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Decisions regarding investments in capacity expansion/renewal require taking into account both the
operating fitness and the financial performance of the investment. While several operating requirements
have been considered in the operations research literature, the corresponding financial aspects have not
received as much attention. We introduce a model for the renewal of shipping capacity which maximizes
the Average Internal Rate of Return (AIRR). Maximizing the AIRR sets stricter return requirements on
money expenditures than classic profit maximization models and may describe more closely shipping
investors' preferences. The resulting nonlinear model is linearized to ease computation. Based on data
from a shipping company we compare a profit maximization model with an AIRR maximization model.
Results show that while maximizing profits results in aggressive expansions of the fleet, maximizing the
return provides more balanced renewal strategies which may be preferable to most shipping investors.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Among the most crucial decisions for a shipping company, the
composition of the fleet of ships determines, to a great extent, the
competitiveness of the company. Finding the best adaption of the
fleet to volatile market conditions is the main scope of the Mar-
itime Fleet Renewal Problem (MFRP), which consists of deciding
how many and which types of ships to add to the fleet and which
available ships to dispose of (see, e.g., [3,30,31]).

The MFRP can be considered a special version of the Capacity
Expansion Problem (CEP) or of the Machine Replacement Problem
(MRP). CEPs seek the best addition to available capacity in order to
meet increasing demand, while MRPs seek the best substitution of
available machines, induced by factors such as obsolescence [29],
deterioration, and ageing. In CEPs and MRPs the terms “capacity”
and “machine” generically refer to equipment of various types,
such as, cables, pumps, computers, and vehicles [33], with differ-
ences in, for example, economic life, cost magnitude, and rele-
vance for the core business.

CEPs and MRPs have received considerable attention by the
operations research community, producing a plethora of models at
r Salazar-Gonzalez.
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increasing level of realism, and adapting to various operating
configurations. For example, Fong and Srinivasan [12] consider
multi-period capacity expansion and location, Li and Tirupati [22]
focus on the trade-off between specialized and flexible capacity in
multi-product production systems, Cormier and Gunn [10] con-
sider warehouse capacity expansion under inventory constraints,
Kimms [19] combines capacity expansion with production plan-
ning and lot sizing, van Ackere et al. [40] study the short-term
problem of adjusting the capacity in reaction to the behavior of
customers waiting in queues, while Ahmed et al. [2] and Bean et al.
[4] study CEPs under uncertainty. The main issues faced in CEPs
are related to expansion size, time, and location [24] and the
option of replacing machines is typically ignored [33]. As far as
MRPs are concerned, Sethi and Chand [37] consider the replace-
ment of single machines with only one replacement alternative,
while Chand and Sethi [6] allow the possibility of replacing
available machines by any from a set of available alternatives.
Goldstein et al. [14], Nair and Hopp [29], Hopp and Nair [16], and
Adkins and Paxson [1] consider replacement decisions triggered
by technological breakthroughs. Typically, MRPs do not consider
the possibility of changes in the demand for equipment. Capacity
expansions and replacements are however naturally tied decisions
(see, e.g., [34,33,35,7]).

The problem of expanding/replacing transportation capacity
takes on specific features due to the interplay between the
investment in vehicles and their routing. Classical models focus
rn on the capital employed in shipping capacity renewal. Omega
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mainly on the initial configuration of a fleet of vehicles (see, e.g.,
[11] and the surveys in [15,30]), rather than its evolution. However,
the problem of renewing fleets of vehicles has recently received
attention especially in the maritime literature, due to the volatile
nature of the shipping business, and the consequent need to adjust
shipping capacities in response to changes in the market. As an
example, Alvarez et al. [3] and Pantuso et al. [31] consider multi-
period renewal of a fleet of ships in order to cope with uncertain
market developments. Examples can also be found for rail-road
capacity expansions (see, e.g., [23]).

The studies mentioned above cover a wide variety of operating
features and equipment types. However, relatively little attention
has been paid by the operations research community to the
financial aspects related to investments in capacity besides their
technical fitness. Most of the models available seek minimum cost
or maximum profit capacity expansion/replacement decisions
with the Net Present Value (NPV) being the only metric used.
However, financial and economic data related to an investment
can be aggregated in a number of alternative ways, giving rise to
different metrics often used in place of, or in conjunction with, the
NPV for evaluating the profitability of capital asset investments
(see, e.g., [36,27]). This is especially true for equipment with long
economic life and a relevant capital magnitude, such as vehicles,
buildings, and pipelines. As an example, Menezes et al. [28],
pointing out that a mere attention to profit in facility location can
lead to too high investments, include Return on Investment
thresholds requirements in the corresponding models, and show
that this leads to a higher utilization of the available facilities.
Particularly, for the case of maritime shipping, Stopford [38] shows
that investments can be evaluated by the ratio between the eco-
nomic value added by the transportation services over the net
asset value of the fleet.

In this paper, we consider the maximization of the Average
Internal Rate of Return (AIRR) in the renewal of maritime shipping
capacity. The AIRR [25] measures the return of multi-period
investment projects which generalizes and solves a number of
flaws of the well known concept of Internal Rate of Return (IRR) as
explained by Magni [26]. It can be expressed as the ratio between
the actualized returns generated by a stream of capital invest-
ments over the actualized sum of the investments. This metric is in
line with the indicator used in Stopford [38]. The focus is on the
MFRP as it well represents strategic CEPs and MRPs due to the long
economic life of ships, their cost magnitude, and the high level of
uncertainty. As an example, the second-hand price of a five year
old 300 000 deadweight tons (dwt – a standard measurement unit
for the ship carrying capacity) oil tanker, increased from 124 to
145 million dollars in 2008, and fell down again to 84 million
dollars in 2009 as reported by the United Nations Conference on
Trade and Development [39]. The contribution of this paper is
therefore twofold: (1) we introduce a model for maximizing the
AIRR for capacity renewal in shipping, and (2) we compare the
results of the new model against that of a more classic model
maximizing profits NPV in order to offer managerial insights by
highlighting the economical and structural differences in the
solutions obtained. In addition, we show how the resulting non-
linear AIRR model can be reformulated in an equivalent linear
model in order to ease computation. In order to account for mar-
ket information being revealed at different points in time, both the
AIRR and the profit maximization problems are formulated as
multistage stochastic programs.

The remainder of this paper is organized as follows. In Section 2
we provide a thorough description of the MFRP. In Section 3 we
introduce a mathematical model for the MFRP which maximizes
the AIRR, as well as an alternative model which maximizes profits.
In Section 4 we analyze the results and the solutions obtained by
Please cite this article as: Mørch O, et al. Maximizing the rate of retu
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the two alternative models based on the case of a major liner
shipping company. Finally, conclusions are drawn in Section 5.
2. The renewal of maritime shipping capacity

The MFRP is a special version of MRPs and CEPs due to routing
constraints. The objective is to seek an investment mix which is
sound in some economical sense (typically cost efficient) and
respects operating constraints. In what follows, we sketch the
main features of the problem, while a detailed description can be
found in Pantuso et al. [31].

The MFRP consists of deciding, for each time period, how many
ships of each type to add to or remove from the available fleet.
Ships can be bought in the second-hand market, or built. In the
former case, the company must choose from the ships available in
the market but the ship is available in short time (typically weeks
to months). In the latter case the ship can be built according to the
company's specifics but the building process takes longer time
(typically years). Ship prices depend, to a great extent, on the type
of ship, its age, and on the market status. Ships can be disposed of
by selling them in the second-hand market or scrapping (demol-
ishing) them. In both cases the ship can be removed from the fleet
in weeks to months. Scrapping rates depend to a great extent on
the weight of the steel the ship is made of, and are therefore
sensitive to changes in steel prices.

A necessary distinction must be made. In the shipping business
there exist two broad types of players interested in investing in ships,
which we will refer to as speculators and ship operators. Speculators
see ships as an asset to trade. Their main scope is buying ships in
order to sell them at a higher price when the market allows so. They
do not necessarily have competencies in shipping operations, but see
ships as a marketable asset. Ship operators, on the contrary, buy ships
to operate them. Their business model consists of using ships to
provide transportation services. Finer classifications, though possible,
are beyond the scope of this paper. In what follows we refer to the
ship operator type of player.

