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Abstract

We study the Mean-SemiVariance Project (MSVP) portfolio selection problem, where the objective
is to obtain the optimal risk-reward portfolio of non-divisible projects when the risk is measured
by the semivariance of the portfolio’s Net-Present Value (NPV) and the reward is measured by
the portfolio’s expected NPV. Similar to the well-known mean-variance portfolio selection problem,
when integer variables are present (e.g., due to transaction costs, cardinality constraints, or asset
illiquidity), the MSVP problem can be solved using Mixed-Integer Quadratic Programming (MIQP)
techniques. However, conventional MIQP solvers may be unable to solve large-scale MSVP problem
instances in a reasonable amount of time. In this paper, we propose two linear solution schemes to
solve the MSVP problem; that is, the proposed schemes avoid the use of MIQP solvers and only
require the use of Mixed-Integer Linear Programming (MILP) techniques. In particular, we show
that the solution of a class of real-world MSVP problems, in which project returns are positively
correlated, can be accurately approximated by solving a single MILP problem. In general, we show
that the MSVP problem can be effectively solved by a sequence of MILP problems, which allow
us to solve large-scale MSVP problem instances faster than using MIQP solvers. We illustrate our
solution schemes by solving a real MSVP problem arising in a Latin American oil and gas company.
Also, we solve instances of the MSVP problem that are constructed using data from the PSPLIB
library of project scheduling problems.

Keywords: semivariance; project selection; project portfolio optimization; Benders
decomposition; mean-semivariance; risk; petroleum industry.

1. Introduction

The selection of the best investment projects within a set of alternatives is crucial to any firm
facing competition. Moreover, the ability to build portfolios that efficiently allocate scarce resources
contributes to the achievement of corporate goals in the long run. Typically, a portfolio’s expected
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profit is considered the single most important corporate goal to be maximized; however, it is not the
only one: the fitness of a firm’s portfolio should also involve a measure of the portfolio’s volatility
or risk. For instance, a portfolio with very attractive expected profits might expose the company
to a large loss with high probability, whereas a low-risk portfolio might secure the company lower
but more certain profits. For these reasons, the problem of selecting projects to create an optimal
risk-reward portfolio has been actively considered in the literature [cf., 10, 36, 38].

A keystone economic sector where the problem of selecting an appropriate portfolio of project
investments arises is the upstream oil and gas industry. In this sector, the project investment’s
returns are subject to high uncertainty, mainly driven by factors like geology, equipment costs,
oil selling price, well production levels, and oil quality, among others. In a typical project, the
profit’s probability distribution is usually asymmetrical (skewed), exhibiting a high probability of
low profits and a low probability of high profits [37]. Moreover, given the significant amount of
investment required to carry out a project, managers and investors in this industry have a strong
bias against underperforming portfolios [26, 30, 34, 35], leaning towards downside-risk measures to
quantify the risk of investment [33].

Although different downside-risk measures are available in the literature [cf., 6, 16, 25, 31], in
this paper we focus on the semivariance risk measure. Through this measure, projects with a high
probability of having returns lower than a critical value (e.g., the expected value or any other value
specified by the decision maker) are considered risky. In other words, the semivariance does not
consider values beyond the critical value (i.e., gains) as risk; thus, it is a more appropriate measure
when investors are worried about portfolio underperformance [25].

The semivariance is a widely used measure of risk in the oil and gas industry. For example,
Orman and Duggan [29] propose an optimization routine in which the portfolio’s semistandard
deviation (square root of the semivariance) is minimized, subject to budget constraints and a target
value for the expected Net Present Value (NPV). By varying this target, the authors construct
an efficient frontier. Then, they find the optimal investment level for each project based on a
predetermined set of projects. In a more recent work, Sira [33] uses scatter search to heuristically
approximate an efficient portfolio frontier in the petroleum industry. This approach is used to
determine how much investment must be allocated in a fixed set of projects. After comparing
portfolios that minimize both variance and semivariance of the project portfolio’s return, the author
argues that the latter is preferable as a measure of risk in petroleum projects. Similar to Sira [33], we
consider the problem of finding a portfolio of projects; that is, non-divisible assets with minimum
semivariance, but where the projects to be included in the portfolio, rather than fixed, can be
selected from a set of available investment projects.

To address this problem we first consider the more common portfolio allocation problem where
the portfolio assets are divisible. In his seminal work on risk-reward portfolio selection, Markowitz
[24] proposed the use of the portfolio returns’ variance as a measure of risk, and developed an
optimization problem, together with a solution method, to obtain the portfolio selection that has
minimum risk among those with a required expected return. This problem is now commonly referred
as the Mean-Variance (MV) portfolio selection problem. Similar to the classical MV problem,
Markowitz et al. [25] proposed a quadratic programming formulation for the Mean-SemiVariance
(MSV) portfolio selection problem, which is obtained using a sampling approach to estimate the
problem parameters; that is, an estimation of the asset return distributions is obtained from a
finite number of samples. These samples are typically obtained from historical data, simulations,
or a combination of both. Thus, these portfolio selection problems have the characteristic that
no specific distributional assumption about the asset return distributions is required to be able to
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formulate or solve the corresponding selection problem.
The Mean-SemiVariance Project (MSVP) portfolio selection problem, a MSV problem with non-

divisible assets, can be formulated as a Mixed-Integer Quadratic Programming (MIQP) problem for
which specialized MIQP solvers can be used. However, unlike the MV problem formulation whose
size only depends on the number of assets, the size of the MSVP problem formulation grows with
both the number of non-divisible assets, and the number of samples used to estimate the problem’s
parameters, thus leaving open some concerns regarding scalability and solvability of the MSVP
problem via MIQP solvers. Although existing solution methods for Quadratic Programming (QP)
are quite competitive, the introduction of integer variables significantly increases the complexity
of solving a MIQP problem and limits the size of the problems that can be solved [23]. Similar
challenges have been addressed for MV problems with integer variables (due to, e.g., transaction
costs, cardinality constraints, lot size) by proposing solution approaches that avoid using MIQP
solvers [cf., 21, 2, 15]

