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Abstract

In this paper, we consider a single-machine scheduling problem with workload-
dependent maintenance duration. The objective is to minimize the total weighted
completion time. For the case where the maintenance duration is an arbitrarily non-
decreasing function on the workload, we propose a (2 + ε)-approximation algorithm
and a fully polynomial time approximation scheme, which extends the previous results
presented by Xu et al. [ Xu, D., Wan, L., Liu, A., & Yang, D-L. (2015). Single ma-
chine total completion time scheduling problem with workload-dependent maintenance
duration. Omega, 52, 101-106]
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1 Introduction

Scheduling with machine maintenance has been extensively investigated in recent years. Ac-

cording to the maintenance duration, research literatures in this area can be classified into

two classes, i.e., the fixed maintenance duration and the variable maintenance duration. For

the fixed maintenance duration, it is assumed that the duration of a maintenance activity

is a fixed time length. There are so many research articles which contribute this topic.

We refer the readers to the latest survey paper [8]. For the variable maintenance duration,

Kubzin and Strusevich [3] were the first pioneers that considered the scheduling problems

with variable maintenance duration. They investigated the makespan minimization problem

in a two-machine flow shop and a two-machine open shop. They showed that the open shop

problem is polynomially solvable for quite general functions defining the maintenance du-

ration while the flow shop problem is binary NP-hard and pseudo-polynomially solvable by

dynamic programming. Furthermore, they presented a fully polynomial time approximation
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scheme (FPTAS) and a fast 3/2-approximation algorithm for this problem. Xu, Sun, and

Li [9] investigated the parallel machine scheduling problem with almost periodic mainte-

nance and non-preemptive jobs to minimize makespan. Xu, Yin, and Li [10] considered two

scheduling problems with machine maintenance under the assumption that the maintenance

duration is an increasing linear function of the total processing time of the jobs that are

processed after the machine’s last maintenance activity. The first problem concerns parallel-

machine scheduling to minimize the completion time of the last finished maintenance, where

the length of the time interval between any two consecutive maintenance activities is between

two given positive numbers. The second problem deals with single-machine scheduling to

minimize the completion time of the last finished job, where the length of the time interval

between any two consecutive maintenance activities is fixed. They proposed two approx-

imation algorithms for the considered problems and analyzed their performances. Bock,

Briskorn and Horbach [1] studied a single-machine scheduling problem that integrated ma-

chine deterioration, where the current maintenance state of the machine is determined by a

maintenance level which drops by a certain, possibly job-dependent, amount when jobs are

processed. A maintenance level of less than zero is associated with the machine’s breakdown

and is therefore forbidden. Consequently, maintenance activities that raise the maintenance

level again may become necessary and have to be scheduled additionally. Two general types

of maintenance activities are introduced. In the full maintenance case, maintenance activ-

ities are always executed until the machine has reached the maximum maintenance level.

In contrast to this, the schedule in the partial maintenance case has to additionally deter-

mine the duration of maintenance activities. By combining both cases with regular objective

functions such as minimization of maximum tardiness, minimization of the sum of comple-

tion times, or minimization of the number of tardy jobs, they analyzed the computational

complexity of general and some specific cases. Luo, Cheng and Ji [7] addressed the problem

of scheduling a maintenance activity and jobs on a single machine, where the maintenance

activity must start before a given deadline and the maintenance duration increases with its

starting time. They provided polynomial time algorithms to solve the problems to minimize

the makespan, sum of completion times, maximum lateness, and number of tardy jobs.

In the very recent, Xu et al. [11] introduced a single-machine scheduling problem with

workload-dependent maintenance duration. The objective is to minimize the total com-

pletion time. For the case where the derivation of the maintenance duration function is

greater than or equal to 1, a polynomial time optimal algorithm was proposed. For the case

where the derivation of the maintenance duration function is less than 1, a polynomial time

approximation scheme was presented.

In this paper, we extend the problem proposed by Xu et al. [11]. We consider a more gen-

eral objective function, i.e., the total weighted completion time. For the workload-dependent

maintenance duration, we only assume that it is a nonnegative and non-decreasing function

on the workload but can be computed in polynomial time. Compared to the assumption in

[11], we do not require any derivation information and our assumption is more general. The
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formal problem statement can be described as follows.