When deciding how to modify the available fleet, investors
must take into account how the fleet is operated. This includes
both the possibility of temporary adjustments to the fleet and the
utilization (i.e., the sailing activities) of the available fleet. Tem-
porary adjustments to the fleet are mainly done by means of time
charters, which consist of hiring a ship and its crew for a period
time (weeks to years). The charterer pays a (per day) fee as well as
all sailing-related expenses, such as fuel and port fees. The owner
of the ship bears the rest of the costs, such as capital cost, crew,
and insurance. Any shipping company can, in general, act both as a
charterer and a charteree, depending on the specific need. Fleets
can also be temporarily scaled down by laying-up ships, which
consists of stopping ships at port for a period of time, paying port
fees but reducing operating expenses such as manning, storages,
and, possibly, insurance.

The utilization of the ships depends on the shipping company's
operation mode (see, e.g., [21,9]). In what follows we focus,
without much loss of generality (see [31]) on liner shipping
operations. Liner shipping companies deploy their fleets on a
number of trades. A trade is a sequence of origin and destination
ports in different geographic areas (e.g., Europe to U.S. and Asia to
Europe). A ship deployed (i.e., assigned) to a trade (servicing the
trade) visits some/all of the ports on the trade according to a pre-
published schedule, picking up cargoes at origin ports and deli-
vering cargoes at destination ports. Concluded the sailing on one
trade, the ship is deployed on another/the same trade with, pos-
sibly, some empty (ballast) sailing to reposition the ship. Trades are
separated into contractual and optional trades. On contractual
trades the shipping company has contractual transportation
rn on the capital employed in shipping capacity renewal. Omega

http://dx.doi.org/10.1016/j.omega.2016.03.007
http://dx.doi.org/10.1016/j.omega.2016.03.007
http://dx.doi.org/10.1016/j.omega.2016.03.007


O. Mørch et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3
agreements to be fulfilled while on optional trades no contractual
agreement exists. However, the company may, as a strategic
decision, choose to start servicing optional trades at any time in
the future. This usually corresponds to a long-term commitment
equivalent to entering a new market. For most trades the company
may wish to ensure a certain number of services per year (fre-
quency) in order to establish a presence in a given market or to
satisfy customers requirements.
3. Mathematical models

In this section, after discussing specific modeling assumptions
in Section 3.1, and introducing the notation in Section 3.2, we
propose two alternative mathematical models for the MFRP. In
Section 3.3 we introduce a model for the maximization of the
AIRR. Since the model in Section 3.3 is a mixed-integer nonlinear
stochastic program in Section 3.4 we show how the model can be
linearized to ease computation. Finally, in Section 3.5 we introduce
a profit NPV maximization model.

3.1. Modeling assumptions

The mathematical models presented in Sections 3.5 and 3.3
have been adapted from the cost minimization model presented in
Pantuso et al. [31], where the reader can find specific details. We
assume that our models are tailored for liner shipping of rolling
equipment. However, the models do not lose (much) generality, as
they can be readily used for (or adapted to) different maritime
transportation modes and types of cargoes, as explained in Pan-
tuso et al. [31]. Here we mention a few elements necessary for
introducing the models.

Trades are organized in loops. A loop is an ordered sequence of
trades. In the model, ships are assigned to loops. Assigning a ship
to a loop corresponds to having the ship servicing the trades of the
loop in the specified order. Ballast sailing between the trades in
the loop (empty ship repositioning) is possible and accounted for
in the duration of loop. No transhipment (i.e., movement of car-
goes from a ship to another) is considered. Given its strategic
relevance, we assume that if the shipping company chooses to
service an optional trade in a period, it must continue to service
the trade for the rest of the planning horizon. We also assume that
different types of cargoes (rolling equipment) need to be trans-
ported, as is typical in this shipping segment. Therefore, ships have
a capacity (maximum allowance) for each cargo type as well as a
total capacity which must be respected. Examples will be given for
the specific case study in Section 4.1.

The cost of the capital necessary for buying a ship is, in general,
affected by the way the company chooses to finance the ship.
Alternative financing decisions (see [38] for an overview) will not
be considered. Rather, the cost of the capital is included in the
costs of the ship. When a ship is built/bought, we consider one
unique payment at purchase time. This can in practice represent
both the actualized sum of future installments (e.g., debt repay-
ment and interests) and an actual (less likely) upfront cash pay-
ment, or a combination of these. Similarly, when a ship is sold/
scrapped we assume that the company receives one unique pay-
ment at purchase time.

When a ship is bought/sold in the second-hand market or
scrapped it joins/leaves the fleet at the beginning of the following
period. Newbuildings become available after a number of periods
representing the lead time from order to delivery. Time charters are
available immediately. Ships cannot be sold or scrapped before they
are actually delivered. Furthermore, it is assumed that ships have a
set lifetime (typically 20 to 30 years) after which they will leave the
fleet. This is common policy for many shipping companies.
Please cite this article as: Mørch O, et al. Maximizing the rate of retu
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We assume that most of the parameters of the problem are
uncertain. Particularly, the uncertain parameters are: ship values,
newbuilding and second-hand prices, selling and scrapping rev-
enues, time chartering rates, space chartering rates, demands,
variable operating costs (e.g., bunkering and port fees), the num-
ber of ships which can be purchased and sold in the second-hand
market, the number of ships which can be chartered in and out.
Finally, we assume that a complete representation of the uncer-
tainty is available in the form of a scenario tree (see, e.g., [20, Ch.4]
for an introduction on scenario generation and [32] for errors
related to poor assumptions regarding the scenario tree).

3.2. Notation

In this section we describe the notation used to define the
mathematical models. The notation is also reported in tabular
form in Appendix A for the reader's convenience.

Let T¼ f0;…; T g be the set of time periods in the planning
horizon and S the set of scenarios where a scenario is a complete
realization of the random parameters for the whole planning
horizon. Let Vt be the set of ships available in the market in period
t, and VN

t DVt the set of newbuildings which can be delivered in
period t. Ships belong to sets Vt as long as they have not reached
their age limit. Let Nt be the set of all trades that the shipping
company may operate in period t, NC

t DNt the set of contractual
trades and NO

t DNt the set of optional trades. Let Lt be the set of all
loops, LvtDLt the set of loops which can be sailed by a ship of type
v in period t, and LivtDLt the set of loops that include trade i and
which can be sailed by ship v in period t. Note that ships may be
forbidden from sailing loops due to, e.g., port restrictions and canal
restrictions. Finally, let K be the set of all cargo types.

As far as decision variables are concerned, given a ship type v, a
time period t, and a scenario s, let yvtsP be the number of ships in
the fleet, ySCvts the number of ships scrapped, yNBvts the number of
ships built, ySEvts the number of ships sold, and ySHvts the number of
ships bought in the second-hand market. Let hIvts and hOvts be the
number of ships chartered in and out, respectively, for one period,
where fractions indicate the portion of the period the ship has
been chartered for, e.g. 2.5 indicates the charter of two ships for
one period and one ship for half of a period. Similarly, let lUvts be the
number of ships on lay-up for one period, where fractions indicate
the portion of the period ships have been laid-up for. Let xvlts be
the number of times loop l is sailed by ships of type v in period t.
Let hSkits be the amount of cargo of type k transported by space
charters on trade i in period t and scenario s, where space charters
consist of paying another company for transporting excess cargo.
Let δits be a binary variable indicating whether the company in
period t, scenario s, decides to service optional trade i or not.
Finally, let variable cEts denote the capital employed by the shipping
company in period t, scenario s.

The model contains the following parameters. The probability
of scenario s is ps. Given a ship type v, a time period t, and a
scenario s, let CNBvts be the cost for building a new ship, TL the lead
time between order placement and delivery, CSHvts the cost of a ship
in the second-hand market, RSEvts the revenue from selling a ship in
the second-hand market, and RSCvts the scrapping revenue. Let then
RCOvts and CCIvts be the revenue for chartering out and the cost for
chartering in, respectively, a ship for one period. Finally, let RFVvs be
the value of a ship at the end of the planning horizon (t ¼ T ). As far
as operating expenses are considered, let COPvt be the fixed oper-
ating expenses met for a ship of type v in period t (e.g., manning,
storages, and insurance). Notice that such expenses are considered
deterministic as they are somewhat more controllable or easier to
predict. Let RLUvt represents the fixed operating expenses saving
obtained when a ship of type v is laid-up in period t. Let then CTRvlts
represents the cost of sailing one time loop l with ship type v, in
rn on the capital employed in shipping capacity renewal. Omega
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period t under scenario s. Let RDits be the revenue obtained when
meeting the transportation demand on trade i, in period t, scenario
s, and CSPkits be the cost incurred when delivering one unit of cargo k
on space charters on trade t, in time t, scenario s. Let CE0 be the
value of the fleet at the beginning of the planning horizon, and β
the yearly depreciation of the fleet, i.e., the loss of value of the fleet
due to ageing. All monetary values are to be assumed appro-
priately discounted.