To tackle the inherent difficulty in solving the MSVP problem, we propose two linear solution
schemes that avoid the use of QP methods and only require the use of Mixed-Integer Linear Pro-
grammming (MILP) techniques. These approaches are useful alternatives to the MIQP when either
because of problem size, solution time requirements, software requirements, or expertise, it is not
suitable to directly use a MIQP solver. The first scheme is obtained from a natural approximation
of the portfolio’s semivariance that can be reformulated as a MILP problem. This MILP approxi-
mation is (formally) shown to work as an accurate proxy of the MSVP problem when the projects’
NPVs are positively correlated, which is the case in our oil and gas industry problem. Furthermore,
we develop a second linear solution scheme that requires the solution of a series of MILP problems
for general instances of the MSVP problem. This scheme works even in the case of NPVs having
arbitrary correlations (i.e., not all are positively correlated).

The proposed schemes have both practical and computational advantages. They might be more
suitable for practitioners that are well acquainted with MILP techniques [5], but not with more
advanced MIQP techniques. Also, the software required to solve the corresponding MIQP may
require an additional investment over regular software required to solve MILP problems. More
importantly, both solution schemes have the ability to solve instances of the MSVP problem that
might not be possible to solve efficiently using MIQP solvers. Our linear solution schemes also
contribute to the rich literature on using linear methods for portfolio allocation problems [cf., 23,
for a recent review].

The remainder of the article is organized as follows. In Section 2, we formally introduce the
MSVP problem. In Section 3.1, we present a linear approximation of the MSVP problem that
requires the solution of a single MILP problem. Also, we quantitatively characterize the MILP
approximation’s effectiveness. In Section 3.2, we present a linear solution scheme capable of solving
general MSVP instances by iteratively solving a series of MILP problems. Our computational results
are presented in Section 4, where we illustrate the effectiveness of the linear solution schemes by
solving a MSVP problem arising in a Latin American oil and gas company. In Section 5 we solve
general instances of the MSVP problem that are constructed using data from the PSPLIB library
of project scheduling problems [18]. In Section 6, we conclude the paper with some final remarks.

2. Mean-semivariance project portfolio selection problem

In this section we formally introduce the MSVP problem. Consider n risky non-divisble invest-
ment projects. Let r = (r1, . . . , rn)T ∈ IRn denote the uncertain NPV of the n risky projects, which
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is calculated over a time horizon of T periods. Let x = (x1, . . . , xn)T ∈ {0, 1}n denote a portfolio on
these projects; that is, the binary variables xi take the value of 1 if the company invest in project
i and 0 otherwise, for i = 1, . . . , n. Thus, the portfolio’s NPV is given by

rTx = xTr =
n∑
i=1

xiri.

A (single-period) MSVP problem aims at finding the portfolio of projects x ∈ {0, 1}n at time
t = 0 that minimizes the semivariance of the project portfolio’s NPV, subject to a given minimum
expected NPV. Formally, the MSVP problem can be written as the following optimization problem:

min E(min{0, xTr − E(xTr)}2)

s.t. E(xTr) ≥ µ0

x ∈ X ∩ {0, 1}n,
(1)

where E(·) denotes expectation; µ0 ∈ IR is the given minimum expected portfolio NPV; and X ⊆ IRn

is a given set defined by linear constraints, which might be used to enforce some relevant business
conditions such as a budget constraint (i.e.,

∑n
i=1 cixi ≤ B, where ci is the investment required

for i-th project and B is the total available budget). For the MSVP problem in the oil and gas
industry considered here, a detailed description of the set X is provided in Section 4. Here, we
choose 0 as the critical value [e.g., 25] for the semivariance calculation. That is, portfolios with a
negative return will be considered risky. However, our results extend in straightforward fashion to
other choices of the critical value, such as a market benchmark [cf., 25].

It is clear from (1) that the MSVP problem is analogous to a classical risk-reward portfolio
allocation problem with illiquid assets in which the risk is measured by the portfolio returns’
semivariance, and the reward is the expected portfolio’s return.

In order to solve (1), we use a sampling approach [cf., 4, 19, 21, 25, 31], in which an estimation
of the distribution of the random variables of interest is obtained from a finite number of samples
r1, . . . , rm ∈ IRn. These samples are typically obtained from historical data, simulations, or a
combination of both. Using this sampling approach, the MSVP problem in (1) can be written as:

min
1

m

m∑
j=1

min{0, xTrj − xTµ}2

s.t. xTµ ≥ µ0

x ∈ X ∩ {0, 1}n,

(2)

where the vector µ = (µ1, . . . , µn)T ∈ IRn of mean project return estimates is obtained by letting

µi =
1

m

m∑
j=1

rji , (3)

for i = 1, . . . , n.
For ease of exposition, we will use (3) to obtain µ ∈ IRn in our numerical experiments; however,

our results are independent of this choice, and a variety of other estimation methods can be used.
Also, note that to obtain an asymptotically unbiased and strongly consistent estimator of the
semivariance [17], we should use the factor m

(m−1)2 instead of 1
m in the objective function of (2).
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However, for the sake of clarity, we will use the latter, as changing this factor does not affect the
composition of the optimal project selection.

After introducing the auxiliary variable yj , which captures the value min{0, xT(rj − µ)} for
each j = 1, . . . ,m, the MSVP problem in (2) can be written as an optimization problem with a
convex quadratic objective, linear constraints, and binary variables. This result is formalized in
Proposition 1.

Proposition 1 (Markowitz et al. [25]). The mean-semivariance project portfolio selection prob-
lem (2) is equivalent to:

min
1

m

m∑
j=1

y2j

s.t. yj ≤ xT(rj − µ) j = 1, . . . ,m
yj ≤ 0 j = 1, . . . ,m
xTµ ≥ µ0

x ∈ X ∩ {0, 1}n.

(4)

Furthermore, the objective function in (4) is convex.

