavier penalties on positive errors
than on negative errors (Makridakis, 1993). Using a log-
transformed version of MAPE (Swanson, Tayman, & Barr,
2000) or the log of the ratio of the predicted to actual
values (Tofallis, 2015) can overcome the problem that the
percentage errors are not distributed symmetrically, but
they retain the problem of division by zero.

Note that APE is a concave-up function for F > A,
meaning that the unbalanced penalty becomes more
severe as F

A increases, which results in APE becoming
rapidly larger as the actual value approaches zero. In
contrast, AAPE has a more balanced penalty than APE, as
Fig. 4(b) shows. This is because AAPE is bounded by [0, π

2 ]

and is a concave-down function for F > 2A, as Theorem 1
proves.

Theorem 1. For 0 < A < F , AAPE is a concave-down
function for F > 2A and a concave-up function for A < F <
2A, with F = 2A being an inflection point.

The proof of Theorem 1 is provided in Appendix A.
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(a) Visualization of APE in 2D. (b) APE values on the diagonal line between (A = 0.1, F = 10)
and (A = 10, F = 0).

(c) Visualization of AAPE in 2D. (d) AAPE values on the diagonal line between (A = 0.1, F = 10)
and (A = 10, F = 0).

Fig. 3. Visualization of APE and AAPE on [0.1, 10] × [0.1, 10]. (For interpretation of the references to colour in this figure legend, the reader is referred to
the web version of this article.)
The behavior of AAPE is investigated further in Fig. 5.
The x-axis represents APE, and three different lines are
compared on the y-axis: y = arctan(x), y = x, and y =

π/2 − 1/x. As the figure shows, arctan(x) behaves like
y = x for small values of x. As x increases, it becomes
a nonlinear function, eventually converging to π/2. This
implies that AAPE converges to π/2 for sufficiently large
forecast errors. For a forecast error of more than 316%
(x = 3.16), the difference between arctan(x) and π/2 −

1/x becomes less than 0.01. In many cases, more than
300% of forecast errors might be regarded as outliers. The
convergence of AAPE for large forecast errors plays a part
in limiting the influence of outliers, which often distort the
calculation of the overall forecast accuracy. This property
of AAPE helps make the MAAPE robust against outliers.
Therefore, MAAPE can be particularly useful if there are
extremely large forecast errors as a result of mistaken or
incorrect measurements.

However, if the extremely large forecast errors are
considered as genuine variations that might have some
important business implications, rather than being due
to mistaken or incorrect measurements, MAAPE would
not be appropriate. The simple example in Table 1
illustrates the circumstances under which MAAPE is or is
not recommended. Consider the two sequences of actual
demands illustrated in Table 1: the two sequences have the
same values for each period, except for the second period,
in which Actual 1 has the value 100, while Actual 2 has
the value 100,000. We assume that the same sequence of
forecasts is obtained for each sequence of actual demands
as in Table 1: the demand for each period is forecast
correctly, except for the second period. As a result, MAAPE
is calculated to be 0.29 for Actual 1 and 0.31 for Actual 2;



S. Kim, H. Kim / International Journal of Forecasting 32 (2016) 669–679 673
(a) APE. (b) AAPE.

Fig. 4. Visualization of APE and AAPE on [1, 10] × [1, 10].
Table 1
A simple example that illustrates the circumstances under which MAAPE is or is not recommended.

Period 1 Period 2 Period 3 Period 4 Period 5 MAAPE

Actual 1(AAPE) 1(0.00) 100(1.46) 1(0.00) 5(0.00) 1(0.00) 0.29
Actual 2(AAPE) 1(0.00) 100, 000(1.57) 1(0.00) 5(0.00) 1(0.00) 0.31
Forecast 1 10 1 5 1
Fig. 5. For small values of x, arctan(x) varies linearly with x, with its
variation becoming nonlinear with increasing values of x; it eventually
approaches π/2.

thus, the values of MAAPE for Actual 1 and Actual 2 do
not differ significantly, even though their actual values
at Period 2 are significantly different. Therefore, if the
actual values 100 and 100,000 are both considered to be
mistaken or incorrect measurements, MAAPE is robust
against these outliers, and thus MAAPE is recommended
for use. In contrast, if the larger actual value of 100,000
compared with the actual value of 100 has important
business implications, MAAPE is not sensitive to these
large errors, and therefore is not recommended for use.
Another limitation of MAAPE is that if the actual value is
zero, then the corresponding AAPE value is always π/2,
regardless of the forecast value. Syntetos (2001) noted that
sMAPE has a similar limitation: the symmetric absolute
percentage error is always equal to two for a zero actual
value, regardless of the forecast that is used.