Furthermore, given a ship type v, let YNBvt be the number of ships
ordered before the beginning of the planning horizon and deliv-
ered in period t, YIP

v the initial number of ships in the pool, and YSHvts
and YSEvts the maximum number of second-hand purchases and
sales, respectively, available in period t, scenario s. Let then YSHts and
YSEts be the maximum number of second-hand purchases and sales,
respectively, the company is willing to issue in period t, scenario s.
Similarly, let HI

vts and HO
vts be the number of ships of type vwhich is

possible to charter in and out, respectively, for the whole period t,
under scenario s, and HI

ts and HO
ts be the total number of ships the

company is willing to charter in and out, respectively, in period t,
under scenario s. Let then Qv be the total capacity and Qkv the
capacity relative to cargo type k for ships of type v. Let Zlv be the
time necessary to complete a loop l with ships of type v and Zv the
fraction of a time period a ship of type v is available. Finally, given
a trade i and a time period t, let Fit be the minimum number of
times the trade must be visited and Dkits the amount of cargo type
k that must be transported under scenario s.

3.3. Return maximization model

Magni [25], defining the AIRR, show that it can be expressed as
the ratio between the present value of a stream of returns and the
present value of a stream of investments. Consequently, for our
scope, we define the AIRR for the renewal of shipping capacity as the
ratio between the present value of the stream of profits generated by
the shipping services performed and the present value of the stream
of capital employments. Let Πtsðψ Þ, tAT, sAS be the stream of
scenario-dependent one-period profits as a function of ψ, the col-
lection of decision variables (see Section 3.2). Let the operator PV ½��
represent the present value of a future amount of money. Finally, let
cEts, tAT, sAS be the stream of scenario-dependent capital employ-
ments. Our model for the maximization of the expected AIRR (RMax
in what follows) can be implicitly expressed as:

max
ψ AΨ

X
sAS

psAIRRs
� �¼max

ψ AΨ

X
sAS

ps

P
tATPV ½Πtsðψ Þ�P

tATPV ½cEts�

� �
ð1Þ

where Ψ represents the set of feasible solutions. In what follows the
model is introduced explicitly.

The objective function of problem (1) can be explicitly
expressed as follows:

max
X
sAS

ps
1P

tATc
E
ts=ðT þ1Þ

(
ð2aÞ

�
X
t A T:

tr T � TL

X
vAVN

t þ TL

CNB
vtsy

NB
vts

2
64 ð2bÞ

þ
X
tA T:
to T

X
vAVt

�CSH
vtsy

SH
vtsþRSE

vtsy
SE
vtsþRSC

vtsy
SC
vts

� �
ð2cÞ

�
X
tA T:
t4 0

X
vAVt

COP
vt y

P
vtsþ

X
lALvt

CTR
vltsxvlts�RLU

vt l
U
vts

 
ð2dÞ

þRCO
vtsh

O
vts�CCI

vtsh
I
vts

�
ð2eÞ
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þ
X
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t4 0

X
iANO

t

RD
itsδitsþ

X
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t4 0

X
iANC

t

RD
its�

X
kAK

CSP
kitsh

S
kits

 !
ð2fÞ

þ
X
vAV

T

RFV
vs y

P
vT s

3
5
9=
; ð2gÞ

Expression (2a) defines the denominator of the expected AIRR,
which sums up the present value of future capital employments.
Expression (2b) represents the expenses for building new ships.
Notice that, in order for a ship to be delivered in period t, it must
be ordered TL period in advance. In (2c) the expenses for buying
second-hand ships are summed to the revenue for selling and
scrapping ships. Expression (2d) sums up fixed operating expenses
(less lay-up savings) and variable operating expenses (i.e., sailing
related expenses). In (2e) the revenue for chartering ships out and
the expenses for chartering ships in are accounted for. Expression
(2f) contains the revenue obtained for transporting cargoes, minus
the cost from delivering cargoes by space charters. Finally, (2g)
represents the value of the fleet at the end of the planning horizon.
Notice that (a) (dis)investment decisions such as buying and
selling ships are made from period t¼0, (b) revenues are gener-
ated from period t¼1 on, as a consequence of previous (dis)
investment decisions, (c) operating expenses such as chartering,
fixed and variable operating costs, are not accounted for in the first
time period (t¼0) as the initial fleet is the result of past fleet
renewal decisions, (d) both the numerator and the denominator
are to be considered present values as the monetary values such as
ship prices and chartering rates are already discounted, (e) the
objective function represents the expected AIRR as it is the sum of
the scenario-AIRR weighed by their probabilities.

The problem is subject to the following constraints:

cE0 s ¼ βCE
0þ

X
vAVN

t þ TL

CNB
v0sy

NB
v0s

þ
X
vAVt

CSH
v0sy

SH
v0s�RSE

v0sy
SE
v0s�RSC

v0sy
SC
v0s

� �
; sAS; ð3Þ

cEts ¼ βcEt�1;sþ
X

vAVN
t þ TL

CNB
vtsy

NB
vts

þ
X
vAVt

CSH
vtsy

SH
vts�RSE

vtsy
SE
vts�RSC

vtsy
SC
vts

� �
; 1rtrT �TL; sAS; ð4Þ

cEts ¼ βcEt�1;sþ
X
vAVt

CSH
vtsy

SH
vts�RSE

vtsy
SE
vts�RSC

vtsy
SC
vts

� �
; T �TLotrT �1; sAS;

ð5Þ

cE
T s

¼ βcE
T �1;s

; sAS: ð6Þ

Constraints (3)–(6) define the value of the capital employed as the
sum of the investments in new or second-hand ships, minus the
revenues from selling or scrapping available ships. Particularly, the
capital employed is defined by (3) for the first period ðt ¼ 0Þ, by (4)
for the periods when it is possible to build new ships, by (5) for the
periods when it is not possible to build new ships, and finally by
(6) for the last time period (t ¼ T ). Notice that the value of the fleet
is depreciated after each period. However, despite the depreciation
the value of the fleet may grow with time in case of uprising
market conditions:

yPvts ¼ yPv;t�1;sþySHv;t�1;s�ySEv;t�1;s�ySCv;t�1;s; tAT⧹f0g; vAVt⧹VN
t ; sAS; ð7Þ

yPvts ¼ YNB
vt ; tAT : toTL; vAVN

t ; sAS; ð8Þ

yPvts ¼ yNB
v;t�TL ;s

; tAT : tZTL; vAVN
t ; sAS; ð9Þ
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yPv0s ¼ YIP
v ; vAV0⧹VN

0 ; sAS; ð10Þ

yPvts ¼ ySCvts; tAT⧹f0g; vAVt⧹Vtþ1; sAS; ð11Þ

ySHvtsrYSH
vts; tAT⧹fT g; vAVt ; sAS; ð12Þ

ySEvtsrYSE
vts; tAT⧹fT g; vAVt ; sAS; ð13Þ

X
vAVt

ySHvtsrYSH
ts ; tAT⧹fT g; sAS; ð14Þ

X
vAVt

ySEvtsrYSE
ts ; tAT⧹fT g; sAS: ð15Þ

Constraints (7) control the balance of ships bought and sold in the
second-hand market or scrapped. Constraints (8) ensure that new
buildings ordered before the beginning of the planning horizon are
delivered while constraints (9) ensure the delivery of new-
buildings within the planning horizon. Constraints (10) set up the
initial number of ships of each type in the fleet. Constraints (11)
state that ships reaching their age limit must be scrapped. Con-
straints (12) and (13) set the limit to the number of purchases and
sales possible in the second-hand market, respectively. In some
circumstances shipping companies may set a limit on the number
of second-hand ships they are willing to trade (e.g., they might
impose a certain quota of new ships). In this case, constraints (14)
and (15) limit the total number of second-hand purchases and
sales, respectively:

lvts�hIvtsþhO
vtsryPvts; tAT⧹f0g; vAVt ; sAS; ð16Þ

hIvtsrHI
vts; tAT⧹f0g; vAVt ; sAS; ð17Þ

hOvtsrHO
vts; tAT⧹f0g; vAVt ; sAS; ð18Þ

X
vAVt

hIvtsrHI
ts; tAT⧹f0g; sAS; ð19Þ

X
vAVt

hOvtsrHO
ts; tAT⧹f0g; sAS: ð20Þ

Constraints (16) state that the number of ships on lay-up or
chartered out must actually be available in the fleet. Constraints
(17) and (18) set the limit to the number of ships of a given type
that is possible to charter in and out, respectively, while con-
straints (19) and (20) limit the total number of ships the company
is willing to charter in or out, respectively, in a time period:X
vAVt