Proposition 1 shows that the MSVP problem is a MIQP problem, that is, an optimization
problem with a convex quadratic objective and linear constraints, with the additional constraint
of some of its variables being integer (more specifically, in (4) variables are required to be binary).
Thus, the MSVP formulation in (4) can be solved using branch-and-bound [cf., 8, 27] in conjunction
with QP techniques [cf., 3]. In particular, CPLEX, Gurobi, and Xpress-MP are among the commer-
cial optimization solvers that offer special solution algorithms for MIQP problems based on such
techniques.

3. Linear solution schemes

In this section we show that the MSVP problem in (4) can be efficiently solved without using QP
solvers; that is, it can be solved using branch-and-bound in conjunction with linear programming
techniques. We refer to these solution methodologies as linear solution schemes. Besides substan-
tially enlarging the number of optimization solvers that can be used to solve the MSVP problem,
these linear solution schemes allow us to solve large-scale instances of the MSVP problem much
faster than with a MIQP approach.

Note that the MIQP problem in (4) can easily become a large-scale problem when either the
number of projects, n, or the number of samples used to estimate the distribution of the projects’
NPVs, m, is large. Clearly, this behavior results from n and m being the dimension of the x- and
y-variables in (4), respectively. In this regard, we emphasize the difference in the project portfolio
selection problem when the variance is used as a measure of risk. As opposed to semivariance, using
the variance implies the solution of a single MIQP problem whose size depends on the number of
candidate projects, but not on the number of samples used to estimate the mean and the variance-
covariance matrix of project’s NPVs. Further, in order to solve a single MIQP problem, it is
necessary (loosely speaking) to solve a large number of (potentially large) QP problems (relaxed
MIQP problems), obtained by branching on the corresponding binary variables.

For the reasons discussed above, in Section 3.1 we first introduce a MILP formulation that
accurately approximates the solution of the MSVP problem when the project’s NPVs are positively
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correlated and the total number of projects is moderate. Next, in Section 3.2 we show that a
general class of the MSVP problem, and in particular instances of the problem with a large number
of projects and samples, can be solved efficiently by solving a sequence of MILP problems using
a Benders decomposition approach in which the Benders cuts (cf. Nemhauser and Wolsey [27,
Sections II.3.7 and II.5.4], and Freund [14]) are computed in closed-form.

3.1. MILP approximation for MSVP portfolio selection problem

In this section we present an approximation for the MSVP problem in (4), which is obtained
by solving a single MILP problem with as many binary variables as the corresponding MIQP. We
begin by stating the following optimization problem related to (2):

min
1

m

n∑
i=1

n∑
k=1

σ̃ikxixk

s.t. xTµ ≥ µ0

x ∈ X ∩ {0, 1}n,

(5)

where

σ̃ik =
m∑
j=1

min{0, rji − µi}min{0, rjk − µk}. (6)

for i = 1, . . . , n, k = 1, . . . , n. First, we will show that (5) is a pessimistic approximation to (2); that
is, (5) overestimates the semivariance of the project’s portfolio in (2), making the project selection
process more conservative. Then, we will show that the more positively correlated the projects
in the portfolio are, the better (5) works as an approximation to (2). Even though this condition
seems overly restrictive, there is strong evidence that positive correlations are ubiquitous in the oil
and gas industry, in part, because most projects are influenced by the same economic and market
conditions (e.g. interest rates, oil prices, and gas prices). Further evidence of this will be given
in Section 4. Finally, we will show that (5) can be rewritten as a MILP problem by introducing
appropriate extra continuous variables.

To see that (5) provides a pessimistic approximation to (2), let u ∈ IRn be given, and define
I− = {i : ui < 0, i = 1, . . . , n}, and I+ = {i : ui ≥ 0, i = 1, . . . , n}. Clearly,

0 ≥ min

{
0,

n∑
i=1

ui

}
=


∑
i∈I−

ui +
∑
i∈I+

ui, if

∣∣∣∣∣∑
i∈I−

ui

∣∣∣∣∣ ≥
∣∣∣∣∣∑
i∈I+

ui

∣∣∣∣∣ ;
0, otherwise.

(7)

Also
n∑
i=1

min{0, ui} = 0 +
∑
i∈I−

ui. (8)

Using (7) and (8) in the two cases
∣∣∑

i∈I− ui
∣∣ ≥ ∣∣∑i∈I+ ui

∣∣ and
∣∣∑

i∈I− ui
∣∣ ≤ ∣∣∑i∈I+ ui

∣∣, it follows
that

0 ≥ min

{
0,

n∑
i=1

ui

}
, and min

{
0,

n∑
i=1

ui

}
≥

n∑
i=1

min{0, ui}, (9)
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and therefore: (
min

{
0,

n∑
i=1

ui

})2

≤

(
n∑
i=1

min{0, ui}

)2

. (10)

With (10), and letting r̃j := rj −µ, j = 1, . . . ,m, we have that the objective function of (2) can be
bounded from above as follows:

1

m

m∑
j=1

min

{
0,

n∑
i=1

xir̃
j
i

}2

≤ 1

m

m∑
j=1

(
n∑
i=1

min{0, xir̃ji }

)2

=

1

m

m∑
j=1

n∑
i=1

n∑
k=1

min{0, xir̃ji }min{0, xkr̃jk}) =

1

m

n∑
i=1

n∑
k=1

xixk

 m∑
j=1

min{0, r̃ji }min{0, r̃jk}

 =

1

m

n∑
i=1

n∑
k=1

σ̃ikxixk.

(11)

The first inequality follows from (10), and the second to last equality follows from xi ≥ 0, i =
1, . . . , n. Hence, (5) is a pessimistic approximation to (2) because its objective overestimates the
expected squared downside deviations; that is, the semivariance.