4. Optimal point predictions under MAAPE

This section compares MAPE and MAAPE in terms of
one-point predictions, and demonstrates that MAAPE is
less biased thanMAPE.We assume that a forecaster makes
a one-point forecast value of F by solving one of the three
objective problems: (1) minimize the total expected loss,
(2) equate the expected loss above and below the point
prediction, or (3) minimize the maximum possible loss.
These three strategies were considered in order to address
the bias issue of MAPE in McKenzie (2011). The forecast
value obtained by solving the above objective problem
is called the optimal point prediction. The optimal point
predictions corresponding to these objective functions are
as follows:

F (1)
L = argmin

F


AH

A=AL

L(A, F)P(A)


, (4.1)

F (2)
L = argmin

F
max


F−1
A=AL

L(A, F)P(A),

AH
A=F

L(A, F)P(A)


, (4.2)

F (3)
L = argmin

F
max {L(A, F)} , (4.3)
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(a) APE(A, F (1)
APE) and AAPE(A, F (1)

AAPE). (b) APE(A, F (2)
APE) and AAPE(A, F (2)

AAPE).

Fig. 6. Comparison between APE(A, F (i)
APE) (black solid line) and AAPE(A, F (i)

AAPE) (red dashed line) for (a) i = 1 and (b) i = 2, for A that follows a discrete
uniform distribution. The vertical dotted line indicates the locations of both themean and themedian of the actual demand distribution. (For interpretation
of the references to colour in this figure legend, the reader is referred to the web version of this article.)
where L(A, F) is a loss function (error measure) that
quantifies the deviation of a forecast value (F ) from its
actual value (A), AL and AH are the lower and upper bounds
of A, respectively, and P(A) is the probabilitymass function
of the actual value distribution; that is, we assume that A
is a non-negative integer random variable that follows a
certain discrete probability distribution.

We investigate F (1)
AAPE , F (2)

AAPE , and F (3)
AAPE when L(A, F)

is AAPE, and compare these with F (1)
APE , F (2)

APE , and F (3)
APE ,

respectively, which are the optimal point predictions
under APE. For the third objective function in Eq. (4.3), F (3)

L
does not depend on P(A). In this case, we can prove that
F (3)
AAPE and F (3)

APE are identical as in Proposition 1.

Proposition 1. F (3)
APE and F (3)

AAPE are identical.

The proof of Proposition 1 is in Appendix B.
The other two optimal point predictions depend on

the specification of P(A), for which we consider both the
discrete uniform distribution and the negative binomial
distribution. For each distribution, we use a simulation to
compare F (i)

APE and F (i)
AAPE , where i = 1, 2, in reference to

the mean and median of the actual value distribution. For
the discrete uniform distribution, AL and AH are set to 0
and 5, respectively. For the negative binomial distribution,
the following probability mass function was considered
(AL = 0 and AH = ∞):

P(A = x|r, p) =
r + x − 1

x

pr(1 − p)x,

x = 0, 1, 2, . . . , (4.4)

with the parameters r = 3.58 and p = 0.59, so that we
have E[A] = 2.5, for ease of comparison with the uniform
distribution case. The negative binomial distribution was
investigated by Syntetos, Lengu, and Babai (2013), and
found to be a good representation of intermittent demand
patterns.
Then, under the assumption that the actual values
are realized from each distribution, the optimal point
predictions under APE and AAPE are compared in Fig. 6
for the discrete uniform distribution and in Fig. 7 for the
negative binomial distribution. Fig. 6(a) (or Fig. 7(a)) and
Fig. 6(b) (or Fig. 7(b)) correspond to the objectives in Eqs.
(4.1) and (4.2), respectively. In the figures, the black solid
line and the red dashed line represent the values of APE
andAAPE, respectively, and theminimumvalues of the two
lines indicate the locations of F (i)

APE and F (i)
AAPE . Because the

APE is undefined for A = 0, we added 0.01 to A = 0 when
calculating the APE.

