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Research into time series forecasting for call center management suggests that a forecast based on the simple
SeasonalMovingAverage (SMA)method outperformsmore sophisticated approaches at longhorizonswhere ca-
pacity planning decisions are made. However in the short to medium term where decisions concerning the
scheduling of agents are required, the SMA method is usually outperformed. This study is the first systematic
evaluation of the SMA method across averages of different lengths using call arrival data sampled at different
frequencies from5min to 1 h. A hybridmethodwhich combines the strengths of the SMAmethod and nonlinear
data-driven artificial neural networks (ANNs) is proposed to improve short-term accuracywithout deteriorating
long-term performance. Results of forecasting the intraday call arrivals to banks in the US, UK and Israel indicate
that theproposedmethodoutperforms standard benchmarks, and leads to improvements in forecasting accuracy
across all horizons.
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1. Introduction

Accurate and robust forecasts of inbound calls volumes as ameasure
of service demand is of primary importance to managing call centers
effectively and efficiently, be it for scheduling agents efficiently in 15‐
or 30-min intervals during the day or within a week, or determining
the quantity, and timing of hiring and training (Aksin, Armony, &
Mehrotra, 2007; Gans, Koole, & Mandelbaum, 2003). Call centers
employ millions of individuals around the world accounting for N70%
of all customer-business interactions (Brown et al., 2005). With
60–80% of a call center's operating budget comprising of human re-
source costs (Aksin et al., 2007) the accurate forecasting of inbound
calls, even those corresponding to a single product or service such as a
medical emergency hotline, can have substantial socio-economic
implications.

Time series forecasting research has recently focused on developing
rather sophisticatedmethods for forecasting inbound call arrivals. How-
ever there has been overwhelming evidence (Ibrahim & L'ecuyer, 2013;
Tandberg, Easom, & Qualls, 1995; Taylor, 2008a, 2010) that such
methods are outperformed by the simple Seasonal Moving Average
(SMA) method particularly at longer forecast horizons where capacity
planning decisions are made. Despite its attractiveness, the perfor-
mance of the SMA method has not been systematically evaluated, nor
have extensions been investigated. This study evaluates the
ership, Faculty of Business and
FB, UK.
performance of the SMA method systematically varying the number of
seasonal periods included in the average to assess its impact on fore-
casting accuracy across different data frequencies of 5 min, half-hourly
and hourly recorded call arrivals. The SMAmethod is compared to ‘sim-
ple’ and advanced benchmarks including seasonal ARIMA and the dou-
ble seasonal Holt-Winters exponential smoothing method of Taylor
(2003) forecasting 5 min to two weeks ahead.

A new hybrid forecasting method is proposed which combines the
strengths of the simple SMA method, capable of robustly capturing
the intraday and intraweek seasonal pattern in intraday call arrivals,
and the data driven nonlinear capabilities of ANNs in modelling poten-
tial nonlinear and nonparametric features of the residuals (Zhang,
Patuwo, & Hu, 1998). Such an approach would allow call center man-
agers the ability to observe both the short‐ and long-term trends in
call arrivals in a single forecast, and facilitate easier use of judgmental
adjustments in that it separates out the seasonal weekly and daily fluc-
tuations from the rest of the series highlighting its main components.

Both linear autoregressive (AR) and nonlinear ANNs are evaluated as
in practice it is often difficult to determine whether a series is generated
from a linear or nonlinear process, and/or whether any one method will
produce better forecasts than the other. This is especially true for the
case of the three Banks considered in this study, whose service demand
are likely affected by both structural and behavioral changes in response
to financial and economic stimuli. Data on inbound service demand is ob-
tained from call centers of a US bank (Weinberg, Brown, & Stroud, 2007.),
a UK bank (Taylor, 2008a), and a bank in Israeli (Mandelbaum, Sakov, &
Zeltyn, 2000). These represent 5 min, half-hourly, and hourly observa-
tions of call arrivals respectively and facilitate evaluation of performance
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across increasing sampling frequency. These three series have a signifi-
cant impact on the cost of operations of these call centers, representing
a major aspect of inbound call traffic and affecting capacity planning
and scheduling decisions. It is hypothesized that by using ANNs, complex
autocorrelation structures in the data may be modelled more accurately.

The rest of the paper is organized as follows. In Section 2, a review of
the literature on univariate forecasting for intraday arrivals is per-
formed. This is followed in Section 3, by a discussion of the Seasonal
Moving Average method and development of the proposed hybrid
approach. Section 4 provides a description of the intraday call arrival
datasets followed by Section 5which describes the experimental design
and benchmarks method. Section 6 presents the results and findings,
while Section 7 discusses briefly the implications of practice. Finally,
Section 8 presents a summary and concluding remarks.

2. Univariate methods for forecasting intraday arrivals

The lack of research into time series forecasting methods for call
centers first observed by Fildes and Kumar (2002), and detailed by
Gans et al. (2003) and Mandelbaum (2006), has led to a recent surge
in this area of research. The first empirical evaluation of univariate
time series methods for call center arrivals by Taylor (2008a) evaluated
several models not previously used for call center forecasting, including
the double seasonal Holt-Winters exponential smoothingmethod and a
multiplicative double seasonal ARMA model (Taylor, 2003). These
methods were introduced specifically to model the double seasonal
pattern inherent in intraday call arrival data1 (see Fig. 2). Since then,
several advanced time series methods have been developed for model-
ling time series containing such features. These include numerous
developments in exponential smoothing (see, for example, Taylor,
2003, 2008b, 2010, 2012; Taylor & Snyder, 2012), ARIMA modelling
(see, for example, Antipov&Meade, 2002; Taylor, 2008a), regression in-
cluding dynamic harmonic (Tych, Pedregal, Young, & Davies, 2002) and
discount weighted regression (Taylor, 2010), singular vector decompo-
sition (see, for example, Shen, 2009; Shen &Huang, 2005, 2008a,b), and
the use of Gaussian linear mixed-effects models (Aldor-Noiman, Feigin,
& Mandelbaum, 2009; Ibrahim & L'ecuyer, 2013).