Notice that (5) will be equivalent to (2) whenever the second inequality in (9) holds with equality
when replacing u = xTr̃j , for all j = 1, . . . ,m. The second inequality in (9) holds with equality
when I− = {1, . . . , n} or I+ = {1, . . . , n}. That is, problems (5) and (2) will be equivalent if

Ij
+

:= {i ∈ {1, . . . , n} : xir̃
j
i ≥ 0, } = {1, . . . , n} or Ij

−
:= {i ∈ {1, . . . , n} : xir̃

j
i < 0} = {1, . . . , n},

for all j = 1, . . . , ,m. Clearly, for all the samples to satisfy that the deviations in a sample be either
all above the mean or all below the mean, the NPVs of each project must be highly correlated. As
will be discussed in Section 4, for MSVP problems arising in the oil and gas industry, it is reasonable
to expect (real-world) scenarios with high correlations where this approximation works remarkably
well.

The objective function of (5) can be linearized by introducing appropriate extra continuous
variables. Let I+σ := {(i, k) : σ̃ik > 0, i = 1, . . . , n, k = 1, . . . , n}, and I−σ := {(i, k) : σ̃ik ≤ 0, i =
1, . . . , n, k = 1, . . . , n}. Then problem (5) is equivalent to the following MILP problem:

min
1

m

∑
(i,k)∈I+σ

σ̃ikyik

s.t. xTµ ≥ µ0

yik ≥ xi + xk − 1 for all (i, k) ∈ I+σ
yik ≥ 0 for all (i, k) ∈ I+σ
x ∈ X ∩ {0, 1}n.

(12)

The equivalence between (5) and (12) follows from the next observations. First, from (6) it
follows that I−σ = {(i, k) : σ̃ik = 0, i = 1, . . . , n, k = 1, . . . , n}. Second, if (i, k) ∈ I+σ , then
yik ≥ xi+xk−1 and yik ≥ 0 imply that yik ≥ xixk, but since σ̃ik > 0, then at any optimal solution
of (12), yik would be at its lower bound yik = xixk.

7



3.2. Benders-based linear solution scheme for MSVP portfolio selection problems

In this section, we present a linear solution scheme for the MSVP problem that is based on a
suitable use of the Benders decomposition technique (cf. Nemhauser and Wolsey [27, Sections II.3.7
and II.5.4], and Freund [14]). To make the presentation more succinct, we re-state (4) as follows:

min
1

m
yT(I)y

s.t. y ≤ R̃x
y ≤ 0
x ∈ X ′ ∩ {0, 1}n,

(S)

where y := [yj ]j=1,...,m, I is the m ×m identity matrix, R̃ is a m × n matrix, whose row j is

given by [R̃]j := (rj − µ)T, j = 1, . . . ,m, and X ′ := X ∪ {x ∈ IRn : xTµ ≥ µ0}.
The idea of a Benders decomposition approach is to divide the problem variables into two

groups: the complicating and the non-complicating variables. One begins by fixing the complicating
variables in the original problem to a particular value. The resulting problem –so-called Benders
subproblem– should be solvable to optimality, and in particular, the dual (see, e.g. Fang and
Puthenpura [12, Chapter 9.1.2]) of the Benders subproblem should be solvable to optimality. The
dual solution of the Benders subproblem is then used to construct a Benders master problem on the
complicating variables of the original problem. Solving iteratively both the Benders subproblem and
master problem leads to a solution of the original problem that might be obtained faster than by
solving the (full) original problem. For the MSVP problem, next we show that with an appropriate
choice of the complicating variables, the Benders subproblem can be solved in closed-form.

To address problem (S) via a Benders decomposition approach, we choose the x variables as
the complicating variables in (S). After fixing the x variables to a value x̂ ∈ X ′ ∩ {0, 1}, and (for
convenience) making the change of variable y → −y, we obtain the problem:

min
1

m
yT(I)y

s.t. y ≥ −R̃x̂ (u)
y ≥ 0 (u0),

(13)

where u ∈ IRm are the dual variables associated to the return constraints and u0 ∈ IRm are the
dual variables associated to the non-negativity constraints in (13). The (convex) quadratic program
in (13) corresponds to the Benders subproblem, whose Wolfe dual is given by (see, e.g., Nocedal
and Wright [28, Chapter 12]):

max −uTR̃x̂− 1

m
yT(I)y

s.t. − 2

m
y + u+ u0 = 0

u, u0 ≥ 0.

(14)

Problem (14) is equivalent to:

max −uTR̃x̂− m

4
(u+ u0)T(u+ u0)

s.t. u, u0 ≥ 0.
(15)
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In any optimal solution of (15) we have u0 = ~0, so (15) is equivalent to:

max
m∑
j=1

(
−(x̂Tr̃j)uj −

m

4
u2j

)
s.t. uj ≥ 0, j = 1, . . . ,m.

(16)

Notice that problem (16) decomposes into m independent problems:

max −(x̂Tr̃j)uj −
m

4
u2j

s.t. uj ≥ 0,
(17)

for j = 1, . . . ,m; which can be solved by inspection: If (x̂Tr̃j) ≥ 0, then the optimal solution of (17)
is u∗j = 0. If (x̂Tr̃j) < 0, then we get a concave quadratic objective in (17):

|(x̂Tr̃j)|uj −
m

4
u2j

that has a maximum at u∗j = 2
m |(x̂

Tr̃j)|. So the optimal solution u∗(x̂) ∈ IRm of the Benders dual
subproblem (14) can be obtained in closed-form as follows:

u∗j (x̂) =

{
0 if (x̂Tr̃j) ≥ 0,
2
m |(x̂

Tr̃j)| if (x̂Tr̃j) < 0,
(18)

for j = 1, . . . ,m. With the Benders dual subproblem solution, the Benders master problem is
constructed as follows. Given a finite index set K, and a set of feasible portfolios X̂ ′K = {x̂k ∈
X ′ ∩ {0, 1}n : k ∈ K}, consider the Benders master problem

min q

s.t. q ≥
m∑
j=1

−(xTr̃j)u∗j (x̂k)− m

4
u∗j (x̂k)2; ∀x̂k ∈ X̂ ′K

x ∈ X ′ ∩ {0, 1}n.

(19)

Note that the right-hand side of the first set of constraints in (19) is closely related to the
objective function of the Benders dual subproblem (15).