In the case of the discrete uniform distribution in
Fig. 6, the black vertical dotted line indicates both the
mean and the median of the actual demand distribution.
Fig. 6 demonstrates that both APE and AAPE yield optimal
forecasts that are less than themean (or themedian) for the
two objectives; however, the optimal forecast under AAPE
is closer to the mean (or the median) than that under APE.
In the case of the negative binomial distribution in Fig. 7,
the solid red and dotted black vertical lines indicate the
mean and the median of the actual demand distribution,
respectively. Fig. 7 shows the behaviors of APE and AAPE
to be similar to those in Fig. 6: the optimal forecasts
under APE and AAPE are both less than the mean for both
objectives; however, the optimal forecast under AAPE is
less biased than that under APE. When considering the
median, F (i)

APE is less than the median for both i = 1, 2,
while F (2)

AAPE is less than the median and F (1)
AAPE is equal to the

median.
The simulation results demonstrate that, while both

APE and AAPE yield downward-biased forecasts, those
under AAPE are significantly less biased than those under
APE. This is due to the loss function of APE having
significantly heavier penalties when F is larger than A;
thus, the optimal point prediction becomes significantly
smaller than the mean, in order to minimize the overall
penalties. The loss function of AAPE removes the imbalance
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(a) APE(A, F (1)
APE) and AAPE(A, F (1)

AAPE). (b) APE(A, F (2)
APE) and AAPE(A, F (2)

AAPE).

Fig. 7. Comparison between APE(A, F (i)
APE) (black solid line) and AAPE(A, F (i)

AAPE) (red dashed line) for (a) i = 1 and (b) i = 2, for A that follows a negative
binomial distribution (r = 3.58, p = 0.59). The solid red and dotted black vertical lines indicate the locations of themean andmedian of the actual demand
distribution, respectively. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
in the penalties for positive and negative errors. With
respect to the median, the optimal point prediction under
APE is less than the median, while the optimal point
prediction under AAPE is less than or equal to the median,
depending on the objective function and the distribution
of A. Teunter and Duncan (2009) andMorlidge et al. (2015)
noted that the point prediction under MAE is optimized
on the median for the objective in Eq. (4.1); thus, the
optimal point prediction underMAE for the objective in Eq.
(4.1) is always zero when at least 50% of the observations
are zero. The optimal point prediction under MAAPE will
also become zero if there are numerous zero observations,
because the optimal point prediction under MAAPE is less
than or equal to the median.

5. Applications

The performance of MAAPE was evaluated using two
real datasets and a simulated dataset. In Sections 5.1
and 5.2, the advantages of MAAPE over MAPE, sMAPE,
MASE, and the MAE/Mean ratio are illustrated using the
monthly sales dataset of a lubricant product and a dataset
of weekly retail sales, respectively. Section 5.3 compares
the performances of MAAPE and MAPE further using a
simulated example.

5.1. Example 1: monthly sales data of a lubricant product

Recall the monthly sales data of a lubricant product
from Section 1. Fig. 8 depicts the actual data from the 25th
month to the 36th month (A25 ∼ A36), along with two
different forecasts: F1,25 ∼ F1,36 and F2,25 ∼ F2,36. F1t was
computed by simply using themean of the actual data from
the 1st to 24th months. That is, F1,k =

1
24

24
t=1 At for

k = 25, . . . , 36. F2t represents a more accurate forecast,
except for one outlier in the 28th month. Because the
forecast method itself is not the focus of this paper, we
Fig. 8. Actual data and two different forecasts from the 25th to 36th
months.

Table 2
The results of MAPE, MAAPE, sMAPE, MASE, and the MAE/Mean ratio for
the two different forecasts.

Excluding At = 0 Including At = 0

MAPE1 0.39 ∞

MAPE2 0.41 ∞

MAAPE1 0.37 1.17
MAAPE2 0.31 1.15
sMAPE1 0.41 1.47
sMAPE2 0.27 1.42
MASE1 0.26 0.44
MASE2 0.43 0.17
MAE/Mean ratio1 0.50 0.83
MAE/Mean ratio2 0.81 0.32

assumed that the forecast values were determined using
well-defined forecast methods.

For the two sets of forecast values, MAAPE was
compared with MAPE, sMAPE, MASE, and the MAE/Mean
ratio (see Section 1 for details of these measures). Table 2
summarizes the results of the five accuracy measures for
the two forecasts, F1 and F2. As has been noted, MAPE
cannot be defined unless data points with At = 0 are
excluded, which indicates that MAPE is meaningless for
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Fig. 9. Intermittent demand patterns of four SKUs in a specific store.
low volume data or data with periods of zero demand. If
the points with At = 0 are excluded, MAPE1 and MAPE2
(which denote the MAPE values for F1 and F2, respectively)
are 0.39 and 0.41 using the values of four months
(t = 28, 29, 32, 34), although it is inevitable that the
information from the other eight months be lost. In this
case, MAPE determines that F1 is a better forecast than
F2, which might not be an appropriate decision in this
scenario. This is a result of MAPE placing a significantly
heavier penalty on the positive outlier (i.e., the 28th
month) in F2 than necessary. In contrast, MAAPE obtains
a finite value even when zero actual values are included:
MAAPE1 and MAAPE2 are 1.17 and 1.15, respectively.
As Table 2 shows, MAAPE makes a consistent decision,
regardless ofwhether the data points for zero actual values
are included or not: MAAPE determines that F2 is a better
forecast than F1. This indicates that MAAPE is more robust
to outliers thanMAPE. sMAPE behaves similarly toMAAPE,
consistently selecting F2 as a better forecast than F1. In
contrast, MASE and the MAE/Mean ratio select F2 if the
points with At = 0 are included, while they select F1 if the
points with At = 0 are excluded.

