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Abstract 

 

         In the usual data envelopment analysis (DEA) setting, as pioneered by Charnes 

et al. (1978), it is assumed that a set of decision making units (DMUs) is to be 

evaluated in terms of their relative efficiencies in converting a bundle of inputs into a 

bundle of outputs. The usual assumption in DEA is that each output is impacted by 

each and every member of the input set. One particular area of recent research is that 

relating to partial input to output impacts where the main issue addressed is that in 

many settings not all inputs impact all outputs. In that situation the authors view the 

DMU as consisting of a set of mutually exclusive subunits, with each subunit having 

its own unique bundle of inputs and outputs. Examined as well in this area, is the 

presence of multiple processes for generating sets of outputs. Missing from that 

earlier work is consideration of the presence of outputs in the form of by-products, 

giving rise to a parent-offspring phenomenon. One of the modelling complications 

there is that the parent assumes two different roles; as an input affecting the offspring, 

while at the same time being the dominant output. This gives rise to a model that we 

refer to as conditional two-stage. Another complication is that in the presence of 

multiple processes, by-products often arise out of only a subset of those processes. In 

the current paper we develop a DEA-type of methodology to handle partial input to 

output impacts in the presence of by-products. 

 

 

 

 

 

 

 

 

 

 

 

Keywords:    DEA, multiple processes, by-products, dual role factors, partial impacts, 

conditional two-stage DEA   
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1. Introduction 

 In the nearly 40 years since the development of the data envelopment analysis 

(DEA) methodology by Charnes et al. (1978), the original concepts have been applied 

to an enormous number of practical problem settings, and the model structure has 

been extended in many directions. Recent surveys include Cook et al (2009), Paradi et 

al. (2013), and Liu et al. (2013). Literally thousands of articles and books have been 

written on the subject.  

 

 In the usual DEA setting it is assumed that a set of decision making units 

(DMUs), such as a set of hospitals, is to be evaluated in terms of their relative 

efficiencies in converting a bundle of inputs into a bundle of outputs. More to the 

point, the usual assumption is that each output is impacted by each and every member 

of the input set. A related area of research has to do with non-homogeneous DMUs, 

specifically where some DMUs produce a collection of outputs that may differ 

partially from those produced by other DMUs. See Cook et al (2013). Connected to 

the non-homogeneity issue is the multiple component or multiproduct problem in 

DEA, introduced by Beasley (1995). There, he studied the problem of extracting both 

teaching and research efficiency scores in universities when both dedicated and 

shared resources were present. This joint determination of efficiencies was further 

explored by Molinero (1996) who re-examined the Beasley approach but from the 

envelopment side of the problem. Molinero specifically analyzed the dual variables 

and as well explored the theoretical justification for Beasley’s approach. More 

recently Zu et al (2013) extend the works of Molinero and of Beasley through their 

RD-DEA methodology, allowing for multi-level characteristics and the associated 

indexes for those characteristics. 

 Connected to this multilevel area, and of relevance to the current paper, is that 

relating to partial input to output impacts, as presented in Imanirad et al. (2013).  

Those authors examine the problem of measuring the efficiencies of a set of 20 steel 

fabrication plants in the presence of four inputs and four outputs. The main issue 

addressed there was the fact that not all inputs impacted all outputs, much along the 

lines of Beasley (1995), Molinero (1996) and Zu et al (2013). Specifically, Imanirad 

et al (2013) viewed the DMU as consisting of a set of mutually exclusive subunits (or 

business units), wherein each subunit has its own unique bundle of inputs and outputs. 

In a recent paper by Li et al. (2015), a similar problem setting to that of Imanirad et el 
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is examined, but where multiple processes are present for producing a given bundle of 

outputs.  

 

 Missing from the Li et al. (2015) paper, and from the earlier Imanirad et al. 

(2013) paper, is consideration of the presence of a 5
th

 output in the form of a by-

product. This creates a form of parent-offspring phenomenon. One of the modelling 

complexities arising from this situation is that the parent assumes two different roles; 

as an input affecting the offspring, while at the same time being the dominant output. 

Another complication is that the by-product arises out of only a subset of the multiple 

processes. Other complexities are discussed below. The purpose of the current paper 

is to develop a DEA-based methodology for evaluating efficiency in the presence of 

multiple processes and by-products arising from those processes. 

 

 Section 2 discusses in detail the issues surrounding the presence of 

subcontracting and by-products in a steel fabrication setting. The various complexities 

encountered there are elaborated. Section 3 develops a DEA-based parametric 

programming model for evaluating efficiency in the presence of multiple processes 

and by-products. Specifically, we accommodate the parent-offspring arrangement 

created in this manufacturing setting. In Section 4 we discuss the outcomes from the 

application of this model. Section 5 presents conclusions and offers insights into 

further research directions. 

 

2. A Problem of Subcontracting and By-Products in Steel Fabrication 

 Consider the problem of measuring the relative efficiencies of a set of 20 steel 

fabrication plants where partial input to output impacts are present; this problem was 

first introduced in Imanirad et al. (2013). Figure 1 illustrates the partial impacts 

phenomenon. 

Figure 1: Input to Output Impacts 

Inputs Sheet Steel Flat Bar Pipes/Cyl Bearings 

Labor           x         x        x        x 

Shears           x         x   

Presses           x         x   

Lathes          x        x        x 
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For example, while the manufacturing process for sheet steel requires only three of 

the four inputs, namely labor, shears and presses, flat bar products require, on the 

other hand, all four inputs.  

 

 Applied in the basic form of the Charnes et al. (1978) (CCR) model, the 

conventional DEA analysis may provide a distorted profile of the relative efficiency 

standing when partial input to output impacts are present. To counteract this 

phenomenon, Imanirad et al. (2013), as described above, proposed a non-homogenous 

DEA model to handle such partial input-to-output interactions.  In brief, those authors 

developed a methodology that is based on the view that a DMU acts as a business unit 

consisting of K independent subunits, with each subunit k represented by a partial 

input and output bundle ),( kk RI . From Figure 1 above, and referring to Imanirad et al. 