Despite the focus on more sophisticated methods of forecasting, the
findings of Taylor (2008a) suggest that “to use more advanced methods
may not be the solution”. The study found that for lead times up to about
three days ahead, the double seasonal Holt-Winters and the double sea-
sonal ARIMA methods performed well, but beyond short lead times and
across all lead times simultaneously, the SMA method with weekly sea-
sonality was best. While SMA with weekly seasonality did not produce
the best accuracy in Taylor (2010), primarily because of poor perfor-
mance at short lead times, it was observed to be the best performing
method beyond four days ahead forecasting. Early evidence from
Tandberg et al. (1995) in producing forecasts of hourly calls to a regional
poison center inNewMexico also found that the SMAmethod performed
well, outperforming Seasonal ARIMA. Further evidence outside of time
series methods research was given by Ibrahim and L'Ecuyer (2013)
who observed that at relatively long forecasting lead times, the SMA
method outperformed a number of statistical models which included,
fixed-effects, mixed-effects and bivariate mixed-effects models.

It is therefore surprising that extensions of the Seasonal Moving
Average method have not been considered, despite previous findings
of residual autocorrelation when fitted to intraday arrivals, a clear indi-
cation that further improvements are possible (Brown et al., 2005;
Taylor, 2008a). Additionally the method has not been systematically
evaluated. This is remarkable given its preferred use in practice over
1 Intraday call arrivals exhibit double seasonality and are a subclass of a more general
class of time series containing multiple seasonal cycles each of different lengths The term
‘cycle’ is used to denote any periodically repeating pattern (with variation) in contrast to
an economic cycle that has no fixed length (Gould et al., 2008).
more advanced methods which are difficult to implement, communi-
cate to middle and top management, and which lack transparency.
This study assesses the impact of the number of seasonal periods includ-
ed in calculating the seasonal moving average to better understand the
properties of this simple forecasting method. It also proposes a hybrid
decomposition approach which in the first step models and forecasts
the original series using the SMA method, and in the second step,
models and forecasts the residuals of the SMA method using a linear
or nonlinear model. The forecasts of the original and residual series
are then combined to produce the final forecast. In estimating the non-
linear AR model we consider ANNs as they have shown promise in
modelling data containing similar features of intraday and intraweek
seasonality (Temraz, Salama, & Chikhani, 1997; Willis &
Northcotegreen, 1983). They are flexible not requiring the pre-
specification of a particular model form and have been successfully
employed in numerous forecasting applications (Adya & Collopy,
1998; Hamid & Iqbal, 2004; Zhang et al., 1998). They have however
yieldedmixed results whenmodelling intraday call arrivals (see, for ex-
ample, Taylor & Snyder, 2012; Pacheco, Millan-Ruiz, & Velez, 2009;
Millan-Ruiz, Pacheco, Hidalgo, & Velez, 2010), and selecting a single
ANN can be difficult owing to the large number of factors which affect-
ing network performance (Zhang & Berardi, 2001). Given the strengths
and weaknesses in both approaches, a hybrid approach seems appeal-
ing, and may be an effective strategy in practice.

3. Extending the seasonal moving average: A hybrid approach

Themost notable paper involving a hybrid approach based on ANNs
is by Zhang (2003), combining ARIMA and ANNmodels, with improved
results over bothmodels when used separately. The proposed approach
differs in that it is combines the SMA method and ANNs, and is driven
by the underlying properties observed in intraday call arrival time series
data. It is inspired by research in time series decomposition (Makridakis,
Wheelwright, & Hyndman, 2008). In particular decomposition is useful
in analyzing underlying latent components of a time series which may
have meaningful interpretations (West, 1997) and whose isolation
and subsequent independent modelling may enhance forecasting
performance by eliminating variability in sub-series. Theodosiou
(2011) for example find improvements in forecasting accuracy from
the application of the well-known STL decomposition (Cleveland,
Cleveland, McRae, & Terpenning, 1990). This is analogous to temporal
aggregation and disaggregation which in practice aids the identification
of series characteristics across different temporal frequencies as illus-
trated by Petropoulos and Kourentzes (2014). Hybrid approaches can
be similarly used to exploit the benefits of decomposition and combina-
tion to improve forecasting accuracy (Timmermann, 2006).

Using this hybrid approach, a time series can be viewed as consisting
of both a linear and nonlinear component as follows:

yt ¼ Lt þ Nt ð1Þ

where Lt denotes the linear component and Nt, the nonlinear compo-
nent. In the first step, the SMA method is applied to estimate and fore-
cast the linear component containing the intraday and intraweek
seasonal patterns. The h-step-ahead forecast using the SMA method is
calculated as:

ytþh ¼ 1
k

Xk
i¼1

ytþh−sk ð2Þ

where k is the number of seasonal periods considered in the calculation
of the moving average, s is the length of the seasonal cycle and h the
forecast horizon. In this study, different values of k are evaluated to de-
termine its impact of forecasting accuracy. The value of s representing
either daily or weekly seasonality is chosen to minimize the mean
squared error over the training set. For the chosen arrival series, this



Fig. 1.Autocorrelation [left] andpartial-autocorrelation [right] plot of one-step-ahead forecast errors the 5‐period seasonal average on theUKbank [top], Israeli bank [middle] andUSbank
[bottom] datasets.
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selection was easily verifiable by observing that both the UK and US
series exhibit intraweek seasonal patterns and consequently capturing
only daily seasonality was insufficient to model both weekdays and
weekends which differ substantially. In contrast for the Israeli series,
which excludes weekends, better results were obtained using a daily
seasonal cycle. Using this method, the forecast for each lead time is
given as the average of call arrivals for the same period of the day or
week as the period to be predicted. For example, with 10 weeks
(days), the forecastswill be the number of calls arriving for the samepe-
riod of the week (day) as the period to be predicted, averaged across all
previous 10 weeks (days). For hourly data this means that we average
the 10 call arrival volumes for the same hourly period corresponding
to the previous 10 weeks.