With a closed-form expression for the solution of the Benders dual subproblem, and with the
construction of the Benders master subproblem given in (19), we can now state in Algorithm 1, a
Benders-based solution algorithm for the MSVP problem.

After execution, Algorithm 1 returns an ε-optimal portfolio solution x∗ε . That is, if we let
x∗ := argminx{S} be the optimal mean-semivariance project portfolio, then

SV(x∗ε )− SV(x∗)

SV(x∗)
< ε, (20)

where SV represents the semivariance of any portfolio of projects x ∈ {0, 1}n, given by

SV(x) :=
1

m

m∑
j=1

min{0, xTrj − xTµ}2.
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Algorithm 1 Benders linear solution scheme for the MSVP problem

1: procedure MSVP Benders(ε > 0)
2: K ← ∅, k = 1, Gap=∞
3: while Gap> ε do
4: compute x̂k, zk, the optimal solution and objective of (19)
5: compute u∗(x̂k) using (18)
6: K ← K ∪ k, k ←= k + 1
7: UppBound ←

∑m
j=1−(x̂T

k r̃
j)u∗j (x̂k)− m

4 u
∗
j (x̂k)2, LowBoundk ← zk

8: Gap← |UppBound− LowBoundk|/|LowBoundk|
9: end while

10: return x∗ε = x̂k
11: end procedure

The correctness of Algorithm 1 follows from the theory behind the Benders decomposition technique
[cf., 13].

Note that the Benders-based linear solution scheme for the MSVP problem outlined in this
section requires, at its core, the iterative solution of MILPs in Step 4 of the algorithm. This is be-
cause the non-linearity of the original problem’s objective is handled in closed-form in Step 5 of the
algorithm. It is worth to mention that a regularized version [cf., 32] of the Benders-based algorithm
outlined here for the MSVP problem can be implemented without changing the complexity of the
Master problem in (19). Namely, following [32], the objective function in (19) can be changed to
c(q, x) := q+ 1

σ‖x−x̂k‖
2 with σ > 0. Moreover, taking advantage of the fact that both x, x̂k ∈ {0, 1}n

it follows that c(q, x) is equivalent to the following linear function c(q, x) = q + 1
σ (x− 2xx̂k + x̂k).

This means that the MSPV problem can be solved via a Benders decomposition approach where the
regularized Benders Master problem remains a MILP and the Benders cuts are found in closed-form.
Although experiments were carried out with this regularized version of the Benders algorithm, the
performance difference with the classical Benders Algorithm 1 are not significant, and in Section 5,
we report results using the non-regularized Benders Algorithm.

4. Case study: project selection in an upstream oil and gas company

In this section we consider an instance of the MSVP problem arising in the oil and gas industry.
After giving a detailed description of the problem in Section 4.1, in Section 4.2 we report the
computational results of the linear solution scheme presented in Section 3.1.

4.1. Data and detailed model

The case study is based on our experience with an upstream oil and gas company operating in
Latin America, which is one of the top 40 largest companies in the world. We consider a division
of the company with 27 non-divisible candidate projects for investment along a 30-year planning
horizon with an available budget of US$ 100 million per year and expected production for the first
year of at least 40,000 barrels. This division is one of the six divisions in charge of prioritizing
exploration projects in different geographical areas of Latin America. In 2011-2016, the average
annual budget for exploration in this division was around 12% of the company’s exploration budget.

Besides the known capital investment requirements and the production and operational costs, the
projects are subject to precedence relations. For example, the execution of some projects require
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the execution of other complementary projects. The NPV calculation for each project involves
deterministic elements like the capital investment requirements and the production and operational
costs. It also involves more volatile and stochastic components, like the project’s production level
–modeled by triangular distributions for pessimistic, moderate, and optimistic scenarios– and the
international trade petroleum price (WTI), forecasted by a mean-reversion model [cf., 9]. It should
be emphasized that, according to Sira [33], the uncertain production levels and the oil prices
account for 80% of the NPV’s volatility in a typical petroleum project (for literature on forecasting
petroleum prices, see [1]). We use Monte Carlo simulation to model the uncertainties, considering
a variance reduction technique known as common random numbers [cf., 20] to ensure that the same
realizations for the key underlying random variable, namely the WTI price, were used to calculate
the NPV for all projects. These values are used to construct the vector µ used in the expected
return constraint in (2); that is, µi corresponds to the average NPV of project i, for i = 1, . . . , n
where n = 27. In Appendix A, Table A.4 displays the average NPV of the projects when estimated
with different sample sizes. In addition, Figure 1 shows the skewed nature of the NPV for a typical
oil and gas project (i.e., low profits are more likely to occur than high profits). In this case, 1,000
NPV realizations are produced using Monte Carlo simulation. Due to confidentiality agreements,
the average NPV for each project has been modified by adding a constant. However, although
this shift affects the probability of loss and the mean return of the projects, it does not affect the
deviations from the mean used to measure the risk of the project’s portfolio.
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Figure 1: Histogram of 1,000 random realizations of the NPV (in US millions) of a typical oil and gas project obtained
using Monte Carlo simulation.

The NPVs of the considered oil and gas projects are highly correlated, given that they belong to
the same industry and are affected by the same market conditions. Figure 2 shows a histogram of the
upper triangular portion of the correlation matrix (excluding the diagonal) where it is worth noting
that more than 75% of the pairwise correlations are higher than 0.80, all correlations are positive,
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and only 8% of the correlations are less than 0.1. Although the calculated correlations appear to be
overly high, evidence of positive and strong correlation between the projects in the same industry
is ubiquitous in the literature. For instance, in [7] it is stated that correlations between security
returns in the same industry tend to be positive because they are influenced by the same economic
and market conditions. Thus, changes in economic factors such as interest rates, labor, and raw
material cost affect simultaneously the performance of all companies and their projects in the same
sector.
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Figure 2: Histogram of the 27 project NPV correlations (excluding the diagonal) used in Table 1.