(2013), the (input, output) bundles for the three subunits are given by: 

)1.2()),(),,((),()),(),,,,((),()),(),,,((),( 434133243212132111 yyxxRIyxxxxRIyxxxRI 

 

 The Imanirad et al. (2013) paper then introduced the idea of treating the 

efficiency of the DMU (the plant) as a weighted average of the efficiencies of its 

business subunits. 

 

 In a recent paper by Li et al. (2015), this problem was re-examined, and an 

additional feature was introduced, namely the use of multiple processes brought about 

by the presence of subcontracting. Specifically, the manufacture of one of the major 

product lines, cylindrical bearings, involves the use of specialized lathes which the 

plants have, but in limited supply. When insufficient lathe time is available, the plants 

resort to using a qualified subcontractor for the manufacture, in whole or part, of 

portions of this product. Thus, the product can be produced using different processes. 

 

 The two previous papers (Imanirad (2013) and Li et al. (2015)), do not address 

an important issue, namely the role played by by-products in this setting. In particular, 

the lathe (regular and specialized lathes) processes used in forming the bearings, 

generate steel shavings that can be recycled and therefore can be treated as an 
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additional product. In the section to follow we investigate the issue of by-products 

and their appropriate modelling.  

 

 Before we proceed it is important to clarify the particular parent-offspring 

setting we are addressing in this paper. This is very important in that one might 

reasonably take the simplistic view that if there is a very direct and fixed relationship 

between the product and the associated offspring (e.g. a certain volume of the parent 

automatically generates a certain volume of the offspring), such as might be the case 

in certain chemical  processes, then one could conceivably link the two products 

together as one, and then apply the standard DEA model. One might refer to the 

parent and offspring in this situation as co-products. In the present case, however, the 

precise amount of the by-product (steel shavings) is unknown, variable and dependent 

on the sizes of the raw steel that has to be ground down into bearings that come in 

various sizes and configurations. Given this, it is important to point out that certain 

complications arise relating to measuring the efficiency of the plant in regard to such 

recycled materials. As mentioned above, one complication is the necessity to account 

for the implied dual role on the part of the parent product (cylindrical bearings) in 

relation to its offspring, the by-product. Specifically, it is necessary to allow for the 

fact that product 4y  in its first role is an output from the manufacturing process, along 

with its offspring, but at the same time 4y , in its second role is a type of input that 

influences the amount of by-product being generated. Thus, in that latter role, the 

bearings are outputs in that they are generated by the applied inputs (lathes and labor), 

but at the same time the bearings generate the metal shavings as a recyclable 

offspring, hence are inputs. Viewed this way, we have a type of two stage process. 

That is, lathes and labor generate the bearings (stage 1), and the bearings generate the 

metal shavings (stage 2). This leads to what we shall call a conditional two-stage DEA 

model. There is a significant literature in the area of network DEA, and in particular, 

two stage DEA. See, for example, Kao et al. (2008), Yu et al. (2008), Li et al. (2012), 

Liang et al. (2011).  Cook, Liang and Zhu (2010) provide an extensive review of the 

literature up to that time. A recent book by Cook and Zhu (2014) contains a broad 

literature on the subject. The earlier literature on multistage DEA, however, is not 

immediately applicable to the by-product problem addressed herein.  While we use 
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the name “conditional two-stage”, we actually solve the efficiency problem  as a 

single stage problem. This is explained below. 

 A second issue is the need to ensure that the values (weights) assigned to the 

bearings and by product are independent of the processes that generate them. This 

means that while the sub-bundles (processes) can be viewed as mutually exclusive 

business units, they need to be considered as a “group” in modelling efficiency, rather 

than being evaluated independently. A third issue relating to the parent and offspring 

products is the need to impose constraints relating to the relative proportions of these 

products coming from any given process. As will be shown below, the specification 

of these constraints must be done in an indirect rather than direct manner. 

 

 In the following section we develop a methodology for evaluating efficiency 

in the presence of by-products and multiple processes. 

 

3. Measuring Efficiency with Multiple Processes and By-Products      

  Consider the case of 20 manufacturing plants that produce 4 products as 

shown in Figure 2, namely sheet steel, flat bar, pipes and cylinders, and cylindrical 

bearings, which are denoted as 4321 ,,, yyyy respectively. Labor, shears, presses, lathes 

and subcontract dollars make up the set of inputs denoted as 54321 ,,,, xxxxx , 

respectively.  

 

Figure 2: Input to Output Impacts with Subcontracting 

       Outputs 

Inputs Sheet Steel Flat Bar Pipes/Cyl Cy Bearings 

Labor        X        X       X       X 

Shears         X        X   

Presses         X        X   

Lathes         X         X       X 

Subcontract           X 

 

 Assume that the bearings 4y are produced using 3 processes, namely: 

Process 1: Bearings produced under this process are made using only in-house 

resources (labor and lathes); 
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Process 2: The set of bearings manufactured under this process are partially 

completed in-house, while the finishing operation is done externally (subcontracted) 

on specialized lathes; 

Process 3: Bearings manufactured under this process are completed in their entirety 

by way of a subcontractor.  

 

 In notational terms, the total production of cylindrical bearings 4y is comprised 

of three lots, namely   3

4

2

4

1

44 ,, yyyy q  , with qy4 denoting the numbers of bearings 

manufactured under processes 3,2,1q . Note that .3

4

2

4

1

44 yyyy   In the particular 

case examined, the third subunit, ),( 33 RI from Imanirad et al (2013), can then be 

viewed as two different subunits, namely )}(),,{(),( 34133 yxxRI  , and 

)}(),,,{(),( 454144 yxxxRI  , with the latter consisting of three mutually exclusive 

parts that we call sub-bundles: 

       )(),,(),( 1

441

1

4

1

4 yxxRI  ,  )(),,(),( 2

451

2

4

2

4 yxxRI  ,  .)(),(),( 3

45

3

4

3

4 yxRI    (3.1)

  

That is, the portion 1

4y  of the cylindrical bearings 4y  is made using inputs ),( 41 xx , 2

4y

is manufactured using ),( 51 xx and 3

4y is made using subcontracting resources 5x .  

