
Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎
Contents lists available at ScienceDirect
Omega
http://d
0305-04

☆This
n Corr
E-m

mepelm
amycoh

Pleas
10.10
journal homepage: www.elsevier.com/locate/omega
An analytical approach to prototype vehicle test scheduling$

Yuhui Shi a,n, Daniel Reich b, Marina Epelman a, Erica Klampfl b, Amy Cohn a

a Industrial & Operations Engineering, University of Michigan, Ann Arbor, MI 48109, United States
b Research & Advanced Engineering, Ford Motor Company, Dearborn, MI 48120, United States
a r t i c l e i n f o

Article history:
Received 26 November 2014
Accepted 10 May 2016

Keywords:
Automobile industry
Scheduling
Integer programming
Heuristics
x.doi.org/10.1016/j.omega.2016.05.003
83/& 2016 Elsevier Ltd. All rights reserved.

manuscript was processed by Associate Edito
esponding author.
ail addresses: yuhuishi@umich.edu (Y. Shi), dr
an@umich.edu (M. Epelman), eklampfl@ford.
n@umich.edu (A. Cohn).

e cite this article as: Shi Y, et al. An
16/j.omega.2016.05.003i
a b s t r a c t

The test planning group within Ford's Product Development division develops schedules for building
prototype vehicles and assigning them to departments in charge of different vehicle components, sys-
tems and aspects (e.g., powertrain, electrical, safety). These departments conduct tests at pre-production
phases of each vehicle program (e.g., 2015 Ford Fusion, 2016 Ford Escape) to ensure the vehicles meet all
requirements by the time they reach the production phase. Each prototype can cost in excess of $200 K
because many of the parts and the prototypes themselves are hand-made and highly customized. Parts
needed often require months of lead time, which constrains when vehicle builds can start. That, com-
bined with inflexible deadlines for completing tests on those prototypes introduces significant time
pressure, an unavoidable and challenging reality. One way to alleviate time pressure is to build more
prototype vehicles; however, this would greatly increase the cost of each program. A more efficient way
is to develop test plans with tight schedules that combine multiple tests on vehicles to fully utilize all
available time. There are many challenges that need to be overcome in implementing this approach,
including complex compatibility relationships between the tests and destructive nature of, e.g., crash
tests. We introduce analytical approaches for obtaining efficient schedules to replace the tedious manual
scheduling process engineers undertake for each program. Our models and algorithms save test planners'
and engineers' time, increases their ability to quickly react to program changes, and save resources by
ensuring maximal vehicle utilization.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Ford's Product Development division is responsible for
designing and testing new vehicles and readying them for pro-
duction. Each vehicle program (e.g., 2015 Ford Fusion, 2016 Ford
Escape) progresses through several consecutive stages: concept,
design, development and testing, etc., before a new vehicle is
manufactured on the assembly line. After the concept and design
phases are completed, prototype vehicles are built and subjected
to tests to ensure the new vehicle model meets all the design
criteria. Each required test needs to be completed by its deadline
to ensure adherence to the overall program timing. Test planners
and engineers are tasked with scheduling all the tests, placing
orders for parts to build the required prototype vehicles, sche-
duling the order of the builds (e.g., prototype vehicle with auto-
matic transmission on day 1, one with manual transmission on day
2) and assigning the vehicles to departments in charge of tests for
r W. Shen.

eich8@ford.com (D. Reich),
com (E. Klampfl),

analytical approach to pro
different vehicle components, systems, and aspects (e.g., power-
train, electrical, safety).

Each prototype built during the development and testing
phases of a vehicle program can cost in excess of $200 K because
many of the parts and the prototypes themselves are hand-made
and highly customized. Parts needed often require months of lead
time, which constrains when prototype vehicle builds can start.
That, combined with inflexible deadlines for completion of tests
on those vehicles, introduces significant time pressure, an una-
voidable and challenging reality associated with maintaining the
overall program timing. One way to alleviate time pressure is to
build more vehicles, essentially decreasing competition between
tests for available vehicle time; however, this would greatly
increase the cost of each program. A more efficient way is to
develop test plans with tight schedules that combine multiple
tests on vehicles to maximally utilize available time. There are
many challenges that need to be overcome in implementing this
approach. For example, many tests are destructive (e.g., crash tests
performed by the safety department), preventing scheduling fur-
ther tests on the vehicle. Another complicating factor is that dif-
ferent tests may have different vehicle specification requirements;
for example, one test may require a hybrid engine whereas
totype vehicle test scheduling. Omega (2016), http://dx.doi.org/

www.sciencedirect.com/science/journal/03050483
www.elsevier.com/locate/omega
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003
mailto:yuhuishi@umich.edu
mailto:dreich8@ford.com
mailto:mepelman@umich.edu
mailto:eklampfl@ford.com
mailto:amycohn@umich.edu
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003

Y. Shi et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎2
another may require a conventional 4-cylinder I4 engine, prohi-
biting combinations of these tests on the same vehicle.