The SMAmethod is used to produceLt the one-step ahead forecasted
value for time t. In the second step these forecast values are used to cal-
culate one-step-ahead in-sample forecast errors (residuals) of the SMA
method. The residual series et is given by:

et ¼ yt−Lt ð3Þ

These residuals generally contain some remaining autocorrelation
(Gardner, 1985; Taylor, 2003), evidenced in the residuals of a fitted 5
period SMA shown in Fig. 1. It can be observed that for all three series,
the one-step-ahead errors produced tend to go in runs having the
same sign, indicating in all cases quite large and positive first-order au-
tocorrelation. This indicates that the forecasts produced by the SMA
method are clearly not optimal, and can be further improved. Addition-
ally, all residuals are tested for any nonlinearities using the BDS Test2 for
nonlinearity (Broock, Scheinkman, Dechert, & LeBaron, 1996). The BDS
test is used to test for remaining linear dependence and the presence
of omitted nonlinear structures in the residuals. For the UK, US and
Israeli Bank series, p-value b0.000 are obtained for residuals of the 5 pe-
riod SMA method indicating the presence of possible nonlinear struc-
ture in the data. A major advantage of the BDS test is that it requires
no distributional assumption on the time series data.
2 The BDS test measures the frequency with which temporal patterns are repeated in a
time series counting the number of observations within a specified distance є. The BDS
Test statistic measures the closeness of the points with the probability of independent
and identical distribution (i.i.d) of the residuals dependent on є and number of past obser-
vations. Where the null hypothesis of independent and identical distributions (i.i.d) is
rejected, the fitted linearmodel is deemedmisspecified, and provides evidence of nonlin-
earity. The BDS Test is implemented using the R Software and the fNonlinear packagewith
є set to 0.5, 1, 1.5 and 2 standard deviations of the data set and embedding dimensions 1 to
5.
To correct for the autocorrelation observed in the data, and to inves-
tigate whether there are any benefits of applying a nonlinear approach
over a linear approach in step 2, both a linear autoregressive model of
order p, AR(p), and a Multilayer Perceptron (MLP) neural network of
the form NAR(p) are evaluated in modelling the residuals. Details of
both models and their setup are provided in Appendix A. In either
case, the model for the residuals is of the form:

et ¼ f et−1;et−2;;…; et−p
� �þ εt ð4Þ

where f is a linear or nonlinear function, and εt is the random error. Fi-
nally, the decomposed forecasts of the SMAmethod and that of the re-
siduals are summed to obtain the final combined forecast as follows:

yt ¼ Lt þ Nt ð5Þ

where Nt is the forecast of the possibly nonlinear SMA residual compo-
nent. While it may be more efficient to estimate all parameters for this
method in a single stage (Chatfield, 1985), a two-stage estimation
approach is adopted to maintain simplicity, in terms of calculation and
optimization of model parameters, and transparency of the method to
enhance decision making and the use of judgment.

4. Call center arrivals data

Three time series of intraday call arrivals known to exhibit complex
seasonal patterns are considered. Such series tend to have a daily sea-
sonal pattern or intraday cycle, a weekly seasonal pattern or intraweek
cycle, andwheremultiple years of observations are available, an annual
seasonal pattern. A plot of all three series is shown in Fig. 2. The first
(from the bottom up) consists of hourly data corresponding to regular
calls from 1 August to 25 December inclusive, taken from a small call
center at one of Israel's banks (Mandelbaumet al., 2000). The call center
operates 18 h per day from6A.M. to 12 P.M. and is open5 days perweek
(see Table 1). Fig. 1[bottom] presents the final four weeks of the series,
which shows no apparent trend, and illustrates an intraday seasonal
cycle containing s1 = 18 periods, and a possible intraweek seasonal
cycle of s2 = 5 × 18 = 90 periods excluding Saturdays, and including
holidays. The first 14 weeks of the series are used for method estima-
tion, while the remaining seven weeks are used for out-of-sample fore-
cast evaluation.

The second series consists of half-hourly arrivals at the call center of
amajor retail bank in theUnitedKingdom (Taylor, 2008a). This call cen-
ter operates 7 days per week and is open 16 h (32 half-hours) per day

Image of Fig. 1


Fig. 2. Intraday call arrival time series for the US bank [top], UK bank [middle] and Israeli
bank [bottom].
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(see Table 1). The final four weeks of the series is shown in Fig. 2
[middle].The series exhibits no apparent trend, but contains both an
intraday seasonal cycle, s1= 32, and also a repeating intraweek season-
al cycle, s2 = 7 × 32= 224 periods. The entire time series of 36 weeks,
from 3 January 2004 to 10 September 2004 both days included is con-
sidered. The first 24 weeks of data were used to estimate various
model parameters, while the remaining 12 weeks provide the holdout
for the post-sample forecast evaluation.

The final dataset comes from a large North American commercial
bank, and consists of 10,140 observations of 5-min interval call arrivals
into a retail bank for the first 12 weeks (excluding weekends) starting
from 3 March 2003 to 28 May 2003 inclusive (De Livera, Hyndman, &
Snyder, 2011; Weinberg et al., 2007). The call center opens 5 days per
week and operates from 7 A.M. to 9.05 P.M approximately 14 h and
5 min (or 169 5-min intervals). Fig. 2 [Top] shows the final four weeks
of the call arrival series which contains both an intraday seasonal
cycle s1 = 169 periods, and an intraweek seasonal cycle of s2 =
5 × 169 = 845 periods. The first 7605 observations or 9 weeks are
used to estimate model parameters, and the remaining 2535 observa-
tions or 3 weeks, for post-sample forecast evaluation. Table 1 summa-
rizes the number of 5-min intervals, half-hours and hours in the
estimation and evaluation sample for all series. It should be noted that
the size of the in- and out-of-sample datasets were selected to remain
consistent with prior studies. In the case of the UK and Israeli Bank
series a setup similar to that of Taylor (2008a) is used, while for the
US Bank series the setup of De Livera et al. (2011) is adopted.