The linear constraints defining the set X in (1) for the oil and gas MSVP portfolio selection
problem include a required minimum production level per period of the planning horizon; limiting
budget constraints per time period; limits on the total production and operational cost per time
period; and precedence relations between projects. Specifically, in this case we have

X =


x ∈ {0, 1}n :

n∑
i=1

qitxi ≥ wt, t ∈ T ;

n∑
i=1

kitxi ≤ bt, t ∈ T ;

n∑
i=1

citxi ≤ ht, t ∈ T ;

xi ≤ xj , (i, j) ∈ A


. (21)

In (21), set T represents the time periods within the planning horizon. Parameters qit, cit, and kit
are the expected barrel production, the production and operational costs, and the capital investment
requirements of project i in time period t, respectively. Parameters wt, ht, and bt are the minimum
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production level, the maximum allowable production and operational costs, and the available budget
for investment in period t, respectively. Note that, although variable xi is not indexed in t, the time
is implicitly considered in the expected barrel production, the production and operational costs,
and the capital investment requirements for each project per period of the planning horizon (i.e.,
parameters qit, cit, and kit, respectively). That is, if project i is selected (i.e., variable xi equals 1),
its expected oil production and costs are accounted in the left-hand side of the constraints, in order
to satisfy the minimum production level and the costs limits for each period of the planning horizon.
Further, set A defines the precedence relations between projects; that is, if selecting project i implies
the selection of project j, then (i, j) ∈ A. The complete list of precedence relations between the
projects used in the case study is given in equation (A.1) in Appendix A.

Our algorithms are implemented in MATLAB and executed on a 64-bit workstation with AMD
Opteron 2.0 GHz CPU and 32 GB of RAM. We use CPLEX 12.5 to solve both the MILP approxi-
mation and the MIQP formulation to optimality.

4.2. Numerical results

In this section, computational experiments are conducted to show the accuracy and efficiency of
the MILP approximation proposed in Section 3.1 to solve the oil and gas industry MSVP problem.
Figure 3 displays the semivariance efficient frontier (i.e., plots the optimal project portfolio’s semi-
variance for different values of µ0) obtained after solving the MILP problem defined in (12) and
the MIQP formulation in (4) with the side constraints X defined in (21). The number of projects
and number of samples in the problems solved are n = 27 and m = 1000, respectively. Results in
Figure 3 show that, thanks to the strong positive correlations of the projects in this case study,
the MILP approximation effectively finds the set of non-dominated portfolios in the frontier. For
practical purposes, this result implies that the MILP approximation in (12) can help decision mak-
ers to create a semivariance efficient frontier showing the tradeoff between risk and profitability,
without the use of nonlinear programming techniques. The total time required to compute the
efficient frontier in Figure 3 using the MIQP approach is 84.04 s, whereas the total time required
to compute it using the MILP approach is 20.79 s.

To further illustrate the performance of the MILP in (12) when the NVPs are highly correlated,
we generate additional instances of the MSVP problem based on the original oil and gas data.
Namely, we generate instances of n = 27 projects with sample sizes m = 100, 500, 1000, 3000, 5000,
7000, 9000, and 10000. To reach the desired value of m, additional samples are randomly drawn
from the original data. Regardless of the sample size, we use µ0 = 698, as in the original oil and gas
case study. We compare the proposed MILP approximation with the default CPLEX 12.5 MIQP
solver.

Table 1 shows the results obtained by the MILP and the MIQP models. The first column
shows the sample size used to estimate the projects’ NPVs return distributions. The resulting
portfolio’s semivariance (i.e., objective function values) are shown in the second and third columns,
whereas the execution times are reported in the fourth and fifth columns. The last column shows
the computation time speedup, which is calculated as the ratio between the MIQP to the MILP
execution times. The last row reports the geometric mean of the speedups for all the instances.
In this case, we use the geometric mean because it avoids being overly optimistic with good ratios
obtained on few instances [22].

The results summarized in Table 1 show that the MILP approximation finds the optimal port-
folio’s semivariance (i.e., the MIQP solution). As before, good accuracy performance of the MILP
approximation is due to the positive correlated nature of the project’s NPVs. Although the MIQP
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Figure 3: Semivariance efficient frontier of MSVP portfolios for fifty (50) different benchmark NPV return values,
computed using the (exact) MIQP formulation (4) and the MILP approximation (12)

approach does slightly better than the MILP approach in the instance with the smallest number of
samples; overall, the geometric mean shows that the MILP approach is roughly eight times faster
than the MIQP approach. This result is expected, given that the size of the MILP does not increase
as the number of samples grows.

No. Portfolio’s Semivariance Time (s)

Samples MIQP MILP Apx. MIQP MILP Apx. Speedup

100 14887 14887 0.47 0.75 0.62
500 15746 15746 1.21 0.48 2.54

1000 14769 14769 3.44 0.58 5.93
3000 14767 14767 4.79 0.60 7.94
5000 14768 14768 8.91 0.52 17.09
7000 14764 14764 15.23 0.55 27.48
9000 14769 14769 21.50 0.59 36.21

10000 14769 14769 34.66 1.53 22.66

Geo. Mean 8.55

Table 1: Computational results for instances of the MSVP problem based on the oil and gas case study with 27
projects, a minimum NPV benchmark return of 698, and number of samples ranging from 100 to 10000.

We further explore the quality of the MILP approximation scheme in (12) for the case in which
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the projects’s NPVs are less correlated. To do so, we use the same instance of Figure 3 and
multiply the sample NPVs of thirteen (13) projects (randomly selected) by −1. The results are
shown in Figure 4, in which the quality of the MILP approximation decreases compared to the
MIQP. However, even in this case the MILP approximation scheme provides a fair approximation
of the MSVP efficient frontier. Note that due to this change on the instance data, the maximum
expected NPV that can be obtained from the projects is now lower than in the original instance
shown in Figure 3. In this case, the total time required to compute the efficient frontier in Figure 4
using the MIQP approach is 69.22 s, whereas the total time required to compute it using the MILP
approach is 4.49 s.