Prior to our work, test plans were exclusively developed
manually using pen and paper and Excel spreadsheets. However,
this process is tedious and constructing a test plan may take days,
if not weeks. The schedule achieved may not be optimal in terms
of the number of vehicles needed; moreover, when changes occur
to deadlines and individual tests, manually editing the plan
requires significant additional time and effort, and may lead to
decreasing vehicle utilization. In this paper, we formally define the
problem of obtaining optimized schedules (i.e., ones that minimize
the number of vehicles used subject to all pertinent constraints)
and introduce computational heuristics that replace the tedious
manual scheduling process engineers undertake for each program.
Automation saves test planners' and engineers' time, increases
their ability to quickly react to program changes, and saves
resources by providing schedules with high vehicle utilization.

In this paper, we describe the development and piloting of our
schedule optimization models. We introduce the details of the
scheduling problem, then provide an exact mathematical for-
mulation, which turns out to have limited tractability. This leads to
our practical heuristic algorithm that provides good feasible
schedules. We present results from our first pilot and discuss
ongoing efforts and goals of this project.
2. Literature review

Although certain aspects of the optimization problem addres-
sed in this paper are specifically motivated by prototype vehicle
test scheduling at Ford, it has some features of bin packing on the
one hand, and parallel machine scheduling on the other, and can
be viewed as an extension of both problems.

In the classic bin packing problem, a set of items with different
sizes needs to be packed into bins of limited capacities, and the
minimum number of bins required is to be determined. There are
extensive studies of this problem (see, e.g., [1]). In our setting,
determining the minimum number of vehicles needed to perform
all tests is akin to bin packing with non-identical bins (vehicles),
whose capacity reflects the time interval during which the vehicle
is available, and with additional restrictions on the compatibility
of items (tests) to be assigned to the same bin. A paper in this area
most closely related to our research is [2]. In it, the authors con-
sider a variation of the bin packing problemwith conflicts between
items. The authors provide a set-partitioning formulation of the
problem and propose a branch-and-price algorithm to solve it
exactly, with the pricing problem solved as a knapsack problem
with conflicts. Our problem, however, is more complex, since tests
assigned to the same vehicle need to be scheduled as well.

In the parallel machine scheduling problem, a set of time-
sensitive tasks with associated processing times need to be
scheduled on a given set of machines, while minimizing a certain
criterion, usually time-related, such as make-span or total tardi-
ness. The literature on parallel machine scheduling has developed
over several decades and contains a variety of models and algo-
rithms; comprehensive surveys and comparisons between differ-
ent solution strategies can be found in [3–5]. Associating machines
with vehicles and jobs with tests, one can see many similarities
between test scheduling and certain types of machine scheduling
problems. Indeed, in machine scheduling jobs often have release
and due dates, and test compatibility and sequencing restrictions
can be represented by including setup times between jobs, setting
them to very high values for tests that cannot be performed
together or in a particular order. However, our test scheduling
problem has several features that make it unique in the scheduling
literature. In particular, machines are usually assumed to be
Please cite this article as: Shi Y, et al. An analytical approach to pro
10.1016/j.omega.2016.05.003i
available throughout the scheduling process, whereas prototype
vehicles are released gradually during testing. Moreover, while
specification of which machines are capable of executing which
jobs is considered in the literature, whether a prototype vehicle
has the features needed for a particular test is determined by the
other tests assigned to this vehicle (see Section 3 for details),
making a priori specification impossible. Finally, the objective of
minimizing the number of vehicles used is fairly uncommon in the
scheduling literature. In light of the above, in our review of
machine scheduling literature we will focus on the papers that aim
to minimize the number of machines used. We also discuss
representative papers which emphasize sequencing aspects of
scheduling in the presence of precedence constraints or setup
times, especially those that utilize heuristic algorithms similar to
the Fit-and-Swap heuristic we propose in Section 5, to emphasize
relevant results as well as elucidate the distinct features of our
problem.

A small subset of machine scheduling literature focuses on a
problem most closely related to ours, where the goal is to optimize
some machine-related metrics, such as the cost of holding and
using machines, rather than the traditional job-related time
metrics. In addition to bin-packing resources, in the context of
scheduling, a particularly relevant paper [6] studies the so called
“Scheduling with Release times and Deadlines on a minimum
number of Machines (SRDM)” problem, where each task has a
duration and a time window for execution, and the number of
machines required to perform all tasks on time remains a decision.
The authors propose a polynomial algorithm for the special case
when time windows of jobs are tight (namely, exactly 1 plus job
duration). In the more general case, they propose an approxima-
tion method called Greedy-Best-Fit, which is a list scheduling
algorithm that assigns jobs to the machine with the left-most
available time slot. They prove that this heuristic is a 9-
approximation algorithm in the special case of equal processing
times. Reference [7] improves the approximation bound from 9 to
6 for the same special case. For another special case of common
release dates, the authors of the latter paper propose another list
scheduling algorithm, called Greedy-Increasing-Slack, which sorts
and assigns jobs in reverse order of flexibility of shifting within its
time window. This method has a constant approximation bound 2.