 

 Because the use of subcontract resources is a frequent and “as needed” 

occurrence, details as to the exact values of the three portions 3,2,1,4 qy q
 are not 

available, but can be specified only within known ranges .4 q

q

q dyc   The issue is 

how to derive the efficiency of each of the subunits, sub-bundles, and then the overall 

efficiency of the DMU.  

 

 Consider now the above processes for producing bearings 4y , where a by-

product (steel shavings) denoted by 4z , is generated by two of the processes q=1 and 2 

involving in house components. As mentioned in the previous section, in these two 

processes we shall refer to the bearings as the parent and the by-product as the 

offspring, adopting terminology from materials requirements planning (MRP). We 

point out that while recyclable steel may be generated under process 3 as well, it is 

not handed back to the contractor (the plant), hence the plant cannot claim to benefit 
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from it. In the presence of the by- product, the sub-bundles corresponding to 

processes 1, 2 and 3 are denoted here by: 

 

 )1.3()}(),{(),()},,(),,{(),()},,(),,{(),( 3

45

3

4

3

4

2

4

2

451

2

4

2

4

1

4

1

441

1

4

1

4 yxRIzyxxRIzyxxRI   

 

We point out that under the mixed process ),( 2

4

2

4 RI , we have broadly classified all in-

house resources used as “labor”. This classification used by the plants is rather 

general and possibly misleading, in that part of the in-house portion of the 

manufacturing operation on bearings involves machine work that does create some 

amount of by-product that we denote as 2

4z . 

 

 The model we develop below is tailored to the specific application herein, 

involving steel fabrication. One might argue that it would be more appropriate to 

develop a more general model that could be applied in any given parent/offspring 

situation. It is important to emphasize at this point, however, that many 

parent/offspring relations in manufacturing settings can be very complex, can take 

many different forms, and will depend completely on the particular process involved. 

As discussed earlier, in chemical processes such relations are generally well defined; 

in creating a given set of main products in petroleum production, for instance, these 

products will collectively generate different types of waste materials during the 

refining process. Some of these materials may be recyclable, hence having positive 

value; other waste materials have no positive value, and in fact can give rise to 

significant disposal costs.  

 

 In the steel fabrication setting described herein, one can conceive of various 

scenarios. While we look at a very specific process involving the generation of 

“waste” steel shavings from the production of bearings, another possible scenario 

might be one where a number of  products (e.g. bearings and pipes and cylinders) lead 

as well to the generation of waste steel. Moreover, the two by-products generated (call 

them 54 , zz ) may or may not be distinguishable from each other. If indistinguishable, 

then we have the case of a single by-product resulting from the production of two or 

more parent products which would need to be modelled in a manner somewhat similar 
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to that below. If, however, the by-products are distinguishable, then they need to be 

considered as two separate entities, with different modelling considerations.  

 

 In summary, because the parent/by-product interaction can take many 

different forms, it is difficult to conceive of a model structure that would encompass 

those various forms. This being the case, we have developed a model structure below 

that caters to a particular parent/by-product situation. 

 

The Model 

 To address efficiency measurement in the presence of by-products, we 

introduce the following “splitting” variables: 

ik :  the proportion of input ix consumed by subunit k 

q

i4 : the proportion of input ix consumed by sub-bundle q in subunit 4 

q

4 : the proportion of product 4y made using process q, where q=1,2,3 

q

4 : the proportion of by-product 4z made under process q, where q=1,2 

 

We assume that these proportions are known only within limits:           

           3,2,1,21  kaa ikikik   

           42441 iii aa        (3.2) 

          
qqq bb 42441    

          
qqq gg 42441    

 

The basic principle to be used here is to view the DMU as consisting of a set of 

separate business units, with the overall efficiency of the DMU being a convex 

combination of the efficiencies of those business units. We proceed in three steps: 

 

Step 1: Derive a split of inputs and outputs across the respective subunits and sub-

bundles; 

Step 2: Using the resulting inputs and outputs arising from step 1, derive efficiency 

scores for the subunits and sub-bundles; 

Step 3: Combine, by way of a convex combination, the subunit and sub-bundle 

efficiency scores to arrive at the aggregate efficiency of the DMU. 
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Step 1: Splitting Inputs and Outputs across Subunits and Sub-bundles 

As described above, the intention is to view the aggregate efficiency of the DMU as a 

convex combination of the efficiency scores of the subunits and sub-bundles. That 

being the case, we begin by looking at the efficiency ratio for a subunit. Given the 

definition of the input to output bundles ),( kk RI for the subunits (see (2.1)), we 

would define the ratio for ),( kk RI as  

   



kIi

ijikikjkk xvyue
00

/     (3.3) 

In the specific case under investigation, we note that there is only one product ky in 

each of the output bundles kR ; the more general case of multiple products is not 

included here, but is straightforward.  

 

 For the three processes q=1, 2 and 3, the (sub-bundle) efficiency ratios take a 

different form. Specifically, we argue that with the introduction of the by-product 4z , 

or offspring, the primary or parent product, 4y (bearings) takes on a dual role. On the 

one hand, 4y  is an output along with the by-product, but at the same time it acts as a 

type of input that influences the amount of by-product produced.  

 

 The idea of dual role factors was first introduced by Beasley (1995) in 

connection with an application of DEA in ranking universities. There, the factor 

“research funds” was viewed both as an input affecting the amount of research carried 

out, and at the same time was an output that enhanced the reputation of the institution. 