Although it provides an accurate approximation to the semivariance when NPVs are positively
correlated, the MILP scheme in (12) is limited by the fact that the number of continuous variables
grows quadratically with the number of projects in the problem (i.e., as n2).

Figure 4: Semivariance efficient frontier of MSVP portfolios computed using the (exact) MIQP formulation and the
MILP approximation (12) when the NPVs of the projects are less highly positively correlated.

5. General MSVP instances

In this section we study the accuracy and efficiency of the Benders-based solution approach
proposed in Section 3.2 to solve general instances of the MSVP problem. We test the limits of our
approaches by considering instances with a large number of projects (n) and samples (m), and with
multiple correlation levels among project’s NPVs. This analysis is motivated by the fact that some
oil and gas companies may have a large number of candidate projects.

To see this, note that the case study considered in Section 4 arises from a project selection
problem in one of the six divisions of an oil and gas company operating in Latin America. For
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the particular year of this analysis, the division’s exploration budget was around US$100 M, which
was 20% of the company’s total exploration budget. To put the project selection problem of this
division in context, in 2014 the top-ranked capital expenditures in exploration of some larger oil and
gas companies ranged between US$1400 M - US$2500 M [11]. Thus, from a budget perspective and
considering the worldwide scale of operations of larger companies, MSVP problem instances with
possibly hundreds of candidate projects may arise in practice. Additionally, the number of drilling
permits approved by environmental authorities could be an estimate of the number of candidate
projects in a company’s portfolio. In 2014, the Oil and Gas Conservation Commission of the state
of Wyoming alone 3786 different drilling permits, with some companies requesting permits for the
exploration of more than 300 and up 923 different wells [40].

Also, the consideration of different correlation profiles among NPVs is motivated by the fact
that current petroleum prices may encourage oil and gas companies to bring new types of projects
into their portfolios (e.g., enhanced oil recovery, alternative refining processes, biofuels), which can
be less (or even negatively) correlated with the traditional exploration and production projects.
Additionally, the datasets used in this section include realistic features arising in the oil and gas
industry such as resource and precedence constraints, as well as skewed NPV’s distributions. Sec-
tion 5.1 describes the dataset generation procedure used to test our algorithms and Section 5.2
presents the computational results of the Benders-based solution approach described in Section 3.2.

5.1. Data

Given the absence of datasets for the MSVP problem in the literature, we generate our test in-
stances based on the well known PSPLIB library [18, url: http://www.om-db.wi.tum.de/psplib/
library.html]. The PSPLIB library contains problem sets for single- and multi-mode resource-
constrained project scheduling problems. In particular, we use the PSPLIB single-mode datasets
listed in Table 2.

No. Projects Filename Location: www.wiwi.tu-clausthal.de/fileadmin/...

100 psp1.sch ...Produktion/Benchmark/RCPSP/testset_ubo100.zip

200 psp1.sch ...Produktion/Benchmark/RCPSP/testset_ubo200.zip

500 PSP1.sch ...Produktion/Benchmark/RCPSP/testset_ubo500.zip

1000 PSP1.sch ...Produktion/Benchmark/RCPSP/testset_ubo1000.zip

Table 2: PSPLIB instances used to construct different instances of the MSVP problem.

Although PSPLIB does not contain instances for the MSVP problem, we use both the precedence
and resource constraints provided in its instances. To construct an instance for the MSVP problem,
we split the set of projects in a PSPLIB instance into 10 subsets. These subsets represent the time
periods in which a project demand resources in the MSVP problem formulation (cf., (21)). For
example, if a project belongs to the second subset, then this project demands resources in the
second time period in the MSVP problem. This procedure defines the left-hand side coefficients
of the resource constraints in (21). To vary the complexity of the MSVP instances, we set the
right-hand side of the resource constraints to be equal to a fraction of the sum of the left-hand side
coefficients. This fraction ranges from the smallest value that results on a feasible instance of the
problem to 1.00 (i.e., the resource constraint is redundant).
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To generate instances of different sample size, additional samples for the NPVs are generated
by adding noise and re-sampling the oil and gas project’s NPVs described in Section 4. Following
the same procedure as in Section 4.2, we also generate different correlation levels among the NPVs.
These NPVs correlations range from −1 to 1 as shown in Figure 5. Precedence constraints are
included without modifications.

Figure 5: Histogram of the NPV correlations (excluding the diagonal) in a general instance of the MSVP problem.

To run our computational experiments, we use MATLAB on a 64-bit workstation with AMD
Opteron 2.0 GHz CPU and 32 GB of RAM. We use CPLEX 12.5 to solve both the MIQP formulation
and the MILP iterations in the Benders-based algorithm. In Algorithm (1), we use ε = 0.5%, and,
for fairness of the comparison, we also set the CPLEX relative optimality gap to stop the MIQP to
ε = 0.5%. We impose a time limit of 3600 seconds for each experiment.

5.2. Numerical results

In this section we compare the performance of the Benders-based solution approach described
in Section 3.2 with the MIQP formulation of the MSVP problem. Table 3 shows the results of our
experiments for different instances that are generated using the procedure described in Section 5.1.
In total, we generate 452 instances that include different number of projects and samples, as reported
in columns 1–2. For each instance, we use a minimum expected portfolio NPV, µ0, within the range
shown in columns 4–5. Also, the range of the factor that modifies the right-hand-side of the resource
constraints is reported in columns 6–7.