Problem statement: Given a set of non-preemptive jobs J = {J1, J2, · · · , Jn} to be

processed on a single machine, where the machine is subject to a maintenance activity. All

the jobs are available at time 0. For job Ji, the processing time is pi and the weight is wi,

i = 1, 2, · · · , n. For the maintenance activity, its starting time is S, which is known and

prefixed. However, its duration D is a nonnegative and non-decreasing function f(·) on the

machine’s workload l before the maintenance activity, i.e., D = f(l), where l is the sum of

processing times of jobs scheduled before the maintenance activity and function f(·) can be

computed in polynomial time. Let Tf denote the time for computing function f(·). For a

given schedule, let Ci denote the completion time of job Ji, i = 1, 2, · · · , n. The task is to

find a schedule to minimize the total weighted completion time (
∑

iwiCi). Adopting the

well-known three-field notation scheme proposed in [2] and following the similar notations

as [11], we name this problem as 1, h1, wldmt||
∑

iwiCi, where “h1” denotes that there is a

maintenance activity on the machine (a hole in the planning horizon) and “wldmt” denotes

that the maintenance duration is workload-dependent. Clearly, the 1, h1, wldmt||
∑

iwiCi

problem is NP-hard, since the special case 1, h1, wldmt||
∑

iCi is shown as NP-hard in Xu

et al. [11].

2 A (2+ε)-approximation algorithm

To solve the 1, h1, wldmt||
∑

iwiCi problem , we first split the interval [0, S] into some subin-

tervals, then in each subinterval we solve a minimization Knapsack problem to determine

the jobs that scheduled before the maintenance activity and naturally we obtain the job

sequences before and after the maintenance activity according to the weighted shortest pro-

cessing time first (WSPT) rule. Finally, we choose the best schedule as our output solution.

The formal algorithm description is below.

Algorithm H1:

Step 1: Given an ε > 0 and let s0 = mini=1,2,···,n pi. Compute a series of

si = max
si−1≤t≤S

{t|f(t) ≤ f(s0)(1 + ε)i}

by using binary search, i = 1, 2, · · · , r−1, where r = blog1+εf(S)− log1+εf(s0)c+1. Split the

interval [0, S] into a series of subintervals [0, s0], [s0, s1], [s1, s2], · · ·, [sr−1, sr], where sr = S.

Step 2: For subinterval [0, s0], we construct two schedules π̂1 and π̂2. For schedule π̂1, we

put all the jobs after the maintenance activity according to the WSPT rule and for schedule

π̂2 we put the job with minimal processing time and maximal weight before the maintenance

activity and put the remaining jobs after the maintenance activity according to the WSPT

rule. For each subinterval [si−1, si], i = 1, 2, · · · , r, we create an instance of minimization

Knapsack problem by setting the knapsack size be si and each item associated each job with

the processing time correspond to item size and weight correspond to item profit. By invoking
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an FPTAS which can be obtained by adapting an FPTAS for the classical maximization

Knapsack problem (see, e.g., Kellerer, Pferschy and Pisinger [4]), we can determine the jobs

that are scheduled before the maintenance activity, which are the items that were put into

the knapsack. We use Sb
i to denote the job subset before the maintenance activity and Sa

i

to denote the job subset after the maintenance activity. Then we construct schedule πi as

follows: first put the jobs in Sb
i before the maintenance activity according to the WSPT

rule, then at time S start the maintenance activity with duration of f(
∑

i∈Sb
i
pi) and finally

schedule the jobs in Sa
i according to the WSPT rule. With the convenience, we denote πi

by πi = (Sb
i ,MA, Sa

i ), i = 1, 2, · · · , r.
Step 3: From all the constructed schedules π̂1, π̂2, πi = (Sb

i ,MA, Sa
i ), i = 1, 2, · · · , r, we

choose the best as the output schedule and denote it as π, i.e., schedule π has the minimum

total weighted completion time.

Theorem 1 Algorithm H1 is a (2 + ε)-approximation algorithm for the problem

1, h1, wldmt||
∑

iwiCi with the running time O(n log f(S)/ε2 + Tf log f(S) logS/ε).

Proof. Consider the optimal schedule π∗. We know that the sum of processing times of

jobs scheduled before the maintenance activity in π∗ must fall into one of the subintervals

[0, s0], [si−1, si], i = 1, 2, · · · , r. If the sum of processing time of jobs scheduled before the

maintenance activity in π∗ falls into subinterval [0, s0], given s0 = mini=1,2,···,n pi there must

be just two possible schedules for π∗ which are the schedules π̂1 and π̂2 and we are done.

Next, we assume that the sum of processing times of jobs scheduled before the mainte-

nance activity in π∗ must fall into one of the subintervals [si−1, si], i = 1, 2, · · · , r.
Let Sb denote the job subset scheduled before the maintenance activity and Sa denote

the job subset scheduled after the maintenance activity in π∗. Let Z(π∗) denote the total

weighted completion time of π∗. We have

Z(π∗) = Z(Sb) + Z(Sa) + (S + f(
∑
i∈Sb

pi))(
∑
i∈Sa

wi),

where Z(Sb) denotes the total weighted completion time that we schedule the jobs in Sb

on a single machine without maintenance according to WSPT rule and Z(Sa) is defined as

Z(Sb).