5. Preprocessing, parameter estimation and evaluation

5.1. Data preprocessing

All time series are modelled without prior smoothing of bank
holidays or other “special days”. This approach was deemed reasonable
as in practice, univariate methods are often required to produce robust
baseline forecasts in the presence of such days. It is then expected that
experts, if required, will overlay their experience and knowledge of
the demand series in accounting for the impact of such special days
Table 1
Summary and description of the call arrivals for the Israeli and UK Bank Call Center.

Days
opened
per week

Opening
hours

Recorded
interval

Size of
estimation
sample

Size of
evaluation
sample

Israeli Bank 5 6 A.M. −12 P.M. Hourly 1260 630
UK Bank 7 7 A.M. −11 P.M. Half-hourly 5376 2688
US Bank 5 7 A.M.−9:05 P.M. 5-min 7605 2535
such as bank holidays. Other studies in modelling arrival series have
applied a logarithmic transformation prior to model estimation in
order to reduce the impact of heteroscedasticity (Brown et al., 2005;
Taylor, 2008a). The impact of this transformation is assessed for both
theUKandUS series. If it resulted in the lowest in-samplemean squared
error the transformation was applied, otherwise the series was
modelled in its original form. For the Israeli Bank data, it was not possi-
ble to apply the log transformation due to periodswith no (zero) call ar-
rivals. Instead for this series a square root transformation used in the
study by Taylor (2008a) and Brown et al. (2005) was used to reduce
heteroscedasticity.

5.2. Model estimation

5.2.1. The seasonal moving average
The length of the seasonal moving average is assessed to determine

its impact on forecasting accuracy. For the UK and Israeli bank series k
the length of themoving average is set to 5, 10 and 15 periods with sea-
sonality s equal to 224 and 18 tomodel weekly and daily seasonality, re-
spectively. Finally, for the US Bank data averages of lengths 2 and 5 are
considered due to the limited data available. For this series seasonality s
is set to 845 representing weekly seasonality. For the UK and US series,
the choice of seasonal cyclewas consistentwith the properties of the ar-
rivals series, both of which exhibited evidence of an intraweek seasonal
cycle. For the Israeli series, which excluded weekends, better results
were obtained using a daily seasonal cycle.

5.2.2. The multilayer perceptron
Themost commonly applied artificial neural network, theMultilayer

Perceptron (MLP), a feedforward artificial neural network is used in the
study. A single MLP architecture is used to forecast all time series, using
two hidden nodes and a single output node with an identity function
producingmultistep forecasts recursively through one-step-ahead fore-
casts. In selecting the network inputs for modelling the residuals of the
SMAmethod in the hybrid approach, a stepwise regression is used hav-
ingmaximumorder of 5 considering themaximumorder of the AR term
in the seasonal ARIMA. In modelling the original series using only the
MLP, a mixed approach is adopted based on stepwise selection which
has proven a suitable contender for high-frequency time series (Crone
& Kourentzes, 2010). For each series, the input lagswith the highest sta-
tistical significance are identified using partial autocorrelation analysis.
This reduced subset of selected lags is then used as input to a stepwise
regression to select the final set of inputs for the network, in effect
pre-filtering the search space. Each time series is modelled directly
without prior differencing. Inputs were linearly scaled into the interval
of [−0.5, 0.5] to allow headroom for possible non-stationarity prior to
training. The training algorithm used is the standard backpropagation
algorithm, minimizing the mean square error up to a maximum of
1000 epochs. The algorithm requires setting a learning rate η=0.02
and momentum parameter μ=0.7. As neural network training
performed in this manner is subject to the local minima problem,
where the nonlinear optimisation gets trapped in the local minimum
of the error surface potentially resulting in poor quality results, training
is initialised several times with different random starting weights and
biases to explore the error surface more fully. The best training
initialisation is retained as the final model having the lowest in-
sample mean squared error. While neural network model averaging is
generally advocated in preference to model selection (Kourentzes,
Barrow, & Crone, 2014), there was no clear distinction between the
results of model averaging and model selection. The good performance
of model selection on the select call arrival series has been attributed to
the large sample size available for training such series (due to the high
frequency nature of the data) and the reduced degrees of freedom
(from fewer required lagged inputs) as a result of prior removal of
daily andweekly seasonal effects – anadvantage of the proposedHybrid

Image of Fig. 2


Table 3
Smoothing parameters of the fitted exponential smoothing methods for each of the three
call arrivals series.

α γ δ ω ϕ

Standard Holt-Winters
Israeli Bank (s = 18) 0.266 0.272 − − −
UK Bank (s = 224) 0.000 0.166 − − −
US Bank (s = 845) 0.201 0.101 − − −
Double Holt-Winters
Israeli Bank (s = 18) 0.032 0.002 0.023 0.304 0.383
UK Bank(s = 224) 0.023 0.000 0.074 0.291 0.680
US Bank(s = 845) 0.119 0.000 0.046 0.201 0.277
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method. Additionally due to its relative simplicity we report results
based on model selection.

5.2.3. Multiplicative seasonal ARIMA
In addition to the methods previously described three benchmarks

are evaluated. The first is the multiplicative seasonal ARIMA which has
appeared in many studies, and is particularly good at short-term
forecasting. Bianchi, Jarrett, and Hanumara (1998) for example found
in their study that ARIMA modelling outperformed both additive and
multiplicative versions of Holt-Winters exponential smoothing. The
model is often written in short form as ARIMA(p,d,q)×(P,D,Q)s where
p, q and P, Q, are the orders of the autoregressive and moving average
terms of the non-seasonal and seasonal components respectively, and
d, D are the orders of differencing (Dalrymple, 1978). An ARIMA
model is fitted for all three series using the estimation sample in
Table 1. In estimating the seasonal ARIMA model, the seasonal length
producing the lowest in-sample forecast error according to mean abso-
lute error (MAE) is selected. This simple selection easily discriminates
between daily and weekly seasonality given the large difference in per-
formance between the two seasonal cycles. Parameters of the model
were estimated using maximum likelihood based on the standard as-
sumption of Gaussian distributed errors. The final model was selected
using the Akaike information criteria (AIC). The orders of the ARIMA
model selected for each series are given in Table 2.