Beasley’s treatment of such a factor was to place it in both the numerator and 

denominator of the efficiency ratio. That is, letting w denote the dual role factor, 

Beasley suggested defining the efficiency ratio for the DMU as

   )/()( 11 wvxvwuyu IijiRrjr . Unfortunately, as pointed out by Cook et al. 

(2006), this approach is flawed in that all DMUs become efficient simply by setting 

all input and output multipliers to zero except for those associated with the dual role 

factor. Cook et al. (2006) suggested an alternate approach that would see the factor 

treated as both an output, and as a nondiscretionary input, meaning that in that latter 

role, it is placed in the numerator with a negative sign, as per
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   )/()( 11 ijiIRrjr xvwvwuyu . Viewed this way, at the optimum only one of the 

two multipliers of w (namely 1Ru or 1Iv ) will be positive, and will signal whether the 

dominant role of the factor is that of an input or an output. 

 

      Given the discussion above, and referring to (3.3), it can be argued that the 

appropriate representation of the sub-bundle q efficiency ratio (for q=1, 2) would be 

given by:  

 



q

oooo

Ii

ij

q

iij

q

j

q

j

qq xvzuyuyue

4

444544

2

444

1

44 /)(    (3.4a) 

For q=3, we argue that an appropriate representation for the efficiency ratio is:  

  



3
4

3

44

3

4

2

44

3

4

1

4

3

4 /)(
Ii

ijiijj ooo
xvyuyue    (3.4b) 

Note that in (3.4b) we utilize the sum, rather than the difference of the two numerator 

terms involving the parent product. Some explanation is in order. The status of a dual 

role variable ( jy4 ) as an input, is logical only when there is an output (the offspring

jz4 ) to support. In the case of the third process there is no by-product going back to 

the plant from the subcontractor, meaning that if the parent product is deemed to have 

input status, then there would be no output. Hence, in this situation, the only status 

that can realistically be held by the parent jy4 , is that of an output. As will be shown 

below, at the optimum either 
1

4u or 
2

4u will be zero, meaning that the apparent “double 

counting” implied by the sum of two terms in the numerator of (3.4b), will not 

actually materialize. 

 

 We now wish to derive the overall efficiency of each DMU, taking into 

consideration input-to-output impacts operating in the presence of multiple processes.  

Here, we view the efficiency of a DMU as a weighted average (using weights
q

k WW 4, ) 

of the efficiency scores of the K=3 subunits and the 3 sub-bundles. Specifically, using 

the notation in (3.3), (3.4a) and (3.4b), the aggregate efficiency model takes the form: 

   



3

1

44

3

1 q

qq

k

kkagg eWeWe     (3.5) 

In the earlier papers by Imanirad et al. (2013) and Li et al. (2015), it is argued that it is 

appropriate to choose the weight to be assigned to a given subunit or sub-bundle to be 
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the proportion of total weighted inputs consumed by that subunit or sub-bundle. As 

discussed in the earlier reference literature, this can be reasonably justified from an 

accounting standpoint.  

 

 Specifically, for k=1,2,3 and q=1,2,3 we define the weights as: 

 ]/[
3

1

4

3

1
4

00 
  


q Ii

ij

q

ii

k Ii

ijiki

Ii

ijikik
q

o

kk

xvxvxvW     (3.6a) 

 ]/[
3

1

4

3

1

44

4

0

4


  


q Ii

ij

q

ii

k Ii

ijiki

Ii

ij

q

ii

q

q
o

k
q

o
xvxvxvW     (3.6b) 

 

Note that a different set of weights 
q

k WW 4,  is derived for each DMU oj ; for notational 

convenience we have not shown the oj index here.  

 

 We point out that some reasonable lower bounds should be imposed on the

q

k WW 4, , to prevent some of these weights from approaching zero. Since the 

denominators in (3.6a) and (3.6b) are set to unity, as discussed below, the bounds 

need only be applied to the numerators, specifically  

  3,2,1,
0




kfxv k

Ii

ijiki

k

 , and 
4

3

1

4

4

fxv
q Ii

ij

q

ii
q

o


 

   (3.6c) 

 

In is emphasized that we focus here only on the overall score (and weight) for the 

three processes together, but obviously we could restrict the weight for each of those 

processes individually. 

 

 Given the format of the weights, the aggregate efficiency score becomes: 

 





  








3

1

4

3

1

4

3

4

2

44

3

4

1

4

2

1

44544

2

444

1

4

3

1

4

0

0
)()(

q Ii

ij

q

ii

k Ii

ijiki

jj

q

j

q

j

q

j

q

k

kjk

agg

q
o

k

ooooo

xvxv

yuyuzuyuyuyu

e





  (3.7) 

Clearly (3.7) is nonlinear, which can partially be dealt with by observing that 

             
  


3

1

3

1

2

1

44

3

1

1,1,1
q q q

qqq

ik

k

ik i  ,              (3.8) 
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since with (3.8), expression (3.7) becomes: 

     











5

1

3

1

454

3

4

2

44

1

4 ]21[
0

i

iji

k

jjjkjk

o

ooo

xv

zuyuyuyu 

    (3.9) 

The term 
oj

yu 4

3

4

2

4 ]21[  accounts for the fact that process 3 cannot have the parent 

product designated as an input. Note that if none of the parent product is produced 

under process 3 (wherein 03

4  ), then that product is allowed to assume full input 

status. Since this term is nonlinear, we treat 3

4 as a parameter in the optimization 

model below. 

 

 Since ultimately it is the aggregate efficiency score that we wish to maximize, 

it is appropriate that we use such an aggregate model to derive the split of the inputs 

and outputs. The aggregate efficiency model is given by (3.10). We note that in (3.10) 

we have added additional notation, namely iM , denoting the set of all subunits and 

sub-bundles that have input ix as a member. For example, }1;3,2{4  qkM ; that is 

input 4x is a member of subunits k= 2 and 3 and sub-bundle q=1.  