For a related vehicle routing problem, Reference [8] studies
minimizing the number of trucks to satisfy customer loads, where
each load has a time window during which it should be delivered.
The authors propose a two-phase approach which uses a time-
indexed formulation to form sequences of loads and later heur-
istically assigns them to trucks. Such an approach can solve up to
instances with 34 loads and 10 trucks—smaller than the test
scheduling instances for which we provide computational results.

Several other papers consider machine scheduling while
minimizing the number of machines used, including [9–11].
However, they each make restrictive assumptions to guarantee
that their proposed algorithms solve the problem exactly or with a
guaranteed bound. For example, equal processing times and/or
common release or due dates of jobs are often assumed in such
papers. Interestingly, in [11] the authors also consider precedence
constraints among different jobs across machines, where the start
of job A cannot precede the completion of another job B (they do
assume equal processing times). They propose polynomial algo-
rithms that can solve this problem for special cases of precedence
graph structures, such as trees and chains. Although precedence
relationships may seem similar to a feature of the test scheduling
problem, in the latter case, the precedence relations between two
test are only relevant if they are assigned to the same vehicle.

In the more traditional context of scheduling (one where the
number of available machines is specified a priori), one class of
problems that are particularly relevant to ours is the setting with
totype vehicle test scheduling. Omega (2016), http://dx.doi.org/

http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003

Y. Shi et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3
sequence-dependent setups. If we model the precedence relations
between two tests, where test A cannot precede test B when
assigned to the same machine, by making the setup time between
test A and B arbitrarily large, we can view the problem as a special
case of the sequence-dependent setup case. For example, Refer-
ences [12,13] model the problem of minimizing the earliness and
tardiness in this setting using a Mixed Integer Linear Programming
(MILP) formulation together with various strengthened con-
straints. However, they can only solve relatively small instances,
with less than 10 jobs and 5 machines. Reference [14] studies
another time-dependent setup problem, where setup time of each
task is related to its starting time. The author proposes a time-
indexed MILP formulation that can solve small instances with up
to 50 tasks and 10 machines. Since tractability of MILP formula-
tions is limited, another set of papers focuses on using heuristic
methods to solve the sequence-dependent setup scheduling pro-
blem. Perhaps the most common approach is to use list scheduling
methods motivated by the bin packing problem. Reference [15]
considers the problem of minimizing the total weighted comple-
tion time where all jobs have common release dates. They propose
a Best-Fit method, where the duration of each job is computed by
also taking into consideration information about its setup time.
This is achieved by adding, for example, the average setup time or
minimum setup time to the job's duration. Then the jobs are
ordered by longest processing time and assigned to machines
where such assignment contributes least (with shortest processing
time) to the objective function value. It should be noted that the
intuition behind the Fit-and-Swap heuristic we propose in Section
5 may appear similar to such Best-Fit methods. While the heur-
istics have a greedy nature in common, their Best-Fit approach
tends to evenly distribute all jobs onto given machines to optimize
a time-based objective—an approach that would not be suitable if
minimizing the number of machines used is desired. A number of
papers emphasize the sequencing of jobs. For example, Reference
[16] proposes several heuristics that combine the greedy approach
to minimize makespan with TSP heuristics for job sequencing.
Reference [17] uses the same idea, where the entire set of jobs is
pre-ordered using some rules such as Earliest Due Data (EDD) on
each machine. Duplicate jobs are gradually removed from each
machine and those remaining are resequenced in a greedy way
until a full schedule is found. As we already discussed, in the test
scheduling problem, approaches that attempt to sequence the
tests before assigning them to vehicles are not applicable.

There have also been extensive efforts to solve machine sche-
duling problems with other heuristic methods, such as meta-
heuristics, tabu search (for examples, see [18–23]). It is also
common to combine several heuristics in order to obtain high-
quality solutions. For example, Reference [24] considers parallel
machine scheduling problems where jobs have types, and limited
time is available for transitioning between two types of jobs on a
single machine. The authors combine thresh-accepting methods,
tabu lists and improvement procedures in order to obtain high-
quality solutions, and show that such combinations can outper-
form methods that adopt only a single idea. However, in this paper
we chose to focus on a simpler, less computationally demanding
heuristic that proved more easily applicable in scheduling proto-
type vehicles at Ford.

In recent years, optimization models have been introduced
specifically for test scheduling on prototype vehicles. Reference
[25] focuses on determining the number of unique types of pro-
totype vehicles needed for a program, given the specification
requirements of all individual tests. This work, in collaboration