5.2.4. Holt-Winters exponential smoothing
Forecastswere produced using twoHolt-Wintersmethods, the stan-

dard Holt-Winters for multiplicative seasonality, and the double sea-
sonal Holt-Winters method or in short, Double Holt-Winters. In order
to estimate the smoothing parameters α (level), γ (trend), δ (seasonal
period s1),ω (seasonal period s2) andϕ (AR adjustment) for all three se-
ries, the estimating the procedure of Taylor (2003) is used which mini-
mizes the sum of squared errors on the estimation sample, in a single
procedure. This is achieved through the implementation provided in
the forecast package for R (Hyndman, 2010).

For the standard Holt-Winters method capable of modelling only
single seasonality the same procedure previously described is used
selecting for each time series, the seasonal length, s, representing daily
or weekly seasonality, as the one with the lowest in-sample MAE. The
final model chosen was then either the Holt-Winters for daily seasonal-
ity or Holt-Winters weekly seasonality. For initializing the smoothed
parameters for the level, trend and seasonal components in the stan-
dard Holt-Winters method, the simple average of the first two weeks
of observations is used as a heuristic (Hyndman, Koehler, Snyder, &
Grose, 2002). This is to reduce the impact of known over-
parameterization issues when optimizing exponential smoothing for
high‐frequency double seasonal call arrival series including the poten-
tially large optimization problem from the increased number of initial
seasonal values to be estimated (De Livera et al., 2011). The estimated
parameters for each of the three call arrivals series for the standard,
and double seasonal version of Holt-Winters are shown in Table 3.

5.3. Forecast evaluation

The mean absolute error (MAE) and the symmetric mean absolute
percentage error (SMAPE) are used as measures of out-of-sample fore-
cast accuracy. The MAE is used as it allows the direct comparison of
Table 2
Orders of thefittedARIMA(p,d,q)×(P,D,Q)smodels for eachof the three call arrivals series.

p d q P D Q s

Israeli Bank 2 0 0 2 1 2 18
UK Bank 2 1 1 2 1 0 224
US Bank 1 0 2 0 1 0 845
forecasting accuracy and the estimation of improvements in accuracy
while SMAPE is a scale independent measure which facilitates the
reporting of average performance across time series. SMAPE is also
selected to facilitate comparison with prior studies such as Taylor
(2008a) who use MAPE. SMAPE is preferred to MAPE being more sym-
metric in that it gives more equal weighting to positive and negative
errors (Armstrong & Collopy, 1992). For the UK, US and Israeli Bank se-
ries, the holdout out-of-sample evaluation period is set to 12 weeks,
3 weeks and 7 weeks respectively, being the most recent observations.
For the UK Bank series, the forecast lead time is set to one half-hour
ahead up to 14 days ahead (or 448 half-hours). A rolling origin forecast
evaluation is performed (withoutmodel re-estimation) producing trace
forecasts for each lead time, from each observation in the out-of-sample
period. For the UK Bank series this yields 2240 half-hour time origins for
a total of 1,003,520 forecasts. For the US Bank series, the average error is
calculated across lead times from 5min to one day ahead yielding 1690
multiple-step-ahead out of sample predictions across multiple time or-
igins and a total of 1,428,050 forecasts. Finally for the Israeli Bank series
forecasts are produced from 1 h ahead up to 2 weeks ahead generating
forecasts from 450 hourly time origins to create 81,000 forecasts. This
yields a large set of forecasts, and forecast error measurements for
each method, and for each horizon, and hence a more reliable and ro-
bust estimation of the empirical distribution of errors for different hori-
zons (Tashman, 2000). In addition, the Giacomini and White
Conditional (GW) testwith the null hypothesis of equal forecast accura-
cy is used to compare the forecast accuracy of competing methods in a
multiple pairwise comparison (Giacomini & White, 2006) of the select
best SMA, hybrid and benchmark methods. For each time series and
pair of methods the out-of-sample forecast errors for the relevant h-
step-ahead forecasts is compared to assess performance at the longest
horizon. The Giacomini and White Conditional Test directly accounts
for the effects of estimation uncertainty on forecast performance in con-
trast to unconditional tests such as the Diebold Mariano Test which do
not take into account differing model complexities (Giacomini &
White, 2006). It is also chosen over theDieboldMariano Test as it allows
a unified treatment of both nested (e.g. SMA methods of different
lengths) and non-nested models (SARIMA and MLP). Results of the
GW test together with the large number of out-of-sample errors gener-
ated using rolling origin forecasting are deemed sufficient to ensure
valid and reliable results (albeit only for the assessed datasets).
6. Experimental results

6.1. Overall forecasting accuracy

Table 4 summarizes the SMAPE and MAE for the UK, Israeli and US
Bank series presented as averages across lengths of averages for the
SMA and hybrid forecasting methods, SMA with MLP (SMAMLP), and
SMA with AR (SMAAR). Each column summarizes the lead times for a
given series in terms of short, medium and long lead horizons. For the
UK series the short horizon represents 1–5 days ahead,mediumhorizon
6–10 days ahead, and long horizon 11–14 days ahead. Each column is



Table 4
Mean SMAPE and MAE for the UK, Israeli and US bank series.

Forecast horizon UK Bank Israeli Bank US Bank

Short Medium Long All Short Medium Long All Short Medium Long All

SMAPE
SMA 9.34% 9.47% 9.31% 9.38% 23.92% 23.70% 24.23% 23.95% 9.01% 8.99% 8.93% 8.98%
SMAMLP 9.65% 9.97% 9.68% 9.77% 24.62% 23.91% 24.63% 24.41% 8.28% 8.64% 8.89% 8.64%
SMAAR 9.35% 9.52% 9.62% 9.49% 27.44% 28.16% 28.72% 28.04% 9.24% 9.22% 9.17% 9.21%

MAE
SMA 102.18 103.89 100.82 102.40 11.73 11.55 11.91 11.73 15.36 15.22 15.11 15.21
SMAMLP 101.40 105.64 101.65 102.99 11.64 11.62 12.01 11.74 13.82 14.69 15.10 14.65
SMAAR 98.59 103.04 104.23 101.79 13.01 13.30 13.56 13.26 15.58 15.47 15.38 15.46