X
lALivt

QkvxvltsþhSkitsZDkits; tAT⧹f0g; iANC
t ; kAK; sAS; ð21Þ

X
vAVt

X
lALivt

QkvxvltsZDkitsδits; tAT⧹f0g; iANO
t ; kAK; sAS: ð22Þ

Constraints (21) and (22) make sure that the demand for each
cargo type, on each trade, is satisfied for the contractual and
optional trades, respectively. Notice, in constraints (22), that the
demand on optional trades must be satisfied only if the company
chooses to enter the trade:X
vAVt

X
lALivt

QvxvltsZ
X
kAK

ðDkits�hSkitsÞ; tAT⧹f0g; iANC
t ; sAS; ð23Þ

X
vAVt

X
lALivt

QvxvltsZ
X
kAK

Dkitsδits; tAT⧹f0g; iANO
t ; sAS: ð24Þ

Constraints (23) and (24) ensure that the total capacity of the ship
is not violated when servicing contractual and optional trades,
respectively. That is, they ensure that ships do not carry cargo in
excess to their capacity:
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X
vAVt

X
lALivt

xvltsZFit ; tAT⧹f0g; iANC
t ; sAS; ð25Þ

X
vAVt

X
lALivt

xvltsZFitδits; tAT⧹f0g; iANO
t ; sAS: ð26Þ

Constraints (25) and (26) impose frequency requirements on the
trades, if they exist. That is, they impose that each trade i is ser-
viced at least a Fit times in each period:X
lALvt

ZlvxvltsrZvðyPvtsþhIvt�hOvt� lUvtsÞ; tAT⧹f0g; vAVt ; sAS: ð27Þ

Constraints (27) state that, for a given ship type, the total sailing time
should not exceed the total time available for that ship type. As an
example, if a ship is available for 2/3 of a period (due, e.g., to main-
tenance), the total sailing of the ship cannot exceed 2/3 of a period:

δitsrδi;tþ1;s; tAT⧹f0; T g; iANO
t ; sAS: ð28Þ

Constraints (28) ensure that when the company chooses to service an
optional trade, the trade is serviced for the rest of the planning hor-
izon. The choice of entering a new trade is in fact considered a stra-
tegic decisions which impacts a number of planning periods:

yNBvtsAZþ ; tAT : trT �TL; vAVN
tþTL ; sAS; ð29Þ

ySCvtsAZþ ; tAT⧹fT g; vAVt ; sAS; ð30Þ

ySHvtsAZþ ; tAT⧹fT g; vAVt ; sAS; ð31Þ

ySEvtsAZþ ; tAT⧹fT g; vAVt ; sAS; ð32Þ

yPvtsARþ ; tAT; vAVt ; sAS; ð33Þ

lUvtsARþ ; tAT⧹f0g; vAVt ; sAS; ð34Þ

hIvtsARþ ; tAT⧹f0g; vAVt ; sAS; ð35Þ

hOvtsARþ ; tAT⧹f0g; vAVt ; sAS; ð36Þ

xvltsARþ ; tAT⧹f0g; vAVt ; lALvt ; sAS; ð37Þ

hSkitsARþ ; kAK; tAT⧹f0g; iANC
t ; sAS; ð38Þ

cEtsARþ ; tAT; sAS; ð39Þ

δitsAf0;1g; tAT⧹f0g; iANO
t ; sAS: ð40Þ

Finally, constraints (29)–(40) set the domain for each decision variable.
Model RMax (2)–(40) is to be considered nonanticipative, and non-
anticipativity constraints define whether the model is two-stage or
multistage. However, nonanticipativity constraints are not shown for
the sake of legibility.

3.4. Linearization of the AIRR maximization model

The RMax model presented in Section 3.3 is a nonlinear mixed-
integer (possibly multistage) stochastic program. Objective func-
tion (2) is a linear-fractional function of the decision variables. In
order to ease the solution process we propose a linearization of
the RMax model based on Charnes and Cooper [8].

Let us define a new decision variable as follows:

w¼ T þ1P
tAT

P
sAS

pscEts
ð41Þ

Decision variable w has no economic meaning. It is a mere
mathematical artefact by which it is possible to create new vari-
ables matching the variables defined for the RMax model. The
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http://dx.doi.org/10.1016/j.omega.2016.03.007
http://dx.doi.org/10.1016/j.omega.2016.03.007
http://dx.doi.org/10.1016/j.omega.2016.03.007


O. Mørch et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎6
utilization of these new variables, in substitution or in addition to
the original variables depending on the case, allows writing a
linear model equivalent to the RMax model. The new variables
inherit the name of the variables they match, with the addition of
the bar accent (�).

For continuous variables new variables are defined as the
product of w and the original variable. As an example, variable
xvlts, matching xvlts is defined as:

xvlts ¼wxvlts; 8 tAT⧹f0g; vAVt ; lALvt ; sAS: ð42Þ
For all other continuous variables of the RMax model new vari-
ables are created in the same way, and replace the original con-
tinuous variables in the resulting linearized model.

For binary variables δit we adopt the method described by
Glover [13]. We need to create the following relationship:

δ its ¼wδits; tAT⧹f0g; iANO
t ; sAS: ð43Þ

However, since δits is binary, we need to ensure that δ its takes
either value w or 0. Therefore, δ its cannot directly replace variables
δits. Instead, relationship (43) will be ensured by adding con-
straints (44)–(46) in the linearized model:

w�δ itsþUδitsrU; tAT⧹f0g; iANO
t ; sAS; ð44Þ

δ its�wr0; tAT⧹f0g; iANO
t ; sAS; ð45Þ

δ its�Uδitsr0 tAT⧹f0g; iANO
t ; sAS; ð46Þ

where U is an upper bound on the value of w. This means that the
linearized model will contain both δ its and δits variables.

General integer variables (i.e., yNBvts, ySCvts, ySHvts and ySEvts) must be
transformed into binary variables before using the method
described by Glover [13]. Several alternatives are available in order
to transform general integer variables into binary variables. Since a
complete examination is beyond the scope of this paper, in what
follows we describe the transformation which performed best for
the case study presented in Section 4.

Assume that for each ship type a decision is made about
whether or not to order an individual ship of that type. Let JNB be
the set of such decisions. Correspondingly, j JNB j is the maximum
number of ships which is possible to order. Let then yjvts

NB be a
binary variable indicating whether the j-th ship is ordered or not.
The correspondence to the original yNBvts variables is the following:

yNBvts ¼
X
jA JNB

yNBjvts; 8 tAT : trT �TL; vAVN
tþTL ; sAS: ð47Þ

Similarly, variables ySCvts, ySHvts and ySEvts are transformed into the cor-
responding ySCjvts, ySHjvts and ySEjvts, and the associated sets JSC, JSH, and
JSE are created. Once binary variables are obtained, the corre-
sponding yNB

jvts; y
SC
jvts; y

SH
jvts, and ySE

jvts can be created using the rela-
tionships in Glover [13], as shown for the δits variables.

However, this formulation leads to symmetry problems. Ships
of the same type are identical (i.e., they have the same cost and
technical features). Therefore, ordering (scrapping, buying, selling)
ship j of type v, is identical to ordering (scrapping, buying, selling)
ship jþ1. Symmetry problems can be tackled in several ways, and
also in this case an exhaustive examination is beyond the scope of
the paper. The solution we adopted consists of adding constraints
of type (48) which ensure that if m ships are to be built, the first m
variables yNB1vts;…; yNBmvts take value one, and zero the remaining:

yNBjvtsryNBj�1;v;t;s; jA JNB⧹f1g; tAT : trT �TL; vAVN
tþTL ; sAS: ð48Þ

This is equivalent to selecting any other combinations of m indices
from JNB. Similar constraints have been added for variables ySHjvts,
ySEjvts, and ySCjvts.

The full linearized version of RMax model is reported in
Appendix B for the sake of legibility. Mathematical model (51)–
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(112) is a linear mixed integer stochastic program equivalent to the
RMax model and is, in general, easier to solve. Once the linearized
model has been solved, the values of the continuous variables of
the original model can be obtained through relationships of type
(42), the values of the general integer variables can be obtained
through relationships of type (47), while the values of variables δits
is part of the solution to the linearized model.

3.5. Profit maximization model

The profit maximization (PMax) model consists of selecting a
fleet renewal plan which maximizes the expected NPV of future
cash flows, corresponding to the present value of future profits.
The PMax model is hence:

max
ψ 0 AΨ 0

X
sAS

ps
X
tAT

PV ½Πtsðψ 0Þ�
 !