Consider schedule πi. Let Z(πi) denote the total weighted completion time of πi. We

have

Z(πi) = Z(Sb
i ) + Z(Sa

i ) + (S + f(
∑
i∈Sb

i

pi))(
∑
i∈Sa

i

wi),

where Z(Sb
i ) and Z(Sa

i ) are defined as Z(Sb) and Z(Sa).

From the FPTAS of minimization Knapsack problem (Kellerer, Pferschy and Pisinger

[4]), we have

(
∑
i∈Sa

i

wi) ≤ (1 + ε)(
∑
i∈Sa

wi).
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From the split of subintervals, we have

f(
∑
i∈Sb

i

pi) ≤ f(si) ≤ (1 + ε)f(si−1).

Clearly f(
∑

i∈Sb pi) ≥ f(si−1). Thus we have

f(
∑
i∈Sb

i

pi) ≤ f(si) ≤ (1 + ε)f(
∑
i∈Sb

pi).

Finally, we obtain

(S + f(
∑
i∈Sb

i

pi))(
∑
i∈Sa

i

wi) ≤ (S + (1 + ε)f(
∑

i∈Sb pi))(1 + ε)(
∑

i∈Sa wi)

≤ (1 + ε)2(S + f(
∑

i∈Sb pi))(
∑

i∈Sa wi).

Because of Z(π∗) ≥ Z(J ) and Z(Sb
i ) + Z(Sa

i ) ≤ Z(J ) (where Z(J ) denotes the total

weighted job completion time that we schedule the jobs in J on a single machine according

to WSPT rule without maintenance), we achieve Z(πi) ≤ (1+(1+ε)2)Z(π∗). Slightly scaling

the ε, we obtain Z(π) ≤ Z(πi) ≤ (2 + ε)Z(π∗).

As for the running time of Algorithm H1, in Step 1 it needs O(Tf log f(S) logS/ log(1 +

ε)) time to compute a series of si, i = 1, 2, · · · , r by using binary search, since f(·) is a

non-decreasing function and its computing time is Tf . In Step 2 it totally invokes the

FPTAS of minimization Knapsack problem (Kellerer, Pferschy and Pisinger [4]) at most

log f(S)/ log(1 + ε) times. For each invoking, it needs O(n/ε) time (Kellerer, Pferschy and

Pisinger [4]). Thus Algorithm H1 runs in O(n log f(S)/ε2 + Tf log f(S) logS/ε) time. �

3 An FPTAS

In this section, we focus on deriving an FPTAS for the 1, h1, wldmt||
∑

iwiCi problem. To

derive our FPTAS, we first consider a closely related scheduling problem 1, h1||
∑

iwiCi. The

problem 1, h1||
∑

iwiCi, which was called as single-machine scheduling with an unavailable

constraint to minimize the total weighted completion time, was first studied by Lee [6]. The

only difference between problem 1, h1||
∑

iwiCi and problem 1, h1, wldmt||
∑

iwiCi is that

the duration of the maintenance activity is fixed in the former but is variable in the latter.

The problem 1, h1||
∑

iwiCi has been well studied and admitted an FPTAS ( Kellerer and

Strusevich [5]). Next, we introduce our FPTAS for the 1, h1, wldmt||
∑

iwiCi problem.

Algorithm H2:

Step 1: Given an ε > 0 and let s0 = mini=1,2,···,n pi. Compute a series of

si = max
si−1≤t≤S

{t|f(t) ≤ f(s0)(1 + ε)i}

by using binary search, i = 1, 2, · · · , r−1, where r = blog1+εf(S)− log1+εf(s0)c+1. Split the

interval [0, S] into a series of subintervals [0, s0], [s0, s1], [s1, s2], · · ·, [sr−1, sr], where sr = S.
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Step 2: For subinterval [0, s0], we create two schedules π̂1 and π̂2. For schedule π̂1, we put all

the jobs after the maintenance activity according to the WSPT rule and for schedule π̂2 we

put the job with minimal processing time and maximal weight before the maintenance activ-

ity and put the remaining jobs after the maintenance according to the WSPT rule. For each

subinterval [si−1, si], i = 1, 2, · · · , r, we construct an instance of problem 1, h1||
∑

iwiCi by

setting the the starting time of the maintenance activity be si and the duration of the main-

tenance activity be (S − si + f(si)). By invoking the FPTAS of the problem 1, h1||
∑

iwiCi

(Kellerer and Strusevich [5]), we can determine the jobs that scheduled before and after the

maintenance activity. Again we use Sb
i and Sa

i to denote them. Then we construct schedule

πi as follows: first put the jobs in Sb
i before the maintenance activity according to the WSPT

rule, then at time S start the maintenance activity with duration of f(
∑

i∈Sb
i
pi) and finally

schedule the jobs in Sa
i according to the WSPT rule. With the convenience, we denote πi

by πi = (Sb
i ,MA, Sa

i ), i = 1, 2, · · · , r.
Step 3: From all the constructed schedules π̂1, π̂2, πi = (Sb

i ,MA, Sa
i ), i = 1, 2, · · · , r, we

choose the best as the output schedule and denote it as π, i.e., schedule π has the minimum

total weighted completion time.