Note: Forecast errors in boldface indicate the best performing method at each time horizon.
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the average of half-hourly forecast errors corresponding to the
respective horizon. For example, the column heading “Short” contains
the average of the MAE for lead times of 1 half-hour to 5 days ahead
(i.e. 160 half-hour periods ahead). The final column provides the
average MAE across all lead times, that is, 14 days ahead. For the
Israeli series short horizon represents 1–4 days ahead, medium horizon
5–7 days ahead, and long horizon 8–10 days ahead, each column being
the average of hourly forecast errors corresponding to the respective
horizon. The column heading “Short” therefore contains the average of
the MAE for lead times of 1 h to 4 days ahead or equivalently 1–72 h
ahead. The final column provides the average MAE across all
lead times up to 10 days ahead. Finally for the US series the column
heading “Short” contains the average of the MAE for lead times
of 5 min to 2 h 35 min ahead indicating short horizon, medium
representing 2 h 40 min to 10 h ahead, and long horizon representing
10 h 5 min ahead to 14 h ahead. The final column provides the average
MAE up to 1 day ahead. Values in bold indicate the best-performing
method for each horizon averaged across seasonal lengths 2, 5, 10
and 15.

Results indicate that on average the SMA method outperforms the
hybrid approach on the Israeli Bank series while for the US Bank series,
the hybrid SMAMLP has best accuracy. For the UK Bank series results are
somewhat inconsistent with SMAPE ranking SMA as best while MAE
suggests that the hybrid SMAAR method provides best results. These
results suggest that for the UK and Israeli series, the SMA method is
somewhat robust to the length of the seasonal moving average, while
for the US Bank series where lengths 2 and 5 are considered, using the
MLP outperforms bothmethods particularly at short horizons. These re-
sults while providing a good summary, are somewhat inconsistent and
suggest the need to drill further to consider the impact of the moving
average length on accuracy of both approaches.
Table 5
Mean MAE for the UK, Israeli and US bank series.

Forecast horizon UK Bank Israeli Bank

Short Medium Long All Short

SMA
Length 2 – – – – –
Length 5 100.81 103.47 101.49 101.95 12.49
Length 10 102.84 104.35 100.89 102.82 11.19
Length 15 102.88 103.86 100.07 102.43 11.53

SMAMLP

Length 2 – – – – –
Length 5 98.00 103.28 101.18 100.80 12.41
Length 10 102.34 106.39 101.57 103.56 11.14
Length 15 103.86 107.24 102.21 104.60 11.37

SMAAR

Length 2 – – – – –
Length 5 97.56 102.95 104.92 101.59 13.85
Length 10 99.04 103.18 104.10 101.96 12.97
Length 15 99.18 103.00 103.68 101.83 12.21

Note: For each SMAmethod, the seasonal lengthwith the lowest forecast error at each forecast h
forecast horizon is underlined.
6.2. Impact of the length of the seasonal average

The impact of the length of the seasonalmoving average is evaluated
for both the SMAmethod and the proposed hybridmethods, and results
presented in Table 5 using theMAE to directly measure the accuracy on
each time series. Values in bold highlight for each method the best
choice of moving average length. For example, the best accuracy using
SMAat short horizons on theUKBank series is achieved using a seasonal
moving average of length 5 giving an MAE of 100.81. Values marked in
bold and underline highlight for each series and forecast horizon, the
best performingmethod overall. Themethod having the lowest forecast
error on the UK series at short horizons is therefore the hybrid SMAAR of
length 5 (MAE = 97.56).

Results shown in the final columns of Table 5 labeled “All” show that
the best method across all lead times together is the hybrid SMA with
MLP Adjustment which for each series records the best accuracy (UK
MAE=100.80; IsraeliMAE=11.47; USMAE=14.50). TheMLP adjust-
ment provides across all lead times, an improvement over using the
SMA only forecast and is always more accurate than the hybrid
SMAAR. This is subject to the right choice of k, the length of the average.
Results on the UK and Israeli Bank series suggest that longer averages
tend to perform better at longer horizons with the length 15 average
ranking best at long horizons for all methods except the SMAMLP. Simi-
larly at short tomediumhorizons, shorter averages containingmore re-
cent information tend to have the best accuracy. This makes intuitive
sense as at shorter lead-times a shorter averagewill give greater impor-
tance to more recent and up to date changes in inbound call demand,
while the further out the forecast, the more long term historic trends
in demand become important.

Results also suggest that the best length SMA in terms of accuracy
does not always produce the hybrid forecast having the best accuracy.
US Bank

Medium Long All Short Medium Long All

– – – 15.18 15.15 15.17 15.16
11.97 12.71 12.40 15.54 15.28 15.05 15.26
11.34 11.77 11.41 – – – –
11.36 11.26 11.40 – – – –

– – – 14.33 14.82 15.04 14.79
12.04 12.82 12.42 13.31 14.56 15.17 14.50
11.41 11.87 11.44 – – – –
11.40 11.34 11.37 – – – –

– – – 15.43 15.31 15.26 15.32
13.74 14.31 13.96 15.73 15.63 15.50 15.61
13.57 13.81 13.40 – – – –
12.59 12.55 12.42 – – – –

orizon is highlighted in boldface. Themethodwith the lowest forecast error overall at each
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For example on the US Bank series, the SMA length 5 has best accuracy
at longhorizons (MAE=15.05),while at the same horizon the choice of
moving average of length 2 produces best results for the SMAMLP

(MAE=15.04) and SMAAR (MAE=15.26)methods.When considering
average performance across all horizons, rankings of the SMA and
hybrid methods are however more consistent suggesting that the best
choice of SMAwill lead to the best performing hybrid approach overall.

While in-sample results are not reported here, it is also observed
that in- and out-of-sample errors of the SMA and hybrid methods are
rather consistent, meaning that the length of the SMA with the lowest
error on the in-sample training data also on average has the lowest
out-of-sample forecast error. This finding is useful for method selection,
as improvements in forecasting accuracy from the appropriate selection
of the length of the moving average ranges from 1% to 4% for the UK
Bank series, 4% to 8% for the Israeli Bank series, and 0% to 2% for the
US Bank series. At shorter horizons the gains in the hybrid method
over the SMA is even greater. This is further illustrated in the next sec-
tion which compares the performance of the best SMA and hybrid
methods.