ð49Þ

where ψ 0AΨ 0 is the collection of decision variables. Notice that ψ 0

is different than ψ defined in Section 3.3 as the PMax model does
not contain capital employment variables cEts.

PMax model can be explicitly defined as follows:

max
X
sAS

ps �
X
t A T:

tr T � TL

X
vAVN

t þ TL

CNB
vtsy

NB
vts

2
64

8><
>: ð50aÞ

þ
X
t A T:
to T

X
vAVt

�CSH
vtsy

SH
vtsþRSE

vtsy
SE
vtsþRSC

vtsy
SC
vts

� �
ð50bÞ

�
X
t A T:
t4 0

X
vAVt

COP
vt y

P
vtsþ

X
lALvt

CTR
vltsxvlts�RLU

vt l
U
vts

 
ð50cÞ

þRCO
vtsh

O
vts�CCI

vtsh
I
vts

�
ð50dÞ

þ
X
t A T:
t4 0

X
iANO

t

RD
itsδitsþ

X
t A T:
t4 0

X
iANC

t

RD
its�

X
kAK

CSP
kitsh

S
kits

 !
ð50eÞ

þ
X
vAV

T

RFV
vs y

P
vT s

3
5
9=
; ð50fÞ

subject to (7)�(40)

Notice that PMax model contains the same constraints as in
(2)–(40), except for constraints (3)–(6) defining the capital
employed. Notice also that objective function (50) represents the
present value of a stream of profits. In fact, all the monetary values
are implicitly actualized.
4. Comparing maritime fleet renewal problem models

In this section we compare the RMax and the PMax models
introduced in Section 3. In Section 4.1 we introduce a set of
instances based on the case of a major liner shipping company
transporting rolling equipment. In Section 4.2 we propose a
comparison based on the results both in terms of AIRR and profit
obtained with the two cases, as well as a discussion on the solu-
tions obtained.

The models were implemented using Xpress Mosel modeling
language, and solved using Xpress Optimizer Version 24.01.04 on
an Intel

s

CoreTM i7-3770 CPU @ 3.4 GHz machine with 16 GB RAM.
As far as the RMax model is concerned, all tests were done solving
its linearized version illustrated in Section 3.4 and shown in full in
Appendix B.
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Fig. 1. Qualitative description of a two-stage scenario tree with six scenarios.

Table 2
Expected economic results from the RMax and PMax models. Averages over
10 runs.

RMax PMax

L M S L M S

Profit 0.93 0.91 0.91 1 1 1
AIRR 1 1 1 0.87 0.88 0.88
CAGR 24.1% 23.8% 23.3% 21.9% 21.8% 21.4%
CAGR Extra Capital – – – 10.4% 12.2% 11.9%
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4.1. Case study and instances

Instances have been generated using data from a major liner
shipping company engaged in the transportation of rolling equip-
ment. The company transports three main types of cargoes, namely
cars, high and heavy vehicles (HH) and breakbulk cargo (BB). The
ships operated belong to three main families, namely Pure Car
Carriers (PCCs), specialized for cars, Pure/Large Car Truck Carrier
(PCTC/LCTCs), which can carry a mix of cars and trucks, and Roll On-
Roll Off (RORO) ships which can carry almost any combination of
the three types of cargoes. Each ship has a specified capacity of each
type of cargo, as well as a total capacity to respect. The company
operates several trades around the world. An internal policy at the
company, combined with operating in a very specialized segment,
imposes that only new ships are purchased, and that the ships the
company owns are kept until they are scrapped. Charters in and out
are however possible. The models presented in Section 3 have been
slightly modified accordingly (i.e., a zero-upper-bound has been
imposed on second-hand purchases and sales).

Three instances have been generated, namely Small (S), Medium
(M), and Large (L), depending on the number of ship types and
trades included. Ships with identical characteristics (same family)
but different age are treated as different ship types. Instance L
mimics a large liner shipping company such as the focal company,
with an initial fleet of 55 ships, servicing 11 to 14 trades – three
trades are optional. Instance M describes a smaller shipping com-
pany with an initial fleet of 35 ships, servicing 7 to 11 trades. Finally,
instance S corresponds to a shipping company with an initial fleet
of 27 ships, servicing 5 to 8 trades. Each instance includes optional
trades to represent opportunities of expansion into new markets.
Tables 6 and 7 in Appendix C report the ship types and trades
included in each instance, while Table 1 reports the size of pro-
blems. As it can be observed, the linearization of the RMax model
generates a dramatic increase in the number of constraints and
integer variables. The increase in the number of constraints is
mainly due to the introduction of the relationship between the
original binary variables and the linearization variables (75)–(90).
The additional integer variables are instead generated by the need
of transforming the original integer variables in binary variables.

The planning horizon has been set to five years, in accordance
with the length of the forecast at the company. All economic para-
meters, such as ship prices, charter rates, and operating expenses
have been estimated using raw data from the focal company. All
input values have been properly discounted over the planning hor-
izon, using a discount factor of 12%, as suggested in Stopford [38].

In order to account for uncertainty a two-stage scenario tree has
been generated, with the current period representing the first-
stage, and the second-stage representing the following five years.
Fig. 1 reports a qualitative description of the scenario tree. Three
random variables have been introduced, namely, market status, steel
price, and fuel price. The market status variable controls freight
revenue, demand, and newbuilding prices, and charter rates. Steel
prices impact the scrapping revenue, whilst fuel prices impact
sailing costs. A distribution of forecast errors for the three random
variables has been estimated based on the data from the case
Table 1
Size of the problems.

Problem Instance # Variables (Integer) # Constraints

S E18 000 (1200) E3000
PMax M E40 000 (1600) E4000

L E75 000 (1 800) E5 000
S E30 000 (15 000) E65 000

RMax M E55 000 (19 000) E80 000
L E95 000 (23 000) E95 000
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company. Scenarios have been generated using a modified version
of the method proposed by Høyland et al. [17], using distribution
functions instead of moments to control the margins. Acceptable in-
sample stability (see [18]) is achieved with six scenarios for both the
PMax and RMax models, by accepting a standard deviation of
approximately 0.6% of the objective. In fact, this value of standard
deviation is at least one order of magnitude smaller than the
numerical results we discuss in what follows. All tests have been
therefore run with six scenarios and solved to proven 0.5% optim-
ality gap. Each test has been performed by running the models ten
times, each time with a different scenario tree.

4.2. Results and discussion

A comparison between the results obtained with the RMax and
PMax models is proposed along the following dimensions: in
Table 2 we compare the economic results from the two models, in
Table 3 we propose a comparison of the solutions, and finally in
Table 4 we compare the sensitivity to uncertainty through the
value of the stochastic solution (VSS) (see [5]).

Table 2 shows the economic results obtained from the two
models. For both models the table shows the expected profit (as a
fraction of the profit obtained with the PMax model), the expected
AIRR (as a fraction of the AIRR obtained with the RMax model), and
the expected “Compounded Annual Growth Rate” (CAGR) which
measures the period-by-period growth rate of the investment over
the whole planning horizon, i.e., how much the investment grows
from a year to another, represented by a constant rate.

An expected result is that the PMax model generates a smaller
AIRR, and that the RMax model generates a smaller profit than the
other model. As seen in Table 2, the RMax model is able to achieve
a 13.6–14.9% higher AIRR by giving up 7.0–9.0% of profits. Similarly,
the PMax model gives a 7.5–9.9% higher profits but at the price of a
rn on the capital employed in shipping capacity renewal. Omega
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Table 3
Solutions to the RMax and PMax models. Averages over 10 runs.

Period (t) RMax PMax

L M S L M S

Newbuildings 0 6.7 3.6 2.6 19.4 8.6 5.9

1;‥; T �T
L 12.1 6.4 4.4 11.9 8.5 5.6

Scrappings 0 – – – – – –

1;‥; T �1 12.9 8.1 5.6 10.8 7.3 5.2
New trades 1 0.78 1.18 0.80 0.97 1.67 1.07

2 0.78 1.18 0.80 1.65 2.50 1.57
3 0.80 1.20 0.82 2.00 3.00 2.00
4 0.80 1.20 0.82 2.00 3.00 2.00
5 0.83 1.22 0.87 2.00 3.00 2.00

Table 4
Value of the Stochastic Solution (VSS) for the RMax and PMax models. Averages
over 10 runs.

RMax PMax

L M S L M S

VSS (%) 11.9 15.9 21.7 12.6 3.3 11.7
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12.0–13.0% smaller AIRR. The results are consistent over all the
instances representing companies of different sizes. The extra
profit gained with the PMax model is of course of value, but is
generated by a higher employment of capital – Table 3 shows the
higher number of ships the PMax model suggests investing in. In
this situation one may want to know whether it is sound to
employ that extra capital in order to gain extra profits.