5.2. Example 2: weekly retail sales data

A real dataset of retail sales was used to compare
MAAPE with MAPE, sMAPE, MASE, and the MAE/Mean ra-
tio. The data consisted of numerous time series for several
stock keeping units (SKUs) belonging to a given category
of products in a specific store of a large retail chain in the
USA. Each time series consisted of weekly sales counts for
the 105 weeks from October 29, 2005 to October 27, 2007.
Fig. 9 illustrates the demand patterns of the four selected
SKUs. From the top to the bottom of Fig. 9, the degrees of
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Table 3
Forecast error measures for retail sales.

SKU Measures M1 M2 M3 M4
In Out In Out In Out In Out

A

MAPE 0.00 0.20 0.00 0.20 0.00 0.20 0.00 0.20
MAAPE 0.00 0.16 0.00 0.16 0.00 0.16 0.00 0.16
sMAPE 0.00 0.40 0.00 0.40 0.00 0.40 0.00 0.40
MASE 0.00 Undefined 0.00 Undefined 0.00 Undefined 0.00 Undefined
MAE/Mean ratio 0.00 Undefined 0.00 Undefined 0.00 Undefined 0.00 Undefined

B

MAPE ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

MAAPE 1.33 1.57 0.93 1.57 1.33 1.57 0.93 1.57
sMAPE 1.72 2.00 1.20 2.00 1.72 2.00 1.23 2.00
MASE 0.97 0.00 0.95 0.00 0.97 0.00 2.05 2.59
MAE/Mean ratio 0.74 0.00 0.72 0.00 0.74 0.00 1.56 1.98

C

MAPE ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

MAAPE 0.86 0.84 0.86 0.85 0.93 0.90 0.89 0.97
sMAPE 1.13 1.11 1.16 1.11 1.21 1.06 1.17 1.10
MASE 0.73 2.01 0.74 2.01 0.77 2.16 0.88 2.04
MAE/Mean ratio 0.91 2.51 0.92 2.51 0.96 2.70 1.10 2.55

D

MAPE ∞ ∞ ∞ ∞ ∞ ∞ ∞ ∞

MAAPE 0.84 0.89 0.75 0.90 0.84 0.89 0.78 0.89
sMAPE 0.91 1.09 0.85 1.09 0.91 1.09 0.92 1.12
MASE 0.72 0.86 0.66 0.86 0.72 0.86 0.87 1.12
MAE/Mean ratio 0.90 1.08 0.83 1.08 0.90 1.08 1.09 1.40
intermittence of the time series are 98%, 75%, 38%, and 7%,
respectively, where the degree of intermittence is calcu-
lated as the number of time points with no sales divided
by the total number of time points. Using these time se-
ries, the forecast accuracies of the following four forecast
methods are compared: exponential smoothing state space
models (Hyndman, Koehler, Snyder, & Grose, 2002) (de-
noted by M1), Holt–Winters (Holt, 2004) (denoted by M2),
ARIMA (Hyndman & Khandakar, 2008) (denoted by M3),
and Croston (Croston, 1972) (denoted by M4). These four
forecast methods were implemented using the R package
called ‘forecast’ (Hyndman, 2014) in R version 3.0.2. Like
Hyndman (2006), we compare both the in-sample perfor-
mances of these methods, by varying the origin and gen-
erating a sequence of one-period-ahead forecasts, and the
out-of-sample performances, based on forecasting the data
in the hold-out period using the information in the fitting
period alone. For each time series, the data from the first
95weeks are used as the in-sample data, while the remain-
ing data from the 96th to 105th weeks are used as out-of-
sample data.