To illustrate the variability existing in our test instances, columns 8 and 9 in Table 3 summarize
the minimum and maximum number of projects selected in the optimal solution of the MSVP
problem. In this case we see that variations in the input parameters, besides number of projects and
sample size, lead to instances of the MSVP problem with very different solutions. The computational
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No. No. No. µ0 Resource Projects Time (s)

Projects Samples Instances min max min max min max MIQP Benders iter. Speedup

100 1000 32 10 500 0.64 1.00 16 82 1.32 0.15 3.34 8.07
100 5000 20 10 2000 0.70 1.00 11 74 13.08 0.16 2.00 80.07
100 10000 17 10 1500 0.70 1.00 7 79 43.35 0.27 2.00 158.80

200 1000 99 50 10000 0.27 1.00 4 135 3.15 0.13 2.00 23.97
200 5000 29 50 15000 0.70 1.00 4 200 26.42 0.29 2.00 93.32
200 10000 28 50 15000 0.70 1.00 4 200 104.75 0.47 2.00 224.56

500 1000 63 100 10000 0.04 1.00 2 475 12.46 0.93 2.75 15.24
500 5000 19 100 10000 0.70 1.00 21 364 154.31 1.04 2.00 153.73
500 10000 20 100 10000 0.70 1.00 2 457 341.50 1.63 2.32 210.25

1000 1000 86 100 15000 0.04 1.00 3 852 13.89 1.37 2.64 10.87
1000 5000 19 100 15000 0.70 1.00 22 785 263.92 3.28 2.95 87.78
1000 10000 20 100 15000 0.70 1.00 10 746 571.08 8.80 6.20 76.08

Geo. Mean 59.17

Table 3: Comparison between MIQP and Benders-based linear solution scheme for general instances of the MSVP
problem generated from PSPLIB instances of the resource constrained project scheduling problems. The column
Resource indicates the range of the factor used to constraint the resources available in the instance. The column
Projects indicate the range of number of projects selected in the optimal solution of the instances. In all instances,
differences between the semivariance values of MIQP and Benders algorithms are within a 0.5% margin of error, and
the Benders algorithm is faster than the MIQP approach.

time of the MIQP and the Benders-based solution scheme are reported in columns 10 and 11,
respectively. All the tested instances are solved within the time limit, implying that the Benders
solution approach obtains the optimal semivariance within a 0.5% margin of error. As shown in
column 10 (MIQP) and column 11 (Benders), the average solution time of the Benders solution
approach is much lower than the MIQP approach. This difference increases as the number of
samples in the problem increase. This is not surprising, given that the size of the master problem
used in the Benders solution approach does not change with the number of samples. Instead,
the number of samples only affects the computation of the Benders cuts, which is done through
a closed-form calculation. The average number of iterations required by the Benders solution
approach and the average solution time speedup are reported in columns 12 and 13, respectively.
The reported speedups show that the Benders approach is on average 59 times faster than the
MIQP, demonstrating the efficiency of using this approach for general large-scale instances of the
MSVP problem.

6. Concluding Remarks

In this paper, we studied the MSVP problem. After presenting a convex quadratic formulation of
the problem, we proposed two alternative linear solution schemes that effectively solve this problem.
These schemes have both practical and computational advantages over a direct MIQP approach
to solve the MSVP. The first scheme is based on a MILP approximation that overestimates the
project’s portfolio NPV semivariance (prone for risk-averse decision makers) by solving a single
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MILP. Aside from providing a formal proof of this overestimation, the computational tests show
that the MILP approximation is very accurate when dealing with projects with positively correlated
NPVs. Moreover, for instances of the MSVP problem with a moderate number of projects in which
it is desired to use a large number of samples to accurately estimate the project’s portfolio NPV
semivariance, the MILP approximation solution approach is shown to consistently outperform the
default CPLEX 12.5 MIQP solver that can be used to directly solve the MSVP problem.

In a more general setting, we proposed a Benders-based linear solution scheme that allows the
decision maker to solve the MSVP problem for any positive or negative level of correlation among
the NPVs. This approach has proven to be effective, consistently outperforming the default CPLEX
12.5 MIQP solver for general large-scale instances of the MSVP problem.

The proposed methods have a very broad potential of being applied to other problems. In
particular, note that some of the key characteristics of oil and gas project selection problems such
as: non-divisible assets, skewed NPV distributions, resource and precedence constraints, preference
for downside-risk measures, etc. are common to project selection problems in other industries.
Also, both linear solution schemes can be easily extended to solve MSVP problems with additional
combinatorial constraints which provide real features on the projects (cf. transaction costs [39],
transaction lots [21], cardinality constraints [2]). Moreover, recent approaches have focused on
efficiently solving the mean-variance portfolio allocation problems with integrality constraints [2, 21,
to name a few]. Thus, extending the Benders solution scheme to address this type of problems will
be a promising topic for future research work.
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Appendix A. Precedence constraints and NPV data for the oil and gas case study

Below, we provide the expected project NPV values used in the MSVP problem arising in the
oil and gas industry and discussed in Section 4.1.

Projects Avg. NPV

m = 1000, . . . , 10000 m = 500 m = 100

1 305.897 300.329 293.160
2 460.993 454.685 446.099
3 0.107 0.103 0.098
4 67.265 65.698 64.094
5 97.901 95.899 93.731
6 0.036 0.034 0.028
7 125.989 123.594 120.963
8 106.834 104.655 102.824
9 6.128 5.979 5.766
10 8.877 8.708 8.156
11 30.411 29.568 28.955
12 159.684 156.401 153.327
13 6.681 6.562 6.471
14 0.057 0.049 0.040
15 101.636 100.084 98.133
16 37.272 36.460 35.702
17 33.162 32.495 31.192
18 18.138 17.841 17.388
19 66.076 64.928 63.245
20 10.962 10.734 10.428
21 19.332 18.883 18.413
22 17.926 17.435 16.924
23 18.780 18.284 17.795
24 20.957 20.491 19.857
25 330.199 330.508 314.499
26 1.693 1.662 1.628
27 5.574 5.551 5.258

Table A.4: Average project NPV of the 27 projects used in Section 4 for different sample sizes

Next, we provide the precedence constraints used in the MSVP problem arising in the oil and
gas industry and discussed in Section 4.1.

Precedence Constraints =


x ∈ {0, 1}n :

x5 ≤ x25;
x8 ≤ x24;
x5 ≤ x24;
x8 ≤ x21;
x4 ≤ x20;
x2 ≤ x19;
x2 ≤ x17;
x1 ≤ x16;


(A.1)
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