Theorem 2 Algorithm H2 is an FPTAS for problem 1, h1, wldmt||
∑

iwiCi running in

O(n4 log f(S)/ε3 + Tf log f(S) logS/ε) time.

Proof. Consider an optimal schedule π∗. We know that the sum of processing times of

jobs scheduled before the maintenance activity in π∗ must fall into one of the subintervals

[0, s0], [si−1, si], i = 1, 2, · · · , r. If the sum of processing time of jobs scheduled before the

maintenance activity in π∗ falls into subinterval [0, s0], given s0 = mini=1,2,···,n pi there must

be just two possible schedules for π∗ which are the schedules π̂1 and π̂2 and we are done.

Next, we assume that the sum of processing times of jobs scheduled before the mainte-

nance activity in π∗ must fall into one of the subintervals [si−1, si], i = 1, 2, · · · , r. Again let

Sb denote the job subset scheduled before the maintenance activity and Sa denote the job

subset scheduled after the maintenance activity in π∗. Define Z(π∗) as the same in Section

2. We have

Z(π∗) = Z(Sb) + Z(Sa) + (S + f(
∑
i∈Sb

pi))(
∑
i∈Sa

wi),

where Z(Sb) and Z(Sa) are defined as the same in Section 2.

Consider schedule πi. Define Z(πi) as the same in Section 2. We have

Z(πi) = Z(Sb
i ) + Z(Sa

i ) + (S + f(
∑
i∈Sb

i

pi))(
∑
i∈Sa

i

wi),

where Z(Sb
i ) and Z(Sa

i ) are defined as the same in Section 2.

From the FPTAS of the problem 1, h1||
∑

iwiCi, since the schedule (Sb,MA, Sa) is a

feasible solution for the problem 1, h1||
∑

iwiCi, we have

Z(Sb
i ) + Z(Sa

i ) + (si + (S − si + f(si)))(
∑
i∈Sa

i

wi)
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≤ (1 + ε)(Z(Sb) + Z(Sa) + (si + (S − si + f(si)))(
∑
i∈Sa

wi)),

i.e.,

Z(Sb
i ) + Z(Sa

i ) + (S + f(si)))(
∑
i∈Sa

i

wi)

≤ (1 + ε)(Z(Sb) + Z(Sa) + (S + f(si)))(
∑
i∈Sa

wi)).

From the split of subintervals, we have

f(
∑
i∈Sb

i

pi) ≤ f(si) ≤ (1 + ε)f(si−1).

Clearly f(
∑

i∈Sb pi) ≥ f(si−1). Thus we have

f(
∑
i∈Sb

i

pi) ≤ f(si) ≤ (1 + ε)f(
∑
i∈Sb

pi).

Finally, we obtain

Z(Sb
i ) + Z(Sa

i ) + (S + f(
∑

i∈Sb
i
pi))(

∑
i∈Sa

i
wi)

≤ Z(Sb
i ) + Z(Sa

i ) + (S + f(si))(
∑

i∈Sa
i
wi)

≤ (1 + ε)(Z(Sb) + Z(Sa) + (S + f(si))(
∑

i∈Sa wi))

≤ (1 + ε)(Z(Sb) + Z(Sa) + (S + (1 + ε)f(
∑

i∈Sb pi))(
∑

i∈Sa wi))

≤ (1 + ε)2(Z(Sb) + Z(Sa) + (S + f(
∑

i∈Sb pi))(
∑

i∈Sa wi)),

which implies

Z(πi) ≤ (1 + ε)2Z(π∗).

Slightly scaling the ε, we obtain

Z(π) ≤ Z(πi) ≤ (1 + ε)Z(π∗).

Because the FPTAS of the problem 1, h1||
∑

iwiCi provided by Kellerer and Strusevich

[5] runs in O(n4/ε2) time and we invoke it at most log f(S)/ log(1 + ε) times, the running

time of Algorithm H2 is O(n4 log f(S)/ε3 +Tf log f(S) logS/ε) time and thus Algorithm H2

is an FPTAS ( note that f(·) can be computed in polynomial time Tf by the assumption).

�

4 Concluding remarks

This paper investigates a single-machine scheduling problem with workload-dependent main-

tenance duration. The objective is to minimize the total weighted completion time. Un-

der the assumption that the maintenance duration is an arbitrarily nonnegative and non-

decreasing function on the workload and the duration function can be computed in poly-

nomial time, we propose a (2 + ε)-approximation algorithm and a fully polynomial time

approximation scheme, which extends the previous results in [11].
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