For the four SKUs depicted in Fig. 9, Table 3 summarizes
the forecast errors measured by the five metrics above for
comparing the in-sample and out-of-sample performances
of the four forecast methods. Note that we assume that
if both the actual and forecast values are zero, each error
measure is calculated to be zero regardless of the value of
the denominator. In Table 3, theMAPE showsmany infinite
values, as a result of divisions by zero. The other four
error measures, which were all aimed at overcoming this
problem of MAPE, did not yield infinite values. However, if
all of the actual values during the in-sample period were
zeros, MASE and the MAE/Mean ratio yielded undefined
values for the out-of-sample forecasts. MAAPE and sMAPE
always provided reasonable results for all four forecasting
methods.
5.3. Example 3: simulated data

Using a simulated example, MAPE and MAAPE were
compared in terms of their abilities to select the appro-
priate forecast method.We generated actual demands, de-
noted by At , t = 1, . . . ,N , where N is the number of time
points, from the negative binomial distribution in Eq. (4.4),
with r = 2 and p = 2/3. For the same time period, we
assumed that there were two forecasts available, denoted
by F1t and F2t , t = 1, . . . ,N , which were obtained from
two different forecast methods. Here, we assume that one
forecastmethod is clearly superior to the other through the
following setting:

F1t = At + ϵ1t , t = 1, . . . ,N,

F2t = At + ϵ2t , t = 1, . . . ,N,

where ϵ1t ∼ N(0, 0.12) and ϵ2t ∼ N(0, 0.22) ; thus, with
the small variance term, F1 is designed to be a better
forecast than F2. First, we generated a sequence of actual
demands; for the generated actual data, 100 pairs of
the two sequences of forecast values were generated as
above, with N = 10. Using both the forecast data of
each pair and the actual data, MAPE and MAAPE values
were calculated for the two forecast methods F1 and F2,
based on the forecast method that was selected by each
measure. Then, the performances of MAPE and MAAPE
were compared based on their error rates: the number of
incorrect selections divided by the total number of trials
(=100). That is, the error rate indicated how often F2
was selected as being better than F1, even though F1 was
designed to be better than F2. When calculating the APE
with A = 0, a small value of 0.01 was added to the actual
value A in order to avoid the problem of division by zero.
This procedure was then repeated 1000 times, and the
distributions of the 1000 error rates for MAPE and MAAPE
thus obtained were compared in Fig. 10, using boxplots. In
terms of error rates, MAAPE outperformedMAPE; that is, it
selected F1 as the better forecast more often.
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Fig. 10. Boxplots of 1000 error rates for MAPE and MAAPE.

6. Conclusion

We have developed a novel accuracy measure called
the mean arctangent absolute percentage error (MAAPE)
by modifying MAPE, which is the most popular accuracy
measure. As the proposed measure is a MAPE that has
been transformed using the arctangent (inverse tangent)
function, it inherently preserves the advantages of MAPE;
thus, MAAPE is scale-independent, can be interpreted
intuitively as an absolute percentage error, and is simple to
calculate. In addition, the bounded range of the arctangent
function allows the MAAPE to overcome the MAPE’s
limitation of going to infinity as the actual value goes
to zero. We visualized MAAPE in order to demonstrate
its advantages over MAPE, and proved that AAPE is a
concave-down function for F > 2A > 0, which enables
MAAPE to obtain a more balanced penalty between
positive and negative errors than MAPE, although the
penalty function of MAAPE remains asymmetric. MAAPE
is also more robust than MAPE due to the bounded
influences of outliers; thus, MAAPE can be particularly
useful when extremely large errors are due to mistaken or
incorrect observations. However, if extremely large errors
are considered as having important business implications,
rather than merely being due to mistaken observations,
MAAPE is not recommended. Via a simulation, we have
also compared APE and AAPE based on their optimal point
predictions under three strategies, and have demonstrated
that MAAPE is less biased than MAPE. Our applications
to real and simulated data have also demonstrated the
effectiveness of MAAPE in practice.
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Appendix A. Proof of Theorem 1

∂2

∂2A
AAPE =

∂2

∂2A
arctan


F − A

A


for 0 < A < F
=
∂

∂A


−F

A2 + (F − A)2


=

2F
(A2 + (F − A)2)2

(2A − F) .

Appendix B. Proof of Proposition 1

Suppose that AL is realized. Then, APE can be reduced by
decreasing F . However, under the outcome AH , decreasing
F implicitly means increasing APE. Thus, equilibrium
occurs when the APE under outcome AL and the APE under
outcome AH have been equalized. That is,

APE(AL, F
(3)
APE) = APE(AH , F (3)

APE),

which isF (3)
APE − AL

AL

 =

AH − F (3)
APE

AH

 . (B.1)

For the same reason, equilibrium occurs when the AAPE
under outcome AL and the AAPE under outcome AH are
equalized:

arctan

F (3)
AAPE − AL

AL

 = arctan

AH − F (3)
AAPE

AH

 . (B.2)

Because arctan is a one-to-one function, Eq. (B.2) is
equivalent to Eq. (B.1). Thus,

F (3)
APE = F (3)

AAPE .
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