Useful information in this sense may be found by looking at the
CAGR generated by the two models (see Table 2). In both cases the
capital employed grows at a rate higher than 20%, with the RMax
model ensuring an approximately 2% higher growth. However, the
CAGR generated by the extra capital employed in the PMax solution
is nearly halved compared to the capital employed in the RMax
solution. This illustrates that the capital employed for extra profit is
expected to grow at a much slower rate. Whether to employ the
extra capital for additional profits would depend on the presence of
other viable employment alternatives. Note, however, that the
values of CAGR reported in Table 2 cannot be directly compared to
actual CAGR values in the maritime industry. The values reported
here do not take into account a number of additional expenses
actually paid by real shipping companies, such as administrative
costs (insurance, cost of the administrative personnel) and taxation.
We neglect such additional expenses, because (a) they would not
play any role in the optimization models presented as they are
constants, and (b) their precise estimate is made particularly diffi-
cult due to the international set up of the focal shipping company.
Therefore, we expect the values reported in Table 2 to be in general
higher than historical market values and thus, only useful for a
comparison in the scope of this paper.

Table 3 reports the solutions to both the RMax and PMax
models. The RMax model consistently (over the instances) sug-
gests building much fewer ships in the first period than the PMax
model, and the same trend is to some extent maintained in the
following periods. The aggressive investment strategy suggested
by the PMax model is rarely seen in practice, and it can be dis-
cussed whether it is realistic for a company to make investments
of this size, compared to the initial value of the fleet. On the other
hand, the slow-paced newbuilding policy suggested by the RMax
model is more consistent with common practice in many shipping
companies. Hence, the results of the RMax model could appear
more intuitive from a shipping company's perspective.
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Furthermore, investing in as many ships as suggested by the PMax
solution (e.g., 19 for the Large instance) raises doubts on whether
capital expenses and debt repayments can actually be afforded in
day-to-day operations. Investments of this magnitude are rarely
seen in the industry. As an example, the focal shipping company
typically invests in less than a hand-full of ships every year. The
RMax formulation will only choose to invest in a new ship if the
investment will lead to an equal or higher return than without the
investment, which means that the extra profit gained over the
capital needed for the investment must be higher than the return
without the investment. If it is only marginally lower, the invest-
ment will not be made. For the PMax model it is enough that the
extra investment gives a net profit, as long as it is positive. So the
RMax model can be said to have a stricter restriction on the profit
an investment must generate.

As long as the scrapping policy is concerned, most of the ships
scrapped by the PMax model are the ones reaching the age limit.
The RMax model instead suggests scrapping more of the younger
ship types in addition to the ones leaving the fleet. These results
are consistent with the difference shown for the building policy. In
fact, while the PMax model pursues a more aggressive capacity
expansion policy, the RMax model seeks renewal also for effi-
ciency purposes. The average scrapping age suggested by the
RMax model is close to the average scrapping age in the market
(25 years) while the PMax model typically scraps ships when the
reach the age limit imposed by the model (30 years).

The number of new trades entered by the PMax model is also
consistent with its new building and scrapping policy. Table 3
shows that the expansion suggested by the PMax model is con-
sistently choosing to service all optional trades but one. The trade
never chosen is characterized by a relatively low demand and high
frequency requirement. Again, the RMax model enters new mar-
kets only if the corresponding remuneration increases the return
on the capital employment.

Table 4 reports the VSS for the two models. It can be noticed
that, except for the large instance, the VSS is higher for the RMax
model. It shows that planning against uncertainty has a much
higher impact when maximizing the AIRR. The reason for the
higher VSS for the RMax model lays mainly in the smaller rate of
expansion of the fleet. A smaller fleet is more vulnerable to
changes in demand as it offers fewer opportunities to increase the
return by improving the management of the fleet. If the solution to
the mean value problem for the RMax model was used, it would
generate a high amount of space charters to cater for peaks in
demand. This is a symptom of tonnage deficit. On the opposite, the
mean value solution to the PMax model will suggest building a
bigger fleet (compared to the mean value solution to the RMax
model). Bigger fleets offer more flexibility when it comes to
recovering from changes in demand. Therefore, returns are more
affected by uncertainty than profits. This suggests that maximizing
the AIRR calls for planning against uncertainty, as plans made with
average data are more subject to result in unbalanced fleets.

Finally, tests were run slightly modifying the instances intro-
duced earlier in order to validate the results presented. For the
sake of conciseness we just summarize our findings. Initially, we
compared the two models with an increased freight revenue
(parameter RDits). The freight revenue obtained by the case com-
pany was increased (possibly unrealistically) by up to 50%. The
rationale behind this is that with a higher revenue for the cargoes
transported, also the RMax model might find it profitable to invest
more. However, the structural differences in the solutions shown
in Table 3 were confirmed. The main difference is in the fact that
the PMax model chooses to service all optional trades, and to
invest slightly more. However, for the RMax model the increased
revenue was not sufficient to enter additional optional trades and
expand the fleet. Then, with respect to original instances, we
rn on the capital employed in shipping capacity renewal. Omega
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increased the number of optional trades (jNO
t j ). Particularly, we

expanded instances S and M with two additional optional trades in
each. The higher number of optional trades pushed the RMax
model to increase the number of newbuildings. However, this
result is ever more marked for the PMax model, stressing the
structural differences highlighted in the base case. A higher
number of optional trades makes the VSS drop for the PMax
model, confirming that the availability of more revenue options,
together with a bigger fleet, offer decision makers more resilience
in case of poor fleet planning decision. The structural difference
between the two models was also confirmed when considering a
longer planning horizon, i.e., T ¼ 10. When decreasing the space
charter cost (CSPkits), both models suggest investing in fewer ships
(though the PMax model still suggests investing more than the
RMax model). The option of sending cargoes by space charters is
used more, and consequently fewer own ships are needed. Intui-
tively, the VSS slightly decreases for both models, as space charters
represent in this case a rather cheap mean for recovering from
poor fleet planning decisions. Finally, we considered three stages
rather than two (i.e., we solved three-stage stochastic programs
for both models). The idea is that, in a two-stage structure, it may
happen that investments are postponed until after the uncertainty
is disclosed. However, also with three-stages, the results shown
with the two-stage case are, to a very large extent, confirmed.

The adoption of the RMax in the maritime industry could
confirm analytically the strategic ideas of shipping investors. In
fact, as shown in this section, the solutions provided are to a large
extent compatible with common practices in the maritime
industry. In addition, since the solutions to the RMax model are
balanced against an uncertain future, its adoption may help to
prevent poor investment decisions merely caused by feelings
induced by the raising or falling of shipping markets.
Table 5
Notation.

Sets
T Set of time periods
S Set of scenarios
Vt Set of ships available in the market in period t

VN
t DVt Set of newbuildings which can be delivered in period t

Nt Set of all trades that the shipping company may operate in period t

NC
t DNt Set of contractual trades

NO
t DNt Set of optional trades

Lt Set of all loops
LvtDLt Set of loops which can be sailed by a ship of type v in period t
LivtDLt Set of loops which include trade i and can be sailed by ship v in

period t
K Set of all cargo types

Variables
yPvts Number of ships of type v in the fleet in period t, scenario s
ySCvts Number of ships of type v scrapped in period t, scenario s
yNBvts Number of ships of type v built in period t, scenario s
ySEvts Number of ships of type v sold in period t, scenario s
ySHvts Number of ships of type v bought in the second-hand market in

period t, scenario s
hIvts Number of ships of type v chartered-in for a period in period t,

scenario s
hOvts Number of ships of type v chartered-out for a period in period t,

scenario s
lUvts Number of ships of type v on lay-up for a period in period t, scenario

s
xvlts Number of times loop l is sailed by ships of type v in period t,

scenario s
hSkits Amount of cargo of type k transported by space charters on trade i

in period t, scenario s
5. Conclusions

Strategic decisions related to capacity expansions or renewal,
besides considering various operating constraints, may require
attention to a number of financial indicators, such as the Average
Internal Rate of Return (AIRR) besides or in addition to net present
values. In this paper we focused on the case of maritime shipping
capacity renewal. Shipping is a capital intensive industry where
uncertainty plays a major role. In addition shipping capacity is
characterized by a long economic life. For these reasons, particular
attention must be paid to the financial, in addition to the technical,
fitness of investments in maritime shipping capacity.