6.3. Seasonal moving average versus the hybrid method

Having evaluated the impact of the length of the seasonal moving av-
erage, the best performing SMA and hybrid methods are compared for
each time series. The best SMA and hybrid method is selected in-sample
minimizing the MAE. Results are shown in Fig. 3 for the SMA, SMAAR

andSMAMLPmethods for all three banks. For theUKBank series the length
of moving average with best in- and out-of-sample performance is 5, and
the methods are denoted SMA(5)MLP and SMA(5)AR for the MLP and AR
hybrid forecasts, respectively. The hybrid approach with MLP and AR ad-
justment are especially effective at improving the short-term forecasting
accuracy of the SMA method (see Fig. 3 [left]), without diminishing
long-term accuracy. Forecasting one day ahead, a 5% reduction is noted
over the SMA method when using SMAMLP while across all horizons,
SMAMLP and SMAAR are never worse than the SMA method.

Fig. 3 [middle] which shows for the Israeli Bank series the improve-
ments over the SMA method from implementing the AR and MLP
adjustments, show that the SMAMLP forecast is always better, or just as
good as the original SMA forecast, while the AR adjusted SMAAR forecast
is significantly worse beyond horizons of 2 h ahead. This degradation in
performance in possibly due to the residuals of the Israeli series which
relative to the US and UK Bank series are less well behaved (see Fig.
1). The AR model suffers more as it is unable to respond to these
unexplained variations in the residual series resulting in a poorly
estimated model. In contrast the MLP model given its flexibility for
modelling such structures, does not suffer from similar degradation in
performance.

For the case of the US Bank data it can be observed that the MLP ad-
justment provides a significant improvement over the SMA method at
lead times of 5 min to approximately 12 h ahead while at lead times
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Fig. 3.Mean MAE for the UK (left), Israeli ([middle) and US (right) bank series.
Note: The pairwise differences in forecast errors at the longest horizon for all methods and for
Giacomini and White Conditional (GW) test of predictability (Giacomini & White, 2006).
of 12 to 14 h the SMAmethod is best. This results in an overall reduction
inMAE of 5% from using the hybrid MLP. In contrast, the AR adjustment
in SMAAR results in an increase in forecast error a lead times beyond
approximately 5 h ahead. Scatterplots of the lagged residuals reveal no
noticeable nonlinearity, however given similar inputs, the MLP perfor-
mance may be explained by its powerful adaptive learning, further en-
hanced by prior smoothing of the SMA method reducing overfitting to
any noise in the data. The performance of SMAAR relative to SMA sug-
gests possible sub-optimality in separately estimating the seasonal
moving average component and application of a linear autoregressive
model. This issue is explored in the next section.
6.4. Benchmark comparisons

In this section, the performance of the best SMA and hybridmethods
are compared to those of standard benchmarks for intraday call arrival
series. Results are shown in Fig. 4. For the case of the US series (see
Fig. 4[right]), observe that up to an hour ahead, HWT exponential
smoothing and MLP are best. However beyond that, the 5 period SMA
method with an MLP adjustment is best (MAE = 14.50). The method
performs well at both short and long lead times indicating benefits of
combining both the SMA method and MLP. The Double Holt-Winters
(DoubleHWT)fitted based on theR Forecast Package is observed to per-
form particularly poorly at lead times beyond 1 h ahead. The model has
been observed in empirical applications to suffer from optimization
problems due to the large number of initial seasonal values to be esti-
mated when the seasonal cycle is large as is the case with the 5-min
US Bank data (De Livera et al., 2011).

The MAE achieved on the UK series (see Fig. 4[left]) are substantially
larger than those of the US bank series which receive amuch smaller vol-
ume of calls. The results are similar to those obtained on the US Bank se-
ries, with the SMAMLPmethod of moving average length 5 outperforming
all methods across all lead times together. The SMA method performs
well in comparison to all methods (length 5, MAE = 101.95) and is
only outperformed by the hybrid approach with MLP (length 5, MAE =
100.80) and by the HWT method (MAE = 101.10).

When compared to the SMA method and its proposed extensions,
SMAMLP and SMAAR, both the single MLP and seasonal ARIMA methods
perform rather poorly across all horizons from short to long. At short
horizons the Double HWT method (MAE = 106.05) performs better
than theMLP and seasonal ARIMA, however beyond four days its perfor-
mance degrades quickly and is outperformed by theMLP. It is also noted
that for the UK series, the fitted HWT model approximates a seasonal
moving average having alpha parameter value of 0.000 and gamma pa-
rameter value of 0.166 as per Table 3. Consequently the behavior of
HWT is similar to that of the SMAmethodwhich for this series has rath-
er robust performance across lead times suggesting the presence of a
strong deterministic seasonal component. Similar resultswere obtained
by Taylor (2008a,b) for the case of the SMA method.
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Finally, for the Israeli Bank series it is observed that the best
performing methods across all lead times considered together is the
SMA(15)MLP hybridmethod, followedby the SMAmethod, and seasonal
ARIMA. The findings for this series are similar in ranking to those of
Taylor (2008a), with the SMA and seasonal ARIMA methods ranking
similarly albeit with higher errors possibly due to not smoothing out
special days and/or the higher frequency (hourly versus half-hourly)
at which the time series is modelled in this study. Although beyond
the scope of this study, this raises interesting questions about the
impact of time series frequency on modelling and forecasting accuracy,
and the impact of temporal aggregation and disaggregation. When
specific lead times are considered, it can be observed that from 1 h
to two days ahead, the seasonal ARIMA model is slightly better than
the SMA method, however beyond that, the SMA(15)MLP method
(MAE = 11.37) outperforms the seasonal ARIMA (MAE = 11.53),
highlighting the strength of this approach at long-term forecasting
(seefigure [left]). Results on all time series suggest thatmodelling intra-
day call arrivals using the hybrid approach with an MLP network
performs well.