 

  We point out that the first three constraints in (3.10) restrict the subunit and 

sub-bundle efficiency ratios to not exceed1. This insures that the model for the second 

step derivation of these scores will be feasible. Clearly, we should also impose a 

similar restriction on the ratio representing the aggregate score for each DMU j. 

However, in the presence of the subunit and sub-bundle restrictions, the constraints on 

the aggregate scores will be redundant, and can therefore be omitted. 
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 Following the usual procedure for transforming the fractional programming 

problem to linear form, we let 
i

iji o
xvt /1 and let 55

2

4

2

4

1

4

1

4 ,,, tutututvii    

Using the following transformation of variables 

  
qqqqqqq

ii

q

iikiik 4544

2

4

2

44

1

4

1

444 ,,,,   ,  

it is observed that  

  

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2
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,,,
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k

ik   

 

 Treating 
3

4 as a parameter, the parametric linear version of problem (3.10) 

now becomes (3.11). More to the point, for each DMU oj we solve (3.11) by scanning 
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the allowable range for 3

4 , namely 3

42

3

4

3

41 bb   , in increments of say of 0.01. From 

the solution of (3.11) for each chosen value of 3

4 , we choose that value that yields the 

highest resulting score. 
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Note that we have included the constraint 03

4

223

4    in model (3.11) to reflect 

the fact that 23

4 is a function of the parameter 3

4 . 

 

 To insure that the dual role variable
oj

y4 is declared as behaving either like an 

input or output, as its dominant role, we have imposed in (3.11) the constraints

My1

4 and )1(2

4 yM  , where y is a binary variable and M is a large positive 

number. Note that if y=0, 1

4 will be forced to 0, and the dual role variable will assume 

an input status. Otherwise, if y=1 then 2

4 will be 0, signifying that the dual role 

variable is behaving like an output. 

 

 We point out as well that the constraints (3.6c) have been incorporated in 

(3.10) and (3.11), representing lower bounds on the weights
q

k WW 4, . 

 

 From the optimal solution of (3.11) we can immediately derive the associated 

splitting variables  

 544

2

4

2

4

1

4

1

4444
ˆ/ˆˆ,ˆ/ˆˆ/ˆˆ,ˆ/ˆˆ,ˆ/ˆˆ  qqqqq

i

q

i

q

iiikik or   (3.12) 

It is observed that the definition of the 
q

4̂ will depend upon which of 
1

4̂ or
2

4̂ is set to 

zero via the binary variable y in (3.11). 

 

Assurance Regions Relating 
q

4 and
q

4  

 The parent/offspring relationship between the proportion of by-product 

arising from a given process q, and the corresponding proportion of the parent 

product created by that same process, would seem to imply the need to impose some 

form of constraints linking those proportions. A large proportion of the parent arising 

out of a process q, for example, would generally infer a corresponding large 

proportion of the total by-product coming from that same process.  Assurance Region 

restrictions (AR) as per Thompson et al. (1990), appear to be a natural choice in this 

regard, meaning that constraints of the form  

    2441 / cc qq      (3.13) 

would be imposed. Appropriate lower and upper limits can presumably be selected 

using historical data on observed proportions of parent and offspring products 

q

4

q

4
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generated in each of processes 2,1q . Furthermore, the bounds 
21,cc would need to 

reflect the fact that no by product is created under process 3.  

 

 A difficulty with attempting to directly impose constraints of the form (3.13) 

is that q

4 and q

4 do not explicitly appear in model (3.11); in the process of linearizing 

model (3.10), these proportions have been “covered up” in the sense that they have 

been rolled into  and . One way to indirectly impose the restrictions that would be 

equivalent to (3.13) is by recognizing that since
qq

454   , for example, then knowing 

the values of any two of these three variables, automatically dictates the value of the 

third variable. There are only two degrees of freedom in this case. Hence, constraints 

imposed on any two of the variables, has implications about constraints on the 

remaining variable. To formalize this idea, we proceed as follows.  

 Let us first impose an AR constraint connecting 5 and 1

4 , namely 

    2

1

451 / dd      (3.14) 

Arguably, since 5 and 1

4  (assuming is positive) represent prices on the offspring 

and parent, respectively, it is reasonable to postulate that appropriate bounds 21,dd can 

be observed from accounting records. (The case that =0 and 2

4 is positive, is 

discussed below). Now, it is reasonable to ask what AR restrictions on  and , 

namely  

    2

1

441 / ee qq      (3.15) 

 would need to be imposed, such that when put together with (3.14), would be 

equivalent to (3.13).  

 

 To illustrate this, let us begin with a simple example: Suppose we know that 

1

45 / =2, for example, and that 
qq 1

44 / =3. Then, observing that 

3)/(2// 444

1

445

1

44  qqqqqq  , then 5.1/ 44 qq  . In summary, if we know 

any two of the ratios, the third ratio is automatically determined. 

 

1

4

1

4
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 Now assume we can impose lower and upper bounds on 1

45 /   as in (3.14), 

and let us consider two cases involving (3.13) namely with 1

45 /  set first to its 

lower bound and second to its upper bound: 

 

Case 1: 1

415  d (setting the ratio of the parent/offspring prices to the lower limit): 

Using this lower bound in (3.14), expression (3.15) becomes 

 24

1

4451 / ee qq    24

1

44

1

411 / ede qq    24411 / ede qq    which is 

equivalent to  

    
1

2
44

1

1 /
d

e

d

e qq      (3.16) 

  Case 2: 
1

425  d (setting the ratio of the parent/offspring prices to the upper limit): 

Here, we arrive at a second set of limits  

    
2

2
44

2

1 /
d

e

d

e qq      (3.17) 

 

 We now argue that if both (3.16) and (3.17) must hold, then the AR 

restrictions connecting
q

4 and q

4 must be  

    
2

2
44

1

1 /
d

e

d

e qq      (3.18) 

 Again, as discussed above, we observe that while we wish to impose three sets 

of restrictions (3.13), (3.14), (3.15), there are only two degrees of freedom, meaning 

that imposing two of the three sets, determines the third set. Hence, if we regard 

(3.13) and (3.15) as given requirements, then in restrictions (3.14) we need to define 

the lower and upper limits as 

    
1

1
1

c

e
d  and 

2

2
2

c

e
d     (3.19) 

respectively. It is important to acknowledge that infeasibility can occur in (3.19) in 

the sense that because 21 dd  must hold, then the bounds in (3.13) and (3.15) must be 

selected such that 
2

1

2

1

c

c

e

e
  holds. 
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 To summarize, if we wish to implement constraints (3.13), we do so by 

imposing the two sets of constraints (3.14) and (3.15), where we define the lower and 

upper limits in (3.14) by (3.19).  

 

 In case 01

4  and 2

4 is positive then we would replace (3.14) and (3.15), 

respectively by  

    2

2

451 / dd      (3.14a) 

    2

2

441 / ee qq      (3.15a) 

 

 It is important to emphasize that while we refer to the Step 1  problem as 

having a two-stage like profile (which we refer to as conditional two-stage), we do not 

actually utilize any of the conventional two-stage solution methods as described in 

Cook et al. (2010). Mathematically, rather than treating the parent product as having 

an output role in the first stage (where we create the parent product) and a 

discretionary input role in the second stage (where we create the by-product), we 

instead treat the parent as a nondiscretionary input to that second stage. This means 

that in that latter role it is placed, with a negative sign, on the output side of the 

efficiency ratio, hence reducing the two stage problem to a single stage problem. 

 

 We now move to the problem of deriving the efficiencies of the subunits and 

sub bundles.  

 

Step 2: Deriving Subunit and Sub-bundle Efficiency Scores 

The outcomes from solving the aggregate model (3.11) (Step 1), are the optimal 

values for the splitting variables  ˆ,ˆ,ˆ (see (3.12)). Recall that such a set is derived 

for each DMU oj . These can now be used to derive the inputs and outputs for the 

subunits and sub-bundles, specifically: 

    
oooooooo j

qq

jj

qq

jij

q

i

q

jiijikikj zzyyxxkxx 44444444
ˆ;ˆ;ˆ;3,2,1,ˆ    (3.20)  

These are now used to derive the standard CRS efficiency scores for each subunit and 

sub-bundle q. In the case of subunit k one solves the problem: 
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   (3.21) 

 

 In the case of the three sub-bundles, it is necessary to view these as a group. 

Furthermore, we must be careful to properly represent for each DMU j , which of the 

two roles (output or input) that DMU received in model (3.11). Let 21, JJ denote the 

sets of DMUs designated in the solution of model (3.11) as outputs and inputs, 

respectively.  Thus, the overall sub-bundle efficiency can be computed from problem 

(3.22). 

 

 While we do not display herein the individual measures of efficiency for each 

of the three processes, we note that from the aggregate efficiency, the sub bundles can 

be split apart to get an approximation of an optimal score for each of the processes by 

using the left side of the constraints in (3.22).  
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        (3.22) 

 

Step 3: The Overall Efficiency Scores 

In this stage the overall score is computed as the weighted average of the subunit and 

aggregate sub-bundle scores, using the weights shown in (3.6a) and (3.6b). 
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4. Application 

 Table 1 displays the input and output data for the 20 steel fabrication plants, 

including by-product quantities. While the aggregate model (3.11) requires that it be 

viewed as a mixed integer programming problem, we take a slightly different 

approach, namely solving the model twice for each DMU; once for each value of the 

binary variable y=1 and y=0. Whichever value of y yields the largest efficiency score, 

determines whether that DMU will be designated as having the bearings behave like 

an output or input, hence determining whether the DMU belongs to 1J or 2J . 

Regardless of the designation, the splitting variables are derived, and are shown (for 

the output case) in Table 2. Note that we have imposed a lower limit of 0.1 on all 

splitting variables. Specifically, in the case of the input variables ik , for example, the 

share of input i assigned to a subunit k or sub bundle q is required to be at least 0.1. 

 

 As well we point out that given the nonlinear nature of  problem (3.11), it has 

been solved by treating 
3

4 as a parameter and searching over the range 
3

4

3

4

3

4 bb  

as per (3.10). 

 

 It happens to turn out in the case of the 20 plants that all but three of the plants 

have the bearings 4y designated as an outputs; the remaining 3 plants had identical 

efficiency scores for each of the input and output designations, hence we were able to 

treat all DMUs as belonging to 1J . 

 

 Table 3 displays the final efficiency scores for all 20 plants. Columns 2, 3 and 

4 labelled as e1, e2, e3 are the efficiency scores for the three subunits k=1, 2 and 3. 

These are derived from the solution of model (3.21). The 5
th

 column, labelled e4 

provides an efficiency score for the combined 3 processes or sub-bundles. Note again 

that because it is necessary to view the three sub-bundles as a group, individual 

optimal scores for each of those three sub-bundles are not immediately available, 

although approximations of these scores can be derived from the left sides of the 

constraints in (3.22).  
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 As indicated earlier, the aggregate efficiency score 0e  for each DMU is taken 

to be a convex combination (weighted average) of the scores 4321 ,,, eeee . 

 

5. Conclusions and Further Research 

  In the original Data Envelopment Analysis (DEA) model that is used to 

measure the relative efficiencies of peer decision-making units (DMUs), it is assumed 

that in a multiple input, multiple output setting, all members of the input bundle affect 

the entire output bundle. There are many situations in real world, however, where this 

assumption does not hold, and where partial input to output interactions occur. Earlier 

work by Beasley (1995), Molinero (1996), Zu et al. (2013), Cook et al. (2013) and 

Imanirad et al. (2013) examined various aspects of the partial input/output problem, 

which was later extended in Li et al. (2015) to include multiple processes. The 

application used to develop the ideas in Cook et al. (2013) and Imanirad et al. (2013) 

involved measuring efficiencies of a set of steel fabrication plants.  

 

 An important issue arising in many settings, particularly in manufacturing, is 

the need to deal with by-products. The main problem surrounding the presence of 

byproducts is that of having to address the accompanying “parent-offspring” 

phenomenon. The principle complication relating to the by-product phenomenon is 

the dual role played by the parent products. Specifically, it is necessary to allow for 

the fact that the parent or principle product is an output from the manufacturing 

process, along with its offspring, but at the same time is a type of input that influences 

the amount of by-product being generated.  In the paper we develop what is referred 

to as a conditional two-stage DEA model to allow for the evaluation when byproducts 

(and multiple processes) are present. We point out, however, that our approach to 

solving this model differs from the conventional approaches in two-stage DEA, which 

involves the development of efficiency scores for each stage, and then combining 

those scores to arrive at an aggregate score for the combined stages. 

 

 The methodology developed herein has the potential for a number of 

important applications. The methodology may have important implications regarding 

multistage processes in general, but specifically including supply chains. The 

argument is as follows: One of the shortcomings of the current approaches used to 
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solve, for example, two-stage processes (assume an input-oriented technology), is that 

outputs from stage 1 are treated in two different ways. Specifically, to arrive at a stage 

1 score, outputs from that stage are treated as being non-discretionary (one keeps 

them fixed and reduces the inputs in order to project to the frontier). However, as 

inputs to stage 2, those same variables are viewed as being discretionary, meaning 

that in deriving a score for stage 2, they are decreased while projecting to the frontier. 

Therefore, one might argue that there is an inconsistency in the current approaches to 

two-stage efficiency measurement; allowing certain variables to be treated in two 

different manners (discretionary versus nondiscretionary). An alternative approach, 

along the lines of the previous section, would be to deem the outputs from the first 

stage as nondiscretionary inputs to the second stage. This provides for the necessary 

consistency that is lost using current methodologies.  

 

 We must point out, however, that the suggestion above comes with its own set 

of challenges. Research is currently proceeding on this approach. 

 

 Another important topic for further research is that where the nature of by-

products and their parents is context-dependent. For example, certain parent-offspring 

relations may apply only to a subset of the DMUs, with completely different by-

product situations (including the case where no by-products are present) in the case of 

other DMUs. Further, while some manufacturing facilities may have the practice of 

utilizing subcontractors, other facilities may not.  

 

 Another direction still is that where by-products can have positive value up to 

a certain point, but beyond this point there are disposal costs that must be considered. 

 

 These and other similar directions are the subject of future research.  
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Table 1: Input and Output Data for the Steel Fabrication Plants 

 

  OUTPUTS    INPUTS 

  
Sheet 
Steel 

Flat 
Bar 

Pipes/ 

Cylinders Bearings By-Product Labor Shears Presses Lathes Subcontract 

DMU Y1 Y2 Y3 Y4 Z4 X1 X2 X3 X4 X5 

1 70 103 100 80 40 30 5 5 12 15 

2 60 125 90 90 65 40 4 4 14 20 

3 50 110 105 85 45 35 5.2 4.2 8 10 

4 80 80 110 90 30 38 7 4.6 6.5 10 

5 56 40 60 55 38 28 9 5.5 10 12.5 

6 40 95 120 110 72 37 4.2 3.8 11 15 

7 100 180 200 210 55 31 6 4.1 8 15 

8 25 55 180 160 65 35 5 5 12 15 

9 65 150 125 145 46 25 6.2 4.8 15 20 

10 40 110 70 115 49 30 3 3.2 17 20 

11 70 117 122 115 38 25 4 4 9.5 12.5 

12 92 135 89 64 66 45 5 3.3 18 20 

13 88 47 57 109 61 35 4.1 6 16.5 20 

14 48 68 146 99 23 32 5.3 3.4 9 10 

15 79 123 220 122 46 26 7.7 4.3 12.3 15 

16 99 114 89 49 52 19 5.3 4.2 10 10 

17 97 101 88 55 66 25 8 3 7 12 

18 55 55 132 116 44 32 6 2.8 5.3 7.5 

19 80 97 142 168 34 33 2.8 3.9 11 12 

20 97 68 209 122 37 27 3.3 4.3 17 20 
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Table2: Splitting Variables When Parent 4y is Treated as an Output  

DMU 4
11

 4
12

 4
13

  14   24  11  12  13   1

14   2

14  

1 0.45 0.45 0.10 0.50 0.50 0.10 0.60 0.10 0.10 0.10 

2 0.80 0.10 0.10 0.90 0.10 0.10 0.10 0.10 0.10 0.60 

3 0.26 0.10 0.64 0.10 0.90 0.10 0.10 0.10 0.10 0.60 

4 0.80 0.10 0.10 0.90 0.10 0.17 0.11 0.11 0.11 0.50 

5 0.10 0.78 0.12 0.12 0.88 0.10 0.10 0.10 0.18 0.52 

6 0.20 0.37 0.43 0.10 0.90 0.10 0.10 0.10 0.10 0.60 

7 0.80 0.10 0.10 0.90 0.10 0.10 0.10 0.10 0.10 0.60 

8 0.10 0.78 0.12 0.10 0.90 0.10 0.10 0.10 0.17 0.53 

9 0.45 0.45 0.10 0.50 0.50 0.10 0.60 0.10 0.10 0.10 

10 0.39 0.43 0.18 0.50 0.50 0.11 0.24 0.11 0.27 0.27 

11 0.60 0.30 0.10 0.74 0.26 0.10 0.60 0.10 0.10 0.10 

12 0.30 0.36 0.33 0.40 0.60 0.33 0.11 0.13 0.25 0.18 

13 0.42 0.47 0.11 0.48 0.52 0.11 0.10 0.10 0.39 0.29 

14 0.10 0.80 0.10 0.40 0.60 0.10 0.10 0.59 0.10 0.11 

15 0.43 0.47 0.10 0.53 0.47 0.10 0.10 0.60 0.10 0.10 

16 0.29 0.59 0.12 0.50 0.50 0.11 0.59 0.10 0.10 0.10 

17 0.29 0.25 0.46 0.22 0.78 0.13 0.10 0.11 0.31 0.36 

18 0.10 0.17 0.73 0.10 0.90 0.14 0.12 0.11 0.33 0.30 

19 0.80 0.10 0.10 0.76 0.24 0.10 0.10 0.10 0.10 0.60 

20 0.43 0.45 0.12 0.51 0.49 0.45 0.10 0.22 0.11 0.11 

 

Table2 Continued: 

DMU 21
 22

  31
  32

  42
  43

  1

44   2

54   3

54  

1 0.10 0.90 0.81 0.19 0.79 0.10 0.11 0.10 0.90 

2 0.10 0.90 0.10 0.90 0.80 0.10 0.10 0.76 0.24 

3 0.18 0.82 0.34 0.66 0.10 0.10 0.80 0.90 0.10 

4 0.88 0.12 0.89 0.11 0.10 0.80 0.10 0.67 0.33 

5 0.59 0.41 0.62 0.38 0.10 0.10 0.80 0.90 0.10 

6 0.22 0.78 0.41 0.59 0.10 0.10 0.80 0.90 0.10 

7 0.15 0.85 0.10 0.90 0.46 0.44 0.10 0.53 0.47 

8 0.17 0.83 0.27 0.73 0.10 0.10 0.80 0.90 0.10 

9 0.10 0.90 0.15 0.85 0.54 0.22 0.24 0.10 0.90 

10 0.10 0.90 0.10 0.90 0.75 0.12 0.13 0.31 0.69 

11 0.10 0.90 0.56 0.44 0.80 0.10 0.10 0.10 0.90 

12 0.90 0.10 0.90 0.10 0.16 0.30 0.54 0.58 0.42 

13 0.90 0.10 0.82 0.18 0.19 0.14 0.67 0.74 0.26 

14 0.57 0.43 0.79 0.21 0.10 0.80 0.10 0.87 0.13 

15 0.51 0.49 0.64 0.36 0.10 0.80 0.10 0.10 0.90 

16 0.90 0.10 0.90 0.10 0.15 0.12 0.73 0.88 0.12 

17 0.88 0.12 0.90 0.10 0.10 0.13 0.77 0.89 0.11 

18 0.64 0.36 0.82 0.18 0.10 0.10 0.80 0.63 0.37 

19 0.10 0.90 0.42 0.58 0.80 0.10 0.10 0.45 0.55 

20 0.90 0.10 0.90 0.10 0.25 0.50 0.25 0.22 0.78 
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Table 3: Efficiency Scores 

DMU 
1e  

2e  
3e  

4e  
oe  w1 w2 w3 w4 

1 0.8269 0.2289 0.6364 0.4273 0.3194 0.0978 0.7768 0.0344 0.0910 

2 1 0.6643 0.4365 0.1643 0.6529 0.0807 0.8311 0.0206 0.0676 

3 0.4449 0.953 0.6951 0.115 0.1600 0.0166 0.0280 0.0278 0.9277 

4 0.3394 0.7921 0.4159 0.0919 0.4117 0.0159 0.0974 0.7644 0.1224 

5 0.4889 0.3344 0.4147 0.1214 0.1667 0.0513 0.0523 0.0523 0.8441 

6 0.3519 0.6406 0.6738 0.1741 0.2071 0.0195 0.0306 0.0306 0.9193 

7 1 1 1 0.1809 0.8682 0.0140 0.4354 0.3897 0.1609 

8 0.2291 0.3734 1 0.1662 0.2243 0.0525 0.0526 0.0526 0.8423 

9 0.8566 0.2548 0.775 0.5762 0.4240 0.0970 0.6122 0.0870 0.2037 

10 0.8889 0.389 0.3801 0.202 0.4254 0.0951 0.8299 0.0159 0.0590 

11 1 0.2325 0.9317 0.4918 0.3269 0.0891 0.8429 0.0191 0.0488 

12 0.1922 1 0.2432 0.2164 0.2724 0.8127 0.0959 0.0208 0.0707 

13 0.6282 0.4814 0.2809 0.1585 0.5331 0.7260 0.0970 0.0184 0.1586 

14 0.4096 0.5397 0.1491 0.2277 0.2224 0.0444 0.0657 0.4306 0.4593 

15 0.7691 1 0.251 0.5625 0.4381 0.0922 0.0978 0.5979 0.2122 

16 1 1 0.833 0.857 0.9542 0.3903 0.2975 0.0489 0.2633 

17 0.8197 1 0.6424 0.2475 0.7250 0.7171 0.0840 0.0100 0.1889 

18 0.3462 0.7624 1 0.1415 0.1621 0.0100 0.0132 0.0121 0.9648 

19 1 0.6542 0.8481 0.1043 0.6597 0.0830 0.8512 0.0174 0.0484 

20 0.26 0.9 0.54 0.3799 0.3328 0.8328 0.0970 0.0142 0.0559 
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Highlights 
 
.Conventional applications of DEA assume all inputs affect all outputs 
 
. This paper considers settings with multiple processes and partial input/output 
impacts 
 
. As well, we consider situations involving by-products and parent-offspring 
relations 
 
. This gives rise to parent products acting in dual roles 
 
. We develop a DEA-based model for handling such complexities 
 