We proposed a AIRR maximization model for the renewal of
maritime shipping capacity, as well as a reformulation to eliminate
the nonlinear interaction between the decision variables. The
model was compared with a more classic profit maximization
model, based on the available literature, on the case of a major
liner shipping company. The comparison shows that the profit loss
incurred by the AIRR maximization model is smaller than the AIRR
loss incurred by the profit maximization model, and that the extra
profit generated by the profit maximization model grows at a
slower rate. Furthermore, we show that the profit maximization
model pursues an aggressive expansion policy, while the solutions
offered by the AIRR maximization model are more consistent with
common practice in the shipping industry, hence may better
represent the preferences of most shipping investors. Particularly,
large publicly-traded shipping companies may find it more
appropriate to define strategies which maximize the return for
their investors. However, none of the models is meant to be pre-
ferable. As an example, small family-owned shipping companies
may still find it reasonable to maximize profits. In any case, the
AIRR maximization model extends the available literature offering
Please cite this article as: Mørch O, et al. Maximizing the rate of retu
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companies also the possibility to select capital employment deci-
sions which maximize their return.

Several extensions or complementary analyses could be set up
in future research efforts. The choice between profit or return as a
metric could be facilitated by a multi-objective model which
considers the two objectives. Such a model would provide a Pareto
frontier illustrating the trade-offs between the metrics involved,
leaving the user decide what combination of them fits better the
scope of the company. However, such model would pose addi-
tional non-trivial challenges. In an attempt to maximize the
weighed sum of the objectives, the way the two objected should
be normalized is far from obvious, given the magnitude difference
between AIRR and profit, and the high number of variables
involved in the model. In addition, evaluating Pareto solutions
without some assistance from the shipping industry is not trivial.
It would be highly beneficial to receive inputs from the industry on
what different combinations of profit and AIRR would mean in
practice. Related to this, a potential research avenue is a game-
theoretical analysis of the industry, under the assumptions that
profits or returns (or a combination of them) were maximized.
This would shed light on how the adoption of such analytical tool
would impact the whole industry.
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Table 5 (continued )

δits Binary variable indicating whether optional trade i is serviced or not
in period t, scenario s

cEts Capital employed by the shipping company in period t, scenario s

Parameters
T The last time period in the planning horizon
ps The probability of scenario s
CNBvts The cost for building a new ship of type v in period t, scenario s
TL The lead time between order placement and delivery
CSHvts The cost of a ship of type v in period t, scenario s, in the second-

hand market
RSEvts The revenue from selling a ship of type v in period t, scenario s, in

the second-hand market
RSCvts The revenue from scrapping a ship of type v in period t, scenario s
RCOvts The revenue from chartering out for a period a ship of type v in

period t, scenario s
CCIvts The cost for chartering in for one period a ship of type v in period

t, scenario s
RFVvs The value of a ship of type v at the end of the planning horizon

under scenario s
COPvt The fixed operating expenses met for a ship of type v in period t
RLUvt The fixed operating expenses saving obtained when a ship of type

v is laid-up in period t
CTRvlts The cost of sailing one time loop l with ship type v, in period t,

scenario s
RDits The revenue obtained when meeting the transportation demand

on trade i, in period t, scenario s
CSPkits The cost incurred when delivering one unit of cargo k on space

charters on trade t, in time t, scenario s
CE0 The value of the fleet at the beginning of the planning horizon
β The yearly depreciation of the fleet
Yvt

NB The number of ships of type v ordered before the beginning of the
planning horizon and delivered in period t

YIPv The initial number of ships of type v in the pool
YSHvts The number ships of type v available in the second-hand market

in period t, scenario s
YSEvts The number ships of type v the company can sell market in period

t, scenario s
YSHts The maximum number of second-hand purchases the company is

willing to issue in period t, scenario s
YSEts The maximum number of sales the company is willing to issue in

period t, scenario s
HI
vts The number of ships of type v which is possible to charter in for

the whole period t, scenario s
HO
vts The number of ships of type v which is possible to charter out for

the whole period t, scenario s
HI
ts The total number of ships the company is willing to charter out in

period t, scenario s
HO
ts The total number of ships the company is willing to charter out in

period t, scenario s
Qv The total capacity of ship type v

Qkv The capacity of cargo type k of ships of type v

Zlv The time necessary to complete a loop l with ships of type v

Zv The fraction of a time period a ship of type v is available
Fit The minimum number of times trade i must be visited in period t
Dkits The amount of cargo type k that must be transported across trade

i in period t, scenario s
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Appendix B. Linearized AIRR maximization model

The RMax model (2b)–(40) can be written in the following
linear equivalent way, as explained in Section 3.4. Particularly, for
our specific case we empirically estimated that U¼1 is a valid
upper bound on w for all instances:

maxΠ ¼
X
sAS

ps �
X
t A T:

tr T � TL

X
vAVN

t þ TL

X
jA JNB

CNB
vtsy

NB
jvts

2
64 ð51aÞ
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þ
X
t A T:
to T

X
vAVt

�
X
jA JSH

CSH
vtsy

SH
jvtsþ

X
jA JSE

RSE
vtsy

SE
jvtsþ

X
jA JSC

RSC
vtsy

SC
jvts

0
@

1
A ð51bÞ

�
X
t A T:
t4 0

X
vAVt

COP
vt y

P
vtsþ

X
lALvts

CTR
vltsxvlts�RLU

vt l
U
vts

 
ð51cÞ

þRCO
vtsh

O
vts�CCI

vtsh
I
vts

�
ð51dÞ

þ
X
t A T:
t4 0

X
iANO

t

RD
itsδ itsþ

X
t A T:
t4 0

X
iANC

t

RD
itsw�

X
kAK

CSP
kitsh

S
kits

 !
ð51eÞ

þ
X
vAV

T

RFV
vs y

P
vT s

3
5 ð51fÞ

subject to:

cEts ¼

βCE
0wþ P

vAVN
t þ TL

P
jA JNB

CNB
v0sy

NB
jv0s

þ P
vAVt

P
jA JSH

CSH
v0sy

SH
jv0s�

P
jA JSE

RSE
v0sy

SE
jv0s�

P
jA JSC

RSC
v0sy

SC
jv0s

 !
; t ¼ 0; sAS;

βcEt�1;sþ
P

vAVN
t þ TL

P
jA JNB

CNB
vtsy

NB
vts

þ P
vAVt

ð P
jA JSH

CSH
vtsy

SH
vts�

P
jA JSE

RSE
vtsy

SE
vts�

P
jA JSC

RSC
vtsy

SC
vtsÞ; 1r trT �TL; sAS;

βcEt�1;sþ
P

vAVt

ð P
jA JSH

CSH
vtsy

SH
vts�

P
jA JSE

RSE
vtsy

SE
vts�

P
jA JSC

RSC
vtsy

SC
vtsÞ; T �TLotrT �1; sAS;

βcEt�1;s; t ¼ T ; sAS:

8>>>>>>>>>>>>>>>>>>>>>><
>>>>>>>>>>>>>>>>>>>>>>:

ð52Þ

yP
vts ¼ yP

v;t�1;sþ
X
jA JSH

ySH
j;v;t�1;s�

X
jA JSE

ySE
j;v;t�1;s�

X
jA JSC

ySC
j;v;t�1;s;

tAT⧹f0g; vAVt⧹VN
t ; sAS; ð53Þ

yP
vts ¼ YNB

vt w; tAT : toTL; vAVN
t ; sAS; ð54Þ

yP
vts ¼

X
jA JNB

yNB
j;v;t�TL ;s; tAT : tZTL; vAVN

t ; sAS; ð55Þ

yP
v0s ¼ YIP

v w; vAV0⧹VN
0 ; sAS; ð56Þ

yP
vts ¼

X
jA JSC

ySC
jvts; tAT⧹f0g; vAVt⧹Vtþ1; sAS; ð57Þ

X
jA JSH

ySH
jvtsrYSH

vtsw; tAT⧹fT g; vAVt ; sAS; ð58Þ

X
jA JSE

ySE
jvtsrYSE

vtsw; tAT⧹fT g; vAVt ; sAS; ð59Þ

X
vAVt

X
jA JSH

ySH
jvtsrYSH

ts w; tAT⧹fT g; sAS; ð60Þ

X
vAVt

X
jA JSE

ySE
jvtsrYSE

ts w; tAT⧹fT g; sAS; ð61Þ

l
U
vts�h

I
vtsþh

O
vtsryP

vts; tAT⧹f0g; vAVt ; sAS; ð62Þ

h
I
vtsrHI

vtsw; tAT⧹f0g; vAVt ; sAS; ð63Þ

h
O
vtsrHO

vtsw; tAT⧹f0g; vAVt ; sAS; ð64Þ
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X
vAVt

h
I
vtsrHI

tsw; tAT⧹f0g; sAS; ð65Þ

X
vAVt

h
O
vtsrHO

tsw; tAT⧹f0g; sAS; ð66Þ

X
vAVt

X
lALivt

Qkvxvltsþ
X
kAK

h
S
kitsZDkitsw; tAT⧹f0g; iANC

t ; kAK; sAS;