7. Implications and practical considerations

Research and practice suggest that the Seasonal Moving Average
methodperformswell relative tomore sophisticatedmethods of forecast-
ing for intraday call arrivals. The findings of thiswork consolidate existing
evidence, and provide new evidence that the SMAmethod performs par-
ticularly well at forecasting intraday call arrivals with the added advan-
tage of being easy to implement. It is observed that the length of the
seasonal moving average chosen is an important determinant of perfor-
mance of the SMA method. At long horizons where long term trends
are important, it is recommended to use a longer seasonal moving aver-
age shown to outperform the shorter average. Similarly at short horizons
a shorter moving average reflecting more recent changes is recommend-
ed. This is an importantfinding for company's currently using thismethod
of forecasting and should assist in identifying the optimal window size of
the SMA method.

Results show that in- and out-of-sample results of the Seasonal
Moving Averagemethod and related hybridmethods are consistent, sug-
gesting that selection of the length of the moving average should be ro-
bust. One approach for doing this is evaluated in this study. The length
of the SMA method is determined by minimizing the in-sample MAE.
For all time series this simple selection approach consistently obtained
best performance in- and out-of-sample.

Using this simple selectionmethod, the hybridmethod combining the
strengths of the SMAmethod and theMLP network is able to consistently
improve upon the SMA at short and long horizons. The proposed ap-
proach using MLP is found to be more robust than the alternative which
fits a linear AR model. Where the arrival data is not well behaved and
the residuals complex, fitting anMLP neural network yields better perfor-
mance than the linear AR model. Using the hybrid approach call center
managers obtain a single forecast which does well both in the short and
long term, and which on average outperforms the SMA and benchmarks
for the dataset considered. Identifying the short and long term seasonal
movements of interest tomanagement also helps to enhance judgmental
adjustments by distinguishing the main sources of variance in the time
series, and providing amore informed, clear and robust baseline forecasts
on which to base judgment (Fildes, Goodwin, Lawrence, & Nikolopoulos,
2009).

8. Summary and concluding remarks

The forecasting of intraday call arrivals exhibitingmultiple seasonality
requires forecasts which perform well both in the short-term in order to
schedule agents effectively, and also in the long-term in order for capacity
planning. Recent developments in forecasting this type of data, have led
to the development of several advanced methods capable of accounting
for intraday and intraweek seasonal patterns. No single time seriesmeth-
od has however emerged that is best across all time series.While seasonal
ARIMA and Double Holt-Winters have been shown to performwell in the
short-term, in the long-term their performance rapidly deteriorates.

This paper provides a systematic evaluation of the Seasonal Moving
Average method considering three real time series of inbound demand
to call center of major banks in the UK, Israel and the US. It provides
insights on selecting the best length for the average and provides an
easy to implement way of doing so. A hybrid method is introduced
which first models the original arrivals series using the Seasonal Moving
Average method, and combines the resulting forecast with the forecast
of the residuals using either a linear autoregressive model, or a nonlinear
MLP neural network. The results show that for the UK and US arrival se-
ries, the proposed method outperformed both the seasonal ARIMA and
Double Holt-Winters methods, across all lead times. For the Israeli Bank
series it outperforms the seasonal ARIMA in the medium to long term.
In nearly all cases the MLP adjustments leads to improvements over the
Seasonal Moving Average method. The gains in forecasting accuracy
turn out to be substantial, in particular for the US and UK series, which
have substantially more observations and are higher volume. Comparing
the approaches across these three time series also ensured a robust eval-
uation across increasing frequencies, from 5min, to half-hourly and hour
observations, producing rather consistent results in the favor of thehybrid
method and the Seasonal Moving Average method.

From a practical perspective, the decomposition of the forecast into a
simple seasonal moving average which constitutes most of the variance
in the series, adds to the ease of implementation with the most complex
requirement being the neural networkmodel for whichwe restricted our
study to standard settings. In addition, for staffing purposes, improve-
ments in forecasting accuracy at short and long lead times and the re-
duced variance in the average forecast error across lead times compared
to other methods as observed in Fig. 4, should improve the robustness
of staff schedules and deliver substantial cost savings. This would suggest
an evaluation of these methods beyond forecasting accuracy as future re-
search. Alternatively this work, together with the findings of Taylor
(2008a) would suggest that there are likely benefits from exploiting the
advantages of simple and advanced approaches through forecast combi-
nation and hybrid methodologies based on time series decomposition.

Image of Fig. 4


6096 D.K. Barrow / Journal of Business Research 69 (2016) 6088–6096
Appendix A. Linear and nonlinear AR model setup

Further details on the setup and definition of the linear AR and
nonlinear AR models are provided in this section. The linear AR(p)
model used to fit the residual series takes the form:

et ¼
Xp
j¼1

λ jet− j þ ϵt ðA:1Þ

where et is an estimated of the residuals et defined in Eq. 2 being the 1-
step-ahead in-sample errors of the seasonal average model, λj is the AR
coefficient of the jth lag, and ϵt~N(0,υ). AnMLP is employed to estimate
nonlinear AR models of the residuals and to produce the valueet , an
estimate of the one-step ahead forecast errors as follows:

et ¼ f X;wð Þ ¼ β0 þ
XH
k¼1

βhg γ0i þ
XI
i¼0

γhipi

 !
þ εt ðA:2Þ

with tdenoting thepoint in time and pi the inputswhich are time lagged
observations of the residual series et. The network parameters are
denoted as weights w=(β,γ) with β=[β1,… ,βH] and γ=γ11,… ,γHI

corresponding to the output and hidden layer respectively, and β0

and γ0i the biases of each neuron. Parameters I=(1,… , Imax) and H=
(1, … ,Hmax) specify the number of input and hidden nodes of the
network architecture with Imax and Hmax the maximum number of
input and hidden nodes respectively, while g(⋅) is a non-linear transfer
function in the hidden layer nodes, conventionally set as either the sig-
moid logistic or the hyperbolic tangent function (Zhang et al., 1998).
The time series is modelled by adjusting network parameters to mini-
mize the mean squared error on the training data.
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