
Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎
Contents lists available at ScienceDirect
Omega
http://d
0305-04

☆This
n Corr
E-m

fabrizio

Pleas
//dx.
journal homepage: www.elsevier.com/locate/omega
Maximum lateness minimization in one-dimensional bin packing$

Claudio Arbib a, Fabrizio Marinelli b,n

a Dipartimento di Scienze/Ingegneria dell'Informazione e Matematica, Università degli Studi dell'Aquila, Via Vetoio, Coppito, I-67010 L'Aquila, Italy
b Dipartimento di Ingegneria dell'Informazione, Università Politecnica delle Marche, Via Brecce Bianche, I-60131 Ancona, Italy
a r t i c l e i n f o

Article history:
Received 17 June 2015
Accepted 8 June 2016

Keywords:
One-dimensional bin packing
Scheduling
Mixed Integer programming
Integer reformulation
x.doi.org/10.1016/j.omega.2016.06.003
83/& 2016 Elsevier Ltd. All rights reserved.

manuscript was processed by Associate Edito
esponding author.
ail addresses: claudio.arbib@univaq.it (C. Arbib
.marinelli@univpm.it (F. Marinelli).

e cite this article as: Arbib C, Marine
doi.org/10.1016/j.omega.2016.06.003i
a b s t r a c t

In the One-dimensional Bin Packing problem (1-BP) items of different lengths must be assigned to a
minimum number of bins of unit length. Regarding each item as a job that requires unit time and some
resource amount, and each bin as the total (discrete) resource available per time unit, the 1-BP objective
is the minimization of the makespan Cmax ¼maxjfCjg. We here generalize the problem to the case in
which each item j is due by some date dj: our objective is to minimize a convex combination of Cmax and
Lmax ¼maxjfCj�djg. For this problem we propose a time-indexed Mixed Integer Linear Programming
formulation. The formulation can be decomposed and solved by column generation relegating single-bin
packing to a pricing problem to be solved dynamically. We use bounds to (individual terms of) the
objective function to address the oddity of activation constraints. In this way, we get very good gaps for
instances that are considered difficult for the 1-BP.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

In BIN PACKING, a set J of n items of distinct sizes must be assigned
to a minimum number of identical bins, so that the size of the
items assigned to any bin never exceed its capacity. In the
(orthogonal) s-dimensional problem, items and bins are closed
intervals of IRs, and the former must be placed into the latter with
no overlap. Items can or cannot be rotated before placement: in
the latter case, the edge lengths of each interval can be normal-
ized, and bins become unit s-cubes.

One can interpret the s-dimensional BIN PACKING as a scheduling
problem with n jobs of unit time length: when scheduled, job j
consumes some fraction of a discretized resource, the bin, avail-
able in one unit per time unit. In general, applications include all
those cases (e.g., ads scheduling in sponsored internet search [1])
in which the resource used has both a geometric and a time
dimension. Here are other popular applications:

� in s-dimensional cutting, jobs are parts to be produced, and the
resource is a stock of standard size from which smaller items
must be cut [2, 5–7,14,17, 21, 31];
r Kis.

),

lli F. Maximum lateness mi
� in telecommunication channel scheduling, jobs are packets of
known length, and the resource is a frame able to host packets
up to a given total length [4,11].

Under common assumptions, completion times corresponds to
stock positions in the sequence, and minimizing Cmax means
minimizing the number of resource units used: standard sizes in
cutting problems, frames in packet scheduling, etc. But Cmax is just
one of the many scheduling objectives one can be interested in. To
generalize, call Cj the completion time of j (that is: item j is
assigned to the Cj-th bin) and associate j with a cost function f jðCjÞ.
In multi-objective scheduling, a solution is evaluated through
several functions f kj ðCjÞ, k¼ 1;…;R. Often, a multi-objective is
summarized by a convex combination of functions obtained from
the f kj ðCjÞ:

f ðC1;…;CnÞ ¼
Xr

k ¼ 1

αkmax
jA J

ff kj ðCjÞgþ
XR

k ¼ rþ1

αk

X
jA J

f kj ðCjÞ

with
PR

k ¼ 1 αk ¼ 1;αkZ0, k¼ 1;…;R.
If a function is non-decreasing with Cj, then it is called regular

[20, chapter 2]. When item j is due by a specific date dj, the fol-
lowing regular functions are frequently taken into consideration:

� Tardiness: f jðCjÞ ¼ Tj ¼maxfCj�dj;0g;� Lateness: f jðCjÞ ¼ Lj ¼ Tj�Ej ¼ Cj�dj.
nimization in one-dimensional bin packing. Omega (2016), http:

www.sciencedirect.com/science/journal/03050483
www.elsevier.com/locate/omega
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003
mailto:claudio.arbib@univaq.it
mailto:fabrizio.marinelli@univpm.it
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003

C. Arbib, F. Marinelli / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎2
1.1. Our problem

The general function f ðC1;…;CnÞ combines min-max and min-
sum terms. In this paper we focus on a pure min–max problem
with r¼ R¼ 2:

f 1j ðCjÞ ¼ Cj f 2j ðCjÞ ¼ Cj�dj

The second function is the lateness of item j: namely, we seek
for a pack-and-schedule that solves

min
C1 ;…;Cn

f ðC1;…;CnÞ ¼ α1Cmaxþα2Lmax ð1Þ

for given rational constants α1;α2Z0 such that α1þα2 ¼ 1. The
opportunity of giving different weights to material and lateness
costs is much application-dependent. There are relevant industrial
cases in which material cost is closely comparable to, and some-
times larger than, the cost of delay (see e.g. [3]). In any case, α1 and
α2 derive from the real costs of bin usage and time. When these
costs cannot be easily evaluated, it is more appropriate to keep
separate goals and transform one or both terms of the objective
function into constraints (if both, we face a feasibility problem and
speak of goal-programming). Our model naturally fits with this
approach, see Section 2.4.

Models and methods will be developed according to the
following

Assumption 1.1. In the definition of problem (1), we assume:

(i) constant cut time (this common assumption, see [2,7,21,26,31],
may however be not obvious, especially for s41: as item
dimension increases, the time for item placement in – or cut
from – a bin may change very much from pattern to pattern);

(ii) due-dates integer multiple of cut time (irrelevant for other cost
functions, such as tardy jobs, but generally not irrelevant for
lateness).

1.2. Literature review

Scheduling objectives in cutting and packing problems are
receiving increasing attention. Among many papers concerned on
cutting (see bibliography), [2,7,21] are the most recent and the
closest to our situation:

� Reference [21] proposes an integer programming based heur-
istic to minimize a combination of trim-loss (¼Cmax) and total
weighted tardiness.

� Reference [2] addresses the same problem as [21] by exact
models, either with or without column generation. The model
has variables associated with time-periods: in order to limit the
number of variables, period lengths are adjusted by an ad-hoc
procedure.

� Reference [7] develops a genetic heuristic for 2-dimensional,
non-oriented, single bin size trying to approximate the Pareto
frontier for the criteria of bin and maximum lateness minimiza-
tion: this is the problem considered by us, although our
computational experience is limited to 1-dimensional packing.

Parallel machine scheduling is a classical counterpart of bin
packing: instead of being minimized, bins are given and the typical
objective is to minimize the makespan (intended as the maximum
load of a bin). Indeed, bin packing and parallel machines sche-
duling can be seen as “orthogonal” special cases of CUMULATIVE

RESOURCE SCHEDULING [16], a problem in which each job consumes
some amount of a shared resource up to availability.

A more general additive criterion is considered in [9,27–29],
where precedence or time-indexed formulations are developed
Please cite this article as: Arbib C, Marinelli F. Maximum lateness mi
//dx.doi.org/10.1016/j.omega.2016.06.003i
and decomposed in order to solve the problem by column
generation:

� Reference [9] formulates P J
P

f jðCjÞ using decision variables
that describe precedence relations among jobs on any machine;
the master problem derived from reformulation is in the shape
of SET PARTITIONING.

� Reference [27] focuses on P J
P

wjCj and directly formulates the
decomposed problem with variables associated to feasible
machine schedules. See also [28].

� Reference [29] assumes the general criterion
P

f jðCjÞ, and – as
in our case – decomposition is applied to a time-indexed model.
Unlike our case, however, jobs have non-unit processing times
and do not consume other resource but time: the problem has
therefore a special structure (interval matrix).

The time-indexed approaches listed above are very close to
ours: the main difference is that we do not deal with a parallel-
machine setting, therefore Dantzig–Wolfe decomposition is
applied to different formulations.

A final note on complexity: P J ðα1Cmaxþα2LmaxÞ is NP-hard for
two machines and any values of α1;α2 Z0 with α1þα2 ¼ 1; when
due dates are identical, the problem becomes MULTIPROCESSOR SCHE-
DULING. On the other hand, 1JCmax is trivial and 1JLmax can be
solved in nlog ðnÞ time by Early Due Date priority rule (EDD).
Whatever are the due dates, a schedule minimizing Lmax is
necessarily active [20, ch. 2], hence its Cmax always equals the sum
of processing times. Thus, 1J ðα1Cmaxþα2LmaxÞ has the same opti-
mal solution as 1JLmax. For a comprehensive discussion on mul-
ticriteria scheduling problems see [25].
1.3. This contribution

Since bin packing is equivalent to cutting stock with unit
demand, one can tackle due dates by a formulation of the cutting
stock problem as in [2]. The general method is close to that applied
to parallel scheduling in [27,28]. The objective here considered
replaces however total tardiness with maximum lateness (see also
[7]): with time-indexed formulations a min-sum term can in fact
be less problematic because, unlike min-max, does not need
activation constraints.

In this paper we show how to obtain guaranteed approxima-
tion algorithms for this problem from existing guaranteed
approximation algorithms for BIN PACKING. We also propose exact
Mixed Integer Linear Programs based on time-indexing, and
improve them by a careful use of lower and upper bounds so as to
solve difficult problem instances. The main dataset for the
numerical experiments was constructed on non-IRUP bin packing
problems from the literature: with our approach, we were able to
solve in few seconds problems with up to 120 parts and, for pro-
blems with 200 parts, reach very small gaps (less than 2%) in
acceptable time (less than 600 s).

Formulations and an approximation result are detailed in Sec-
tion 2. We investigate ways to improve the formulation so as to
address quite large problem instances: a key issue to achieve
efficiency is to take advantage of lower and upper bounds to Cmax,
Lmax and to the global objective function (1). The bounds and their
implementation in the formulations are discussed in Section 3. A
computational experience based on [12] and mainly focussed on
α1 ¼ α2 proves the validity of the method, and is reported in
Section 4. Conclusions and directions for future research are drawn
in Section 5.
nimization in one-dimensional bin packing. Omega (2016), http:

http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003

C. Arbib, F. Marinelli / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3
2. Notation, formulation and problem properties

After introducing the notation used throughout the paper
(Section 2.1) we formulate the problem as Mixed Integer Linear
Programming (MILP, Section 2.2); we then briefly survey some
basic properties of the problem (Section 2.3), and finally pass to
describe a MILP reformulation (Section 2.4).

2.1. Notation

From now on, we will assume items ordered by earliest due
date (EDD): 0rd1r…rdn.

We will denote as zA ¼ α1C
A
maxþα2L

A
max the value of the solu-

tion obtained by a generic (either heuristic or optimal) algorithm
A designed to solve (1). The notation zn ¼ α1C

n

maxþα2L
n

max will be
reserved to optimal solutions, i.e. those minimizing (1). Because
the same value of zn can be attained by different pairs ðCn

max; L
n

maxÞ,
the notation will in the following refer to such pairs and not to
individual values of maximum completion time and lateness.

To help the reader, Table 1 collects the symbols used
throughout the paper for objective function values, individual
terms of the objective function, and bounds.

2.2. Formulation

Let J ¼ f1;…;ng denote the item (or job) set and T ¼ f1;2;…g be
a discrete planning horizon with m unit slots (we can initially
assume m¼n). Suppose that a 1-dimensional bin is made available
in unit amount at each time slot, and let 0oajr1 denote the
amount of bin used by job j upon completion. The discrete nature
of the resource means that leftovers at time t cannot be used at
Table 1
Notation for (bounds to) objective function, bin number and max lateness.

Symbols Description Objective

Cn

max; L
n

max ; z
n Values of an optimal solution (1)

Cmax; Lmax ; z Values of a feasible solution —

CA
max; L

A
max ; z

A Values of the feasible solution returned by some
algorithm A

—

CB
max; L

B
max ; z

B Values of a solution minimizing the number of
bins

minCmax

CH
max; L

H
max ; z

H Values of a solution approximating the minimum
number of bins

minCmax

CE
max; L

E
max ; z

E Values of a solution minimizing the maximum
lateness (EDD)

minLmax

Cj, Lj Completion time and lateness of item j in a
generic solution

—

CLB ; LLB ; zLB Generic lower bounds to Cmax; Lmax; z, (Section
3.1)

—

CLB ¼ Cϕ Lower bound to Cmax derived by generic dual
feasible function(s) ϕ

—

CLB ¼ CG Lower bound to Cmax by Gilmore-Gomory model —

CLB ¼ CCCM Lower bound to Cmax by Carlier's et al. DFF [8] —

CLB ¼ CMT Lower bound to Cmax by Martello-Toth DFF [19] —

LLB ¼ LR Lower bound to Lmax by Proposition 3.2 —

LLB ¼ LER Best bound between LEmax and LR —

zLB ¼ zGERLB Lower bound to z combining CG and LER —

zLB ¼ zhxLB ; z
gx
LB ; z

gx0
LB

Lower bound to z by continuous relaxation of
models (HX), (GX), (gx0)

—

CUB; LUB; zUB Generic upper bounds to Cmax; Lmax; z (Section
3.2)

—

zUB ¼ zs &f
UB

Upper bound to z by sort-and-fit heuristic —

zUB ¼ zsvcUB Upper bound to z by Sequential Value Correction
heuristic

—

zUB ¼ zpbUB Upper bound to z by Price-and-Branch Algorithm —

Please cite this article as: Arbib C, Marinelli F. Maximum lateness mi
//dx.doi.org/10.1016/j.omega.2016.06.003i
any time at. Hence, minimizing the total amount of resource used
corresponds to minimize the time Cmax ¼maxjfCjg required to
complete all the jobs. In addition, we assume that each item j is
associated with a due date dj, and define Lmax as in Section 1.

For each jA J and tAT , introduce

� a 0–1 variable xjt that gets value 1 if and only if item j is assigned
to the t-th bin;

� a 0–1 variable zt that gets value 1 if and only if a bin is used at
time t.

With this position, we formulate the problem as:

ðkxÞ minα1Cmaxþα2LmaxX
tAT

xjt ¼ 1 jA J ð2Þ

X
jA J

ajxjt�ztr0 tAT ð3Þ

X
tAT

zt�Cmax ¼ 0 ð4Þ

txjt�Lmaxrdj jA J; tAT ð5Þ

xjt ; ztAf0;1g jA J; tAT ð6Þ

Equality (2) ensures that every job is completed; inequality (3)
that the resource is consumed according to availability; inequal-
ities (4) and (5) define the terms of objective function (1). The
notation ðkxÞ indicates that the formulation extends, by time-
indexing, the classical “Kantorovich” formulation ðkÞ of BIN PACKING
(see [22]).

2.3. Basic problem features

Problem (1)–(6) is NP-hard evenwith α1 ¼ α2 and dj¼0 for all j,
or when one of the two terms is neglected. For identical due dates
and α1 ¼ 0, we obtain the ordinary BINPACKING.

The minimization of Cmax is indeed related to that of Lmax. In
particular, any ϵ-approximate heuristic for the traditional bin
packing problem (e.g., [23,24]) is also able to approximate the
optimum of (1):

Proposition 2.1. Let LnmaxZ0 and zH be the value of a solution
obtained by an ϵ-approximated algorithm H for 1-BP. Suppose also
α140. Then

zH

zn
r1þϵ

α1

Proof. Let CB be the minimum number of bins necessary to
accommodate all items. Since H is ϵ-approximated,

zH ¼ α1C
H
maxþα2L

H
maxrα1ð1þϵÞCBþα2L

H
maxr ð1þϵÞðα1þα2ÞCB

¼ ð1þϵÞCB

(the second inequality holds because the maximum lateness of H
cannot exceed CH

max). If L
n

maxZ0, then znZα1C
n

maxZα1C
B (in fact B

finds an optimum to BIN PACKING). For α140, the thesis is then
readily obtained. □

Corollary 2.2. First Fit Decreasing and Best Fit Decreasing [24]
approximate (1) within a ratio 3

2α1
.

Cmax and Lmax may be conflicting objectives, though:
nimization in one-dimensional bin packing. Omega (2016), http:

http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003

Fig. 1. Schematic drawing of the objective function space (α1 ¼ 0:5; zUB
¼ 82; dn ¼ 63).

C. Arbib, F. Marinelli / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎4
Example 2.3. Take n¼ 2h, item sizes

aj ¼
2j

hðh�1Þ ahþ j ¼ 1�aj

and due dates dj ¼ 1; dhþ j ¼ hþ1 for j¼ 1;…;h.

A solution minimizing Cmax has exactly h bins of the form
fj;hþ jg. In this solution, Lmax ¼ Lh ¼ h�1. A solution minimizing
Lmax has instead hþ1 bins, the first of which is f1;…;hg. Here, Lmax

¼ 0 and Cmax ¼ hþ1. Thus, minimizing Cmax may not help mini-
mizing Lmax, and vice-versa. □

Suppose to use an algorithm B that finds the minimum Cmax as
a heuristic for minimizing (1): that is, B approximates the mini-
mum number of bins within a ratio ϵ¼0. With α1 ¼ α2 ¼ 1

2 in
Example 2.3, the ratio between the heuristic and the optimum
value is

α1hþα2ðh�1Þ
α1ðhþ1Þþα2 � 0

¼ 2h�1
hþ1

which tends to 2 when h-1. Thus Example 2.3 shows that the
bound given by Proposition 2.1 is asymptotically tight. The bound
clearly worsens as α1 decreases and eventually diverges for α1 ¼ 0.
This behavior is however unavoidable even for heuristics specifi-
cally designed for minimizing Lmax, since Lnmax could be zero.

2.4. Reformulation

Let yp
t Af0;1gn, pAP [f0g, be the incidence vectors of job sets

fulfilling knapsack constraint (3): such vectors are called patterns.
For any tAT , rewrite an integer solution xt ¼ ðx1t ;…; xntÞ of (3) as
xt ¼

X
pAP

λpt y
p
t

X
pAP

λpt r1 λpt Z0 and integer 8pAP

The first position, written for jA J, becomes

xjt ¼
X
pAPj

λpt

where Pj denotes the set of patterns p that cover j, i.e., those such
that ypj ¼ 1. Replacing in (2)–(6) we get the following formulation
ðgxÞ, that can be seen as a time-indexed extension of the well-
known pattern-based formulation ðgÞ of BIN PACKING (see [15]):

ðgxÞ min α1Cmaxþα2Lmax ¼ α1

X
tAT

X
pAP

λpt þα2Lmax

X
tAT

X
pAPj

λpt ¼ 1 jA J

X
pAP

λpt r1 tAT

f 2j ðtÞ
X
pAPj

λpt �Lmaxr0 jA J; tAT

λpt Z0 and integer pAP; tAT

where f 2j ðtÞ ¼ Lj ¼ t�dj (note that ðgxÞ can easily be generalized to
other objectives: it suffices re-define f 2j ðtÞ). Variables λtp get value
1 if pattern p is adopted at time t, and 0 otherwise: therefore their
sum over P and T gives the total amount of bins used, that is Cmax.
In ðgxÞ, patterns are defined offline according to any resource type
and consumption scheme. Thus, (GX) is independent on the
resource dimension s, that instead contributes to define the pri-
cing problem to be solved for pattern generation. Unlike the
Dantzig–Wolfe decomposition of ordinary cutting stock or bin
packing, the generation of a promising pattern must be iterated for
all the tAT . For s¼1, each pattern generation is a 0–1 KNAPSACK.

The Pareto frontier of Cmax vs. Lmax is usually explored by
separately constraining the terms the objective function consists
of. Model (GX) fits very efficiently to this purpose. Specifically, the
Please cite this article as: Arbib C, Marinelli F. Maximum lateness mi
//dx.doi.org/10.1016/j.omega.2016.06.003i
number of bins can be constrained via the time horizon T; the
lateness by excluding from the t-th pricing problem all the items
that have, at t, a lateness larger than a given upper bound LUB.
Observe that reasonable trade-off solutions spread over a small
interval ½CLB;CUB� of used bins. Therefore, Pareto-optimal solutions
are found by solving with α1 ¼ 0 the few problems for
jT j A ½CLB;CUB�, or equivalently with α1 ¼ 1 the few problems with
LmaxrLUB.
3. Use of bounds

A careful use of bounds in formulations ðkxÞ and ðgxÞ definitely
improves their performance. Dual (i.e., lower) and primal (i.e.,
upper) bounds to the objective function play a well-known role in
pruning the search tree during branch-and-bound and reducing
optimality gaps. But separate bounds to the terms that form the
objective function are also very useful. On the one hand, upper
bounds to Cmax can help

� reduce T and hence the number of time-indexed variables in
both ðkxÞ and ðgxÞ.

On the other hand, lower bounds to Lmax can be fruitfully
employed to

� fix variables xjt of ðkxÞ through constraints (5);
� improve the dual LP bound of ðgxÞ through the reduction of the

“big M” f 2j ðtÞ in the third set of inequalities.

Fig. 1 shows a schematic drawing of the objective function
space Cmax vs. Lmax. Appealing values belong to the dark grey tri-
angle: the combination of bounds to the two terms and to the
objective function as a whole allow to infer new (and possibly
stronger) specific bounds to each term.

3.1. Lower bounds

If CLB; LLB are individual lower bounds to Cmax; Lmax, then

zLB ¼ α1⌈CLB⌉þα2⌈LLB⌉

is indeed a lower bound to (1) – notice that round up of LLB is
authorized by Assumption 1.1 (ii) (integer due dates). We can
prove the following:

Proposition 3.1. Let CLB be any lower bound to Cmax, and Fn be the
value of a schedule that minimizes F ¼maxff jðCjÞg. If the fj are
nimization in one-dimensional bin packing. Omega (2016), http:

http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003

C. Arbib, F. Marinelli / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 5
regular, then

α1⌈CLB⌉þα2F
n

is a lower bound to f ¼ α1Cmaxþα2F .

Proof. Under regularity, Fn is in fact a lower bound to the value of
F attained by a minimizer of f, see [2]. □

Proposition 3.1 provides an easy way to compute a lower bound
to (1). Sequence the items one after the other in EDD order: let
CE ¼P

jA Jaj be the completion time of J, and LE be the maximum
lateness so obtained. Since EDD is a minimizer of Lmax, Proposition
3.1 implies

zELB ¼ α1⌈C
E⌉þα2⌈L

E⌉ ð7Þ
Note that, although trivial, (7) improves the lower bound

computed by solving the continuous relaxation ðkxrÞ of ðkxÞ: in fact,
the Cmax term of ðkxrÞ equals CE and, unlike the EDD sequencing,
ðkxrÞ does not ensure r2 item fractions per bin.

Let us examine a few ways of improving (7) by strengthening
CE and LE .

Lower bounds to Cmax can in general be obtained via Dual
Feasible Functions (DFF), see [10]:

Definition 3.1. A function ϕ : ½0;1�-½0;ϕð1Þ� is dual feasible ifX
xAS

xr1)
X
xAS

ϕðxÞrϕð1Þ

for any finite discrete SD ½0;1�.

Definition 3.1 is used to introduce a lower bound Cϕ ¼ ⌈
P

jA Jϕ
ðajÞ⌉ to Cmax. A trivial DFF is ϕðajÞ ¼ aj, ϕð1Þ ¼ 1, that gives the
lower bound Cϕ ¼ ⌈

P
jA Jaj⌉¼ ⌈CE⌉ used in (7). Normally, a strict

lower bound CG to Cmax is computed by the continuous relaxation
of Gilmore–Gomory's model (G) for the BIN PACKING. In fact, CG is a
DFF: if πn

j is an optimal dual solution to (G), then ϕðajÞ ¼ πn

j and

ϕð1Þ ¼ 1 imply Cϕ ¼ ⌈CG⌉rCmax. One can prove that CG is the best
possible DFF. However, its computation is expensive, because the
πn

j cannot be obtained in closed form and require column gen-
eration. A trade-off between CPU time and bound quality is offered
by the families of DFF proposed by Carlier et al. [8], and by those
implicitly adopted by Martello and Toth [19]: the former experi-
mentally proved to give the best trade-off among the functions
most frequently used for BIN PACKING, see [10]. Both the bounds
derived, respectively denoted as CCCM and CMT , can be computed
in polynomial time. In our experiments, maxfCCCM;CMT g turned
out to be as effective as CG (see Section 4).

Lower bound LE can be improved as follows:

Proposition 3.2. Let m(k) be any lower bound to the minimum
number of bins necessary to accommodate items 1;…; k. Then

LR ¼ max
1rkrn

max
0r jomðkÞ

fmðkÞ� j�dk� jg
� �

ð8Þ

is a lower bound to Lnmax.

Proof. Call Lt the maximum lateness attained in bin t by a mini-
mizer of (1). The first k items require no less than m¼mðkÞ bins,
and each bin contains at least one element. Thus the minimizer
assigns at least an item jAK ¼ f1;…; kg to a bin tZm. Since k is the
less urgent of these items,

LnmaxZLtZLj ¼ t�djZm�djZm�dk ð9Þ

Suppose now that the minimizer places item iAK in bin m�1.
If i¼k, then k is not placed in a bin tZm, therefore inequality (9)
Please cite this article as: Arbib C, Marinelli F. Maximum lateness mi
//dx.doi.org/10.1016/j.omega.2016.06.003i
becomes

LnmaxZLtZm�dk�1

If instead iak, then

LnmaxZLm�1ZLi ¼ ðm�1Þ�diZ ðm�1Þ�dk�1

Taking the most optimistic of the two cases above

LnmaxZminfm�1�dk�1;m�dk�1g ¼m�1�dk�1 ð10Þ
To get (8) we then just need to repeat the argument for bins
m�2;m�3;…, take the strongest of the m(k) inequali-
ties obtained, and then choose again the best bound for
k¼ 1;…;n. □

By Propositions 3.1 and 3.2 we derive

LER ¼maxf⌈LE⌉; LRg ð11Þ
and

zGERLB ¼ α1⌈C
G⌉þα2L

ER
LB ð12Þ

To shorten the computation of LR in (11) one can first evaluate
the inner argument of (8) by an easy bound m(k) (e.g., CE applied
to the first k items), then focus on the best k and refine with, say
CG .

Bound (11) can be used to strengthen model ðgxÞ. We can in fact
write Lmax ¼ LERþΔL, and reformulate the model using real vari-
able ΔL:

ðgx0Þ α2L
ERþmin α1Cmaxþα2ΔLX

tAT

X
pAPj

λpt ¼ 1 jA J

X
pAP

λpt r1 tAT

maxf0; t�dj�LERg
X
pAPj

λpt �ΔLr0 jA J; tAT

λpt Z0 and integer pAP; tAT

so taking advantage of a reduced coefficient in the right-hand side
of the third set of constraints.

3.2. Upper bounds

A simple upper bound to Cmax is immediately obtained:

Proposition 3.3. Let CB be the minimum number of bins in a tradi-
tional BIN PACKING problem. Then a minimizer of (1) uses ominfn;2CBg
bins.

Proof. See [2]. □

Proposition 3.3 give the number m of time-slots that it is sen-
sible to consider in formulations ðkxÞ and ðgxÞ.

Example 3.4. For example, take HBPP.20015009.02720 [12]: this
instance has n¼200 items, and CB ¼ 112. Thus m can be set to
minf200;224g ¼ 200, implying 40,000 0–1 variables in model ðkxÞ,
and 200 patterns generated per pricing iteration in model ðgxÞ.

The bound of Proposition 3.3 can be improved as follows:

Proposition 3.5. Let zUB; LLB respectively be any upper bound to (1)
and lower bound to the term Lmax in (1). Then

Cmaxrmin
zUB�α2LLB

α1

� �
; zUBþα2dn
� �� �

¼ CUB ð13Þ

Proof. Inequality α1Cmaxþα2LmaxrzUB is combined with LmaxZ
LLB to obtain the first argument within brackets. We then observe
nimization in one-dimensional bin packing. Omega (2016), http:

http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003

C. Arbib, F. Marinelli / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎6
that the item placed in the last bin has due-date, at the latest, dn.
Hence LmaxrCmax�dn, and using α1þα2 ¼ 1 we obtain the second
argument. □

In a similar way we get a bound to Lmax:

Proposition 3.6. Let zUB;CLB respectively be any upper bound to (1)
and lower bound to the term Cmax in (1). Then

Lmaxr
zUB�α1CLB

α2

� �
¼ LUB ð14Þ

Proof. Trivial. □

Bound (14) allows variable fixing:

� In formulation ðkxÞ, xjt≔0 for tZdjþLUB and any jA J.
� In formulation ðgxÞ, λpt≔0 for tZdjþLUB and any pAPj.

The quality of bounds (13) and (14) depends on the heuristic upper
bound zUB. In this paper, we tested two heuristics: Sort-and-fit
(S&F) and Sequential Value Correction (SVC).

A Sort-and-fit heuristic is a combination of a bin packing
heuristic and a sorting rule applied to J:

Algorithm Sort-and-fit

1. Sort items according to sorting rule;
2. If all items have been placed, then output zS &F

UB and

stop; else, assign the next unplaced item to the bin

with smallest residual capacity (still sufficient to

accommodate the item);
3. If no such item can be found, open a new bin; go to step

2.

We tried Sort-and-fit in two variants with different sorting
rules:

(a) Earliest Due Date first (EDD) rule;
(b) EDD plus First Fit Decreasing (FFD) whenever due dates are

identical.

A SVC heuristic [6] associates a pseudo-price πj with each jA J,
and generates N solutions by maximizing the total pseudo-price of
the items included in each bin. Pseudo-prices are conveniently
updated at run time.

Algorithm Sequential Value Correction
Initialize pseudo-prices for all the items of J;
For N times, repeat:

1. Fill next bin by maximizing the total price of the

items included;

2. If not all items have been accommodated yet, then go

to step 1;

3. Otherwise, update zsvcUB to the best solution generated

so far; update pseudo-prices.

The best choice of pseudo-prices depends on application. We
obtained good results with pseudo-prices that take into account (i)
due-dates (high price to the most urgent part) and (ii) size (high
price to the largest part). The pseudo-price of an item is further
increased if the item is responsible of the maximum lateness or of
large trim-loss in the current solution.

In detail, pseudo-prices are parametrized with positive real
ρ1;ρ2;ρ3;ρ4. Initialization is as follows:

πj≔
ρ1

djþ1
þaj ð15Þ
Please cite this article as: Arbib C, Marinelli F. Maximum lateness mi
//dx.doi.org/10.1016/j.omega.2016.06.003i
With ρ1 ¼ 1000, pseudo-prices turn out to be initialized by non-
decreasing due dates and, for identical due dates, by non-
increasing size (in our tests, item sizes are 40:001). After a new
solution is obtained, pseudo-prices are updated for each bin K of
the solution and item jAK:

πj≔πj 1þ1�P
iAKai

ρ2

� 	
ð16Þ

Moreover, if the maximum lateness occurs at item h, price πh is
further updated:

πh≔πh 1þρ
Ch

dhþ1

� 	ρ4
 �
ð17Þ

where ρ is a random variable uniformly distributed in ½1;1þρ3�. In
this way, the pseudo-price is more than doubled: the increase is
positively correlated to the current maximum lateness (using ρ4
o1 the increase is sub-linear).

Example 3.7. Let us go back to instance HBPP.20015009.02720
(Example 3.4). Computing (13) with zUB ¼ zsvcUB and LLB ¼ LER, we get
CUB ¼ 113: the variables of ðkxÞ are so reduced to
200 � 113¼ 22;600, and the patterns of ðgxÞ generated per pricing
iteration to r113.

As a general observation, Sort-and-fit is very quick – in fact, it
runs in OðnlognÞ time. Sequential Value Correction, instead, is not
polynomial since it requires the repeated solution of 0–1 KNAPSACK

problems, but in general it provides better solutions (see Section 4).
Both Sort-and-fit variants approximate the optimal solution

within a ratio 1:75=α1 (see Proposition 2.1) since they can be read
as on-line First Fit algorithms for BIN PACKING (see [24]). This ratio is
theoretically worse than that of First Fit Decreasing or Best Fit
Decreasing heuristics (Corollary 2.2); however, the latter algo-
rithms do not take due dates into account and are therefore out-
performed in practice by Sort-and-fit.

Upper bounds can be further improved by Price-and-Branch.
Indeed, models ðgxÞ and ðgx0Þ provide a means for exactly solving
the problem by Branch-and-Price, i.e., column generation within
implicit enumeration. Branch-and-Price algorithms for 1-BP were
proposed by Vanderbeck [30] and de Carvalho [26]. Those schemes
can easily be adapted to ðgx0Þ, since the variables associated with
each time slot are substantially the same as in the traditional 1-
dimensional BIN PACKING. The design of an efficient exact algorithm
for ðgx0Þ, however, goes beyond the scope of this paper. Here we are
mainly interested to reduce the primal-dual gap one can obtain via
the bounds of Sections 3.1 and 3.2. To this aim, we implemented
the following procedure:

Algorithm Price-and-Branch

1. Find CG solving the continuous relaxation of ðgÞ by

column generation;

2. Compute CUB, LUB and LLB;
3. Set model ðgx0Þ with CUB and LLB, and initialize the

master problem with the best primal solution of the

Sort-and-fit and the Sequential heuristic (Section 3.2);
4. Compute lower bound zgx

0
LB solving the continuous

relaxation of ðgx0Þ by column generation;

5. Restore the integrality constraints of the (par-

tial) formulation of ðgx0Þ obtained at step 4, and get a

primal bound zpbUB by solving the resulting MILP.

The time required by step 1 of Price-and-Branch can be reduced
by replacing CG with a DFF bound, such as CCCM and CMT descri-
bed in Section 3.1.
nimization in one-dimensional bin packing. Omega (2016), http:

http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003

Table 2
Lower bounds.

Inst. sets zkxLB zELB zGERLB zgx
0

LB

n inst. (#) Value CPU time (s) impr. (%) impr. (%) CPU time (s) impr. (%) CPU time (s)

20 1 6.0 o0:005 16.7 – o0:005 7.1 0.09
40 3 10.7 0.02 12.2 – 0.02 4.2 0.27
60 9 15.5 0.05 15.0 0.5 0.05 2.8 0.57
80 3 17.0 0.09 15.7 – 0.17 2.5 1.60
100 4 23.5 0.38 17.0 – 0.19 1.8 2.09
120 10 31.0 0.54 16.4 0.5 0.24 1.4 2.92
140 3 41.0 0.76 15.8 0.6 0.18 1.1 3.37
160 7 45.3 0.99 14.8 1.3 0.31 1.1 5.01
180 5 51.8 1.37 15.4 1.2 0.38 0.8 7.35
200 8 53.6 1.48 16.3 1.0 0.70 0.8 12.16

Table 3
Primal-dual gaps.

Inst. sets Basic Combinatorial Reformulation Price-and-Branch

n inst. (#) opt. (#) Gap (%) Opt. (#) Gap (%) Opt. (#) Gap (%) CPU time (sec.) Opt. (#) Gap (%) CPU time (sec.)

20 1 1 0.0 0 7.1 1 0.0 0.09 1 0.0 0.11
40 3 0 4.0 0 12.0 0 4.0 0.27 0 4.0 0.49
60 9 0 3.9 0 9.3 1 2.4 0.57 1 2.4 0.62
80 3 2 0.8 0 5.1 1 1.6 1.60 1 1.6 1.59
100 4 1 6.3 0 9.1 0 2.6 2.09 0 2.2 3.48
120 10 0 13.4 0 8.3 1 1.7 2.92 2 1.3 4.51
140 3 0 25.3 0 9.2 0 2.1 3.37 0 1.0 19.90
160 7 0 23.7 0 7.9 0 2.6 5.01 0 1.3 82.34
180 5 0 24.0 0 8.5 0 2.7 7.35 0 1.4 176.56
200 8 0 29.7 0 8.0 0 2.1 12.16 0 1.9 547.09

C. Arbib, F. Marinelli / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 7
We finally observe that the upper bound zpbUB computed at step
5 can be reused in (13), (14) to further improve the bounds on Cmax

and Lmax in an iterated application of Algorithm Price-and-Branch,
see Section 4.2.
(

4. Computational experience

Computational tests were done with ðkxÞ and ðgxÞ setting T ¼
CUB according to (13), and with the respective strengthened ver-
sions ðkx0Þ and ðgx0Þ where we took advantage of upper and lower
bound to Lmax.

The algorithms were coded in Cþþ and compiled with
Microsoft cl compiler (version 12.00.8804) with option /O2.
Numerical precision was set to 10�6. Problems were solved on an
Intel

s

Xenon
s

E5620 2.40 GHz with 16Gb RAM. (Integer) linear
programs were solved by Cplex 12.5 with default setting, initi-
alized with the best primal solution available.

Due-dates were added to fifty-three non-IRUP bin packing
benchmark instances with nA ½20;200�, see [12], normalized as
usual to unit stock lengths. Due-dates were randomly chosen in
the interval ½0;0:6⌊CGc�, where CG denotes as usual the optimum of
the continuous relaxation of ðgÞ. All the instances tested can be
downloaded from [18].

For all problems:

� we chose α1 ¼ α2 ¼ 0:5 in the objective function (1);
� the parameters of the SVC heuristic were set to N¼ ρ1 ¼ 1000;

ρ2 ¼ 100;ρ3 ¼ 0:05 and ρ4 ¼ 0:3.

Tables 2–4 report the test results; rows corresponds to instance
sets, and each entry is a mean value computed with reference to
the number of instances in the set.
Please cite this article as: Arbib C, Marinelli F. Maximum lateness mi
//dx.doi.org/10.1016/j.omega.2016.06.003i
The experiments aimed to:

(i) Assess the quality of the dual bounds (7) and (12), and the
tightness of model ðgx0Þ (Section 3.1).

(ii) Compare the primal-dual gaps obtained by the basic model
ðkxÞ, its reformulation (model (gx0) with SVC or Price-and-
Branch), and the combinatorial approach (Sort-and-Fit heur-
istic vs. dual bound (7)) (Section 4.2).

iii) Measure the effect on formulations of the bounds to Lmax

(Section 4.3).
4.1. Dual bounds

Table 2 shows how the combinatorial and the reformulation
approaches progressively strengthen the basic (and somewhat
trivial) lower bound zkxLB obtained by solving the continuous
relaxation of ðkxÞ. Indeed, the combinatorial bound zELB (7) sensibly
improves zkxLB, and the method is extremely fast (CPU time always
less than 0.005 s). The enhanced bound zGERLB (12) slightly improves
zELB (see column 6 of Table 2); the CPU time increases (because we
need to perform column generation), see column 7 of Table 2, but
in the majority of cases stays well under the time required by the
basic linear program. On our benchmark instances, however, the
bound CLB ¼ Cϕ ¼maxfCCCM;CMT g provided by DFF works as well
as CG: in fact, the relevant bound zϕERLB is obtained with a CPU time
comparable to that needed for computing zELB.

In turn, the reformulation bound improves zGERLB at the expense
of increasing roughly tenfold the CPU time, (see column 8 of
Table 2). The quickness with which zELB and zGERLB are computed
make them most suitable for implementation within enumeration
schemes. However, when the bound is used to assess the quality of
a heuristic, this feature loses importance in comparison to the
nimization in one-dimensional bin packing. Omega (2016), http:

http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003

Table 4
Benefit from improved Lmax lower and upper bounds.

Inst. set Program (KX) Program (GX) Price-and-
Branch on
(GX)

n inst.
(#)

zkxLB CPU
time (s)

Gap
1 h (%)

zgxLB Cols
(#)

CPU
time (s)

zpbUB CPU
time (s)

20 1 6.0 0.00 0.00 6.0 161.0 0.03 7.5 0.44
40 3 10.7 0.02 4.05 10.8 587.0 0.39 13.0 1.40
60 9 15.5 0.05 3.93 15.9 1065.8 1.49 18.9 26.15
80 3 17.0 0.09 0.83 17.0 1850.3 5.57 20.5 6.02
100 4 23.5 0.38 6.30 23.8 2351.8 9.72 28.6 11.43
120 10 31.0 0.54 13.44 31.5 2694.4 14.82 37.4 384.53
140 3 41.0 0.76 25.29 41.8 3004.7 19.88 49.2 456.97
160 7 45.3 0.99 23.66 46.4 3480.3 31.39 54.4 1001.67
180 5 51.8 1.37 23.98 52.7 4394.0 50.96 62.3 1001.39
200 8 53.6 1.48 29.71 54.5 5267.9 84.62 64.9 990.59

Program (kx0) Program (gx0) Price-and-
Branch on
(gx0)

20 1 7.0 0.02 0.00 7.5 102.0 0.02 7.5 0.02
40 3 12.0 0.02 5.62 12.5 311.3 0.11 13.0 0.24
60 9 17.9 0.02 3.71 18.4 472.9 0.24 18.9 0.09
80 3 19.7 0.02 1.63 20.2 1031.3 1.08 20.5 0.15
100 4 27.5 0.03 2.56 28.0 989.8 1.30 28.6 1.57
120 10 36.2 0.05 2.11 36.8 1119.3 1.81 37.3 1.81
140 3 47.8 0.06 3.22 48.3 1115.3 1.90 48.8 16.67
160 7 52.3 0.10 3.89 53.3 1312.4 3.11 54.0 77.63
180 5 60.5 0.12 2.80 61.1 1600.8 4.90 62.0 169.58
200 8 63.0 0.13 2.80 63.6 2080.1 9.10 64.8 535.63

C. Arbib, F. Marinelli / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎8
bound quality, since the result is often crucial to close the gap and
thus certify optimality.

4.2. Gaps

Primal-dual gaps (Table 3) are referred to the following trials:

� basic: gap obtained by Cplex after 1 hour of computation on ðkxÞ
� combinatorial: zs &f

UB �zELB, where zs &f
UB ¼minfzs&fðaÞUB ; zs&fðbÞUB g

� reformulation: zsvcUB�zgx
0

LB� Price-and-Branch: zpbUB�zgx
0

LB

As observed at the end of Section 3.2, Sort-and-Fit heuristics
are very fast. Variant (b) produces slightly better results than
variant (a) (1.87% on average) – although (b) does not always
dominates (a) (in 7 cases (a) provides better solutions). The SVC
algorithm definitely dominates S&F (solutions are improved by
5.7% on average) and runs in 1.13 s on average. In particular, the
solutions provided by SVC are near-optimal for the Cmax term (on
average they have 1.34 bins more than the lower bound CG), but
show an Lmax on average 3.77 time-periods longer than LE (with a
mean gap of 17.2%).

For each approach and instance group, Table 3 shows the
number of optima found and the optimality gap. CPU time is
indicated for reformulation and Price-and-Branch only: in the
basic case, the time limit of 3600 s was always reached, with the
exception of the four cases in which an optimumwas found; in the
combinatorial case, CPU time turned out to be always under
0.005 s.

The combinatorial approach does not always improve the basic,
but is much faster (the basic approach takes one hour CPU) and
the result seems scalable, i.e. quite insensible to instance size.
Noticeable gap reductions are obtained by the reformulation
within few CPU seconds (time roughly increases with the square of
problem size). The further computational effort required by step
Please cite this article as: Arbib C, Marinelli F. Maximum lateness mi
//dx.doi.org/10.1016/j.omega.2016.06.003i
5 of Algorithm Price-and-Branch is apparently not much worthy:
gap reduction can indeed be remarkable, up to half in the largest
instances; but the number of optima found is basically the same,
and moreover, CPU time fits an exponential behaviour.

The gap can be improved by plugging into the formulation the
bound zpbUB obtained at step 5 of Algorithm Price-and-Branch, and
iterate the algorithm from step 2. With this method, we observed
zpbUB improving zsvcUB in 19 cases of 53. After the third iteration (in 17
cases, after the second), no improvement is obtained. The lower
bound slightly increases but not enough to change after round-up.
The upper bound decreases in 3 cases, in 2 of which the primal-
dual gap is reduced to half. CPU time clearly grows much, but not
the number of columns, that increases on average by some 1%.

4.3. Effect of improved bounds

The improved lower and upper bounds (11) and (14) to Lmax not
only have a strong effect on both (KX) and (GX), but also on the
Price-and-Branch algorithm, see Table 4. Benefits are particularly
evident when the problem has many parts.

Variable fixing via (14) in (KX) strengthens the continuous
relaxation, thus reducing model size. On the one hand, this both
improves the dual bound at root (that is, on average, 16%) and
reduces the CPU time to find it (column 4 of Table 4: in most
instances with 100 parts, time roughly drops by one order of
magnitude); on the other hand, solver performance is enhanced:
one hour CPU time takes gaps as large as 40% (on average, 15%) to
less than 10% (on average 3%); moreover, gaps decrease as far as
the number of parts increases.

Reducing the “big M” f 2j ðtÞ in (GX) entails a similar benefit, and
reduces on average the dual bound by 17%. This is a critical
improvement: from a mean value of 33.8 (worse than the mean
zELB, 38.4) the bound increases to 39.3, see column 5 in Table 2 and
column 6 in Table 4. At a first glance the effect is quite surprising,
as in the worst case CE can be half the optimum Cn

max of the
associated BIN PACKING, whereas CG takes very often advantage of
the Integer Round-up Property (IRUP); however, the instances
where the dual bound is improved are exactly those for which the
IRUP is ineffective, and at the same time the difference between CG

and CE is almost always close to zero. In other words, the BIN

PACKING polyhedron is not enough strengthened by the reformula-
tion to compensate the looseness of the activation constraints that
define Lmax; on the other hand, zELB implies that each part is at most
fractioned into two segments.

CPU time is reduced by roughly one order of magnitude, from
an average of 27 s to 2.9. This is due both to the generation of
columns – that are more than halved – and to a simplification of
pricing – because pricing in period t has just to do with parts due
by a date rt�LUB. Reducing the columns generated also improves
Price-and-Branch: the average CPU time passes from 480 to 109 s,
and gaps are slightly improved.

4.4. Side experiments

In the experiments of Section 4, the benchmark consists of difficult
instances of 1-dimensional BIN PACKING. To get further indications on
the approach proposed, we tested our methods on eighty random
instances generated by CUTGEN1 [13] with the following setting: N
¼ nAf20;40;60;80g;C ¼ stock length ¼ 1000;V1¼ 0:01;V2 ¼ 0:5,
that is, item lengths between 10 and 500.

As in previous tests, the combinatorial gap zs &f
UB �zELB is strongly

reduced (from 4.30% to 0.66%, mean values). But unlike runs on
non-IRUP instances, the optimum is reached in 70 cases out of 80,
which may suggest that the hardness of the underlying BIN PACKING
is inherited by the scheduling problem.
nimization in one-dimensional bin packing. Omega (2016), http:

http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003

C. Arbib, F. Marinelli / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 9
On the other hand, an analysis performed to investigate the
role of α1 and α2, suggests that the problem gets harder as far as
the scheduling term of the objective function gets importance. In
particular, on benchmark instances with 200 items,

� Both the combinatorial and the reformulation gap increase with
α2: the former, from 6.45% (α2 ¼ 0:2) to 10.65% (α2 ¼ 0:8); the
latter, from 1.88% (α2 ¼ 0:2) to 3.32% (α2 ¼ 0:8, in this case with
a reduction of CPU time).

� Also the reformulation looses tightness when α2 grows: in the
same range ½0:2;0:8�, the improvement zgx

0
LB vs. zGERLB decreases

from 1.20% to 0.90%.
� However, the advantage of (gx0) vs. (GX) in terms of bound

improvement, number of columns and CPU time, becomes more
visible for larger values of α2.

Finally, we analyzed the behavior of the Price-and-Branch
algorithm in correlation with due date distribution. To this pur-
pose, for each of the ten benchmark instances with 120 parts, we
generated eleven random instances with due dates in
½0;0:1d � ⌊CGc�, i¼ 0;…;10. The optimum value is clearly non-
increasing as d increases. The combinatorial approach shows
gaps increasing with d; instead, Price-and-Branch appears uncor-
related with d as its gap (CPU time) variation is non-monotonic
between 1.3% and 2.0% (5 and 10 s, with the exception of three
peaks mainly due to the MILP solution).
5. Conclusions

We presented and exact ILP formulation and a heuristic algo-
rithm for a 1-dimensional bin packing problem with due dates,
where the objective is to minimize a convex combination of the
number of bins and the maximum lateness of parts.

Cutting/packing problems with due dates are increasingly stu-
died and have important practical applications. One quality of the
approach here described is flexibility: in fact, a time-indexed for-
mulation can easily be extended to different scheduling objectives.
On the other hand, a typical drawback of this type of formulation
is the quite large number of variables and constraints. The crucial
role that in our experience lower and upper bounds played to
strengthen activation constraints and to fix 0–1 variables suggests
that, in future research, an adequate attention is to be paid to
bounding effectively the objective function. Other issues, such as
the design of an exact Branch-and-Price algorithm, the computa-
tion of the Pareto frontier of Cmax vs. Lmax and the extension of the
bound strengthening technique to different scheduling objective
functions deserve further investigation. Finally, future general-
izations of the approach to the s-dimensional problem can take
advantage from the decomposition here described.
References

[1] Adler M, Gibbons PB, Matias Y. Scheduling space-sharing for internet adver-
tising. Journal of Scheduling 2002;5(2):103–19.
Please cite this article as: Arbib C, Marinelli F. Maximum lateness mi
//dx.doi.org/10.1016/j.omega.2016.06.003i
[2] Arbib C, Marinelli F. On cutting stock with due dates. Omega International
Journal of Management Science 2014;46:11–20.

[3] Arbib C, Di Iorio F, Marinelli F, Rossi F. Cutting and reuse: an application from
automotive component manufacturing. Operations Research 2002;50(6):923–34.

[4] Arbib C, Servilio M, Smriglio S. A competitive scheduling problem and its
relevance to UMTS channel assignment. Networks 2004;44(2):132–41.

[5] Aktin T, Özdemir RG. An integrated approach to the one-dimensional cutting
stock problem in coronary stent manufacturing. European Journal of Opera-
tional Research 2006;196(2):737–43.

[6] Belov G, Scheithauer G. Setup and open-stacks minimization in one-
dimensional stock cutting. INFORMS Journal on Computing 2007;19(1):27–35.

[7] Bennel JA, Lee L-S, Potts CN. A genetic algorithm for two-dimensional bin
packing with due dates, Int. Journal of Production Economics 2013;145
(2):547–60.

[8] Carlier J, Clautiaux F, Moukrim A. New reduction procedures and lower
bounds for the two-dimensional bin packing problem with fixed orientation.
Computers and Operations Research 2007;34(8):2223–50.

[9] Chen Z-L, Powell WB. Solving parallel machine scheduling problems by col-
umn generation. INFORMS Journal on Computing 1999;11(1):78–94.

[10] Clautiaux F, Alvés C, Valerio de Carvalho J. A survey of dual-feasible and
superadditive functions. Annals of Operational Research 2010;179:317–42.

[11] Detti P, Agnetis A, Ciaschetti G. Polynomial algorithms for a two-class multi-
processor scheduling problem in mobile telecommunications systems. Journal
of Scheduling 2005;8(3):255–73.

[12] Dresden Cutting and Packing Group (CaPaD), 〈http://www.math.tu-dresden.de/
�capad/〉.

[13] Gau T, Wäscher G. CUTGEN1: a problem generator for the standard one-
dimensional cutting stock problem. European Journal of Operational Research
1995;84(3):572–9.

[14] Giannelos NF, Georgiadis MC. Scheduling of cutting-stock processes on mul-
tiple parallel machines. Transactions of the Institution of Chemical Engineers
2001;79(Part A):747–53.

[15] Gilmore PC, Gomory RE. A linear programming approach to the cutting stock
problem. Operations Research 1961;8:849–59.

[16] Hartmann S, Briskorn D. A survey of variants and extensions of the resource-
constrained project scheduling problem. European Journal of Operational
Research 2010;1:1–14.

[17] Li S. Multi-job cutting stock problemwith due-dates and release-dates. Journal
of the Operational Research Society 1996;47:490–510.

[18] Marinelli F, Arbib C. Dataset of the paper maximum lateness minimization in
one-dimensional bin packing. ResearchGate network; 2015. 〈https://www.
researchgate.net/profile/Fabrizio_Marinelli2〉.

[19] Martello S, Toth P. Knapsack problems – algorithms and computer imple-
mentation. Chichester: Wiley; 1990.

[20] Pinedo ML. Scheduling: theory, algorithms, and systems. 3rd edition. Berlin:
Springer-Verlag; 2008.

[21] Reinertsen H, Vossen TWM. The one-dimensional cutting stock problem with
due-dates. European Journal of Operational Research 2010;201:701–11.

[22] Rosenhead J. IFORS' operational research hall of fame Leonid Vitaliyevich
Kantorovich. International Transactions in Operational Research 2003;10
(6):665–7.

[23] Seiden SS. On the online bin packing problem. Journal of the ACM 2002;49
(5):640–71.

[24] Simchi-Levi D. New worst-case results for the bin-packing problem. Naval
Research Logistics 1994;41(4):579–85.

[25] T'Kindt V, Billaut J. Multicriteria scheduling - theory, models and algorithms.
2nd edition. Berlin: Springer-Verlag; 2006.

[26] Valerio de Carvalho J. Exact solution of bin-packing problems using column
generation and branch-and-bound. Annals of Operations Research
1999;86:629–59.

[27] van den Akker M, Hoogeveen H, van de Velde S. Parallel machine scheduling
by column generation. Operations Research 1999;47(6):862–72.

[28] van den Akker M, Hoogeveen H, van de Velde S. Column generation. In:
Desaulniers G, Desrosiers J, Solomon MM, editors. Applying column genera-
tion to machine scheduling. Springer Science; 2005. p. 303–30.

[29] van den Akker M, Hurkens CAJ, Savelsbergh MWP. Time-Indexed formulations
for machine scheduling problems: column generation. INFORMS Journal on
Computing 2000;12(2):111–24.

[30] Vanderbeck F. Computational study of a column generation algorithm for bin
packing and cutting stock problems. Mathematical Programming 1999;86:565–94.

[31] Yazgaç T, Özdemir RG. A cutting sequencing approach to modular manufacturing.
Journal of Manufacturing Technology Management 2006;15(1):20–8.
nimization in one-dimensional bin packing. Omega (2016), http:

http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref1
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref1
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref1
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref2
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref2
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref2
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref3
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref3
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref3
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref4
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref4
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref4
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref5
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref5
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref5
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref5
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref6
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref6
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref6
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref7
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref7
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref7
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref7
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref8
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref8
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref8
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref8
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref9
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref9
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref9
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref10
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref10
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref10
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref11
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref11
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref11
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref11
http://www.math.tu-dresden.de/~capad/
http://www.math.tu-dresden.de/~capad/
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref13
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref13
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref13
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref13
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref14
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref14
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref14
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref14
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref15
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref15
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref15
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref16
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref16
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref16
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref16
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref17
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref17
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref17
https://www.researchgate.net/profile/Fabrizio_Marinelli2
https://www.researchgate.net/profile/Fabrizio_Marinelli2
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref19
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref19
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref20
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref20
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref21
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref21
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref21
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref22
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref22
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref22
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref22
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref23
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref23
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref23
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref24
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref24
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref24
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref25
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref25
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref26
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref26
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref26
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref26
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref27
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref27
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref27
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref28
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref28
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref28
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref28
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref29
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref29
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref29
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref29
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref30
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref30
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref30
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref31
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref31
http://refhub.elsevier.com/S0305-0483(16)30305-X/sbref31
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003
http://dx.doi.org/10.1016/j.omega.2016.06.003

	Maximum lateness minimization in one-dimensional bin packing
	Introduction
	Our problem
	Literature review
	This contribution

	Notation, formulation and problem properties
	Notation
	Formulation
	Basic problem features
	Reformulation

	Use of bounds
	Lower bounds
	Upper bounds

	Computational experience
	Dual bounds
	Gaps
	Effect of improved bounds
	Side experiments

	Conclusions
	References