ð67Þ
X
vAVt

X
lALivt

QkvxvltsZDkitsδ its; tAT⧹f0g; iANO
t ; kAK; sAS; ð68Þ

X
vAVt

X
lALivt

QvxvltsZ
X
kAK

ðDkitsw�h
S
kitsÞ; tAT⧹f0g; iANC

t ; sAS; ð69Þ

X
vAVt

X
lALivt

QvxvltsZ
X
kAK

Dkitsδ its; tAT⧹f0g; iANO
t ; sAS; ð70Þ

X
vAVt

X
lALivt

xvltsZFitw; tAT⧹f0g; iANC
t ; sAS; ð71Þ

X
vAVt

X
lALivt

xvltsZFitδ its; tAT⧹f0g; iANO
t ; sAS; ð72Þ

X
lALvt

ZlvxvltsrZvðyP
vtsþh

I
vt�h

O
vt� l

U
vtsÞ; tAT⧹f0g; vAVt ; sAS; ð73Þ

δ itsrδ i;tþ1;s; tAT⧹f0; T g; iANO
t ; sAS: ð74Þ

Objective function (51a)–(51f) and constraints (52)–(74) provide a
reformulation of the objective function and constraints of the
RMax model. In addition, the following constraints must be added:X
tAT

X
sAS

psc
E
ts ¼ T þ1; ð75Þ

w�δ itsþδitsr1; tAT⧹f0g; iANO
t ; sAS; ð76Þ

δ its�wr0; tAT⧹f0g; iANO
t ; sAS; ð77Þ

δ its�δitsr0 tAT⧹f0g; iANO
t ; sAS; ð78Þ

w�yNB
jvtsþyNBjvtsr1; jAJNB; tAT : trT �TL; vAVN

tþTL ; sAS; ð79Þ

yNB
jvts�wr0; jAJNB; tAT : trT �TL; vAVN

tþTL ; sAS; ð80Þ

yNB
jvts�yNBjvtsr0 jAJNB; tAT : trT �TL; vAVN

tþTL ; sAS; ð81Þ

w�ySH
jvtsþySHjvtsr1; jAJSH ; tAT⧹fT g; vAVt ; sAS; ð82Þ

ySH
jvts�wr0; jAJSH ; tAT⧹fT g; vAVt ; sAS; ð83Þ

ySH
jvts�ySHjvtsr0 jAJSH ; tAT⧹fT g; vAVt ; sAS; ð84Þ

w�ySE
jvtsþySEjvtsr1; jAJSE; tAT⧹fT g; vAVt ; sAS; ð85Þ

ySE
jvts�wr0; jAJSE; tAT⧹fT g; vAVt ; sAS; ð86Þ

ySE
jvts�ySEjvtsr0 jAJSE; tAT⧹fT g; vAVt ; sAS; ð87Þ

w�ySC
jvtsþySCjvtsr1; jAJSC; tAT⧹fT g; vAVt ; sAS; ð88Þ
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ySC
jvts�wr0; jAJSC; tAT⧹fT g; vAVt ; sAS; ð89Þ

ySC
jvts�ySCjvtsr0 jA JSC; tAT⧹fT g; vAVt ; sAS: ð90Þ

Constraints (75) correspond to the relationship introduced by Eq.
(41), while constraints (76)–(90) define the relationships between
the original binary variables and the linearization variables as
explained by Glover [13]:

yNBjvtsryNBj�1;v;t;s; jA JNB⧹f1g; tAT : trT �TL; vAVN
tþTL ; sAS; ð91Þ

ySHjvtsrySHj�1;v;t;s; jA JSH⧹f1g; tAT⧹fT g; vAVt ; sAS; ð92Þ

ySEjvtsrySEj�1;v;t;s; jA JSE⧹f1g; tAT⧹fT g; vAVt ; sAS; ð93Þ

ySCjvtsrySCj�1;v;t;s; jA JSC⧹f1g; tAT⧹fT g; vAVt ; sAS: ð94Þ

Constraints (91)–(94) strengthen the formulation by reducing
symmetry.

Finally, the domain of the variables is defined in (95)–(112):

yNBjvtsAf0;1g; jA JNB; tAT : trT �TL; vAVN
tþTL ; sAS; ð95Þ

ySCjvtsAf0;1g; jA JSC; tAT⧹fT g; vAVt ; sAS; ð96Þ

ySHjvtsAf0;1g; jA JSH ; tAT⧹fT g; vAVt ; sAS; ð97Þ

ySEjvtsAf0;1g; jA JSE; tAT⧹fT g; vAVt ; sAS; ð98Þ

yNB
jvtsARþ ; jAJNB; tAT : trT �TL; vAVN

tþTL ; sAS; ð99Þ

ySC
jvtsARþ ; jAJSC; tAT⧹fT g; vAVt ; sAS; ð100Þ

ySH
jvtsARþ ; jAJSH; tAT⧹fT g; vAVt ; sAS; ð101Þ

ySE
jvtsARþ ; jAJSE; tAT⧹fT g; vAVt ; sAS; ð102Þ

yP
vtsARþ ; tAT; vAVt ; sAS; ð103Þ

lvtsARþ ; tAT⧹f0g; vAVt ; sAS; ð104Þ

h
I
vtsARþ ; tAT⧹f0g; vAVt ; sAS; ð105Þ

h
O
vtsARþ ; tAT⧹f0g; vAVt ; sAS; ð106Þ

xvltsARþ ; tAT⧹f0g; vAVt ; lALvt ; sAS; ð107Þ

h
S
kitsARþ ; kAK; tAT⧹f0g; iANC

t ; sAS; ð108Þ

cEtsARþ ; tAT; sAS; ð109Þ

δitsAf0;1g; tAT⧹f0g; iANO
t ; sAS; ð110Þ

δ itsARþ ; tAT⧹f0g; iANO
t ; sAS; ð111Þ

wARþ : ð112Þ
Appendix C. Ship types and trades in the instances

Tables 6 and 7 report the ship types and trades, respectively,
used in the instances described in Section 4.
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Table 6
Ship types in the instances. A negative age means that the ship can be delivered
from year t ¼ �Age. 1 RT43 E9.1 m3.

Ship type Age Capacity [RT43] Service Ships in initial fleet

Car BB HH Speed (knots) L M S

PCC1 26 4975 300 2200 18.5 4 4 3
PCC2 12 6800 300 2500 18.5 6 3 2
PCTC1 9 6800 300 2500 19 8 4 3
LCTC1 4 6000 1500 2000 19 10 5 5
PCTC2 4 5450 900 2200 19 12 7 2
PCTC3 14 6150 200 1800 19.6 7 3 3
RORO1 28 4853 1500 3100 20.5 6 3 2
RORO2 �1 5660 2200 4000 20.8 2 0 1
LCTC2 0 6000 1500 2000 18.5 0 2 0
RORO3 �2 5660 2200 4000 20.8 0 0 0
LCTC3 �1 6000 1500 2000 18.5 0 0 0
RORO4 �3 5660 2200 4000 20.8 0 0 0
LCTC4 �2 6000 1500 2000 18.5 0 0 0
LCTC5 �3 6000 1500 2000 18.5 0 0 0

Table 7
Trades in the instances. Each trade can be both Contractual (C) or Optional (O) in
different trades.

Trade Length
[NM]

Demand [Units RT43] Frequency Role in instance

Car HH BB L M S

T1 13 500 435 213 77 047 5762 48 C C C
T2 11 700 103 048 14 201 4476 0 C C C
T3 7800 41 036 24 420 3404 0 C C C
T4 7500 19 200 0 0 0 C C C
T5 13 000 89 406 21 427 7425 24 C C C
T6 6500 469 379 67 854 20 075 52 C C –

T7 14 500 35 331 66 607 36 845 0 C C –

T8 7800 98 000 29 240 2689 0 C O O
T9 4900 119 397 44 121 2167 0 C O –

T10 9000 60 159 7401 1939 48 O O O
T11 8400 24 818 10 434 3252 0 O O O
T12 6500 14 0508 53 928 14 115 0 O – –

T13 15 021 266 855 55 474 16 776 0 C – –

T14 19 200 397 688 123 779 66 198 48 C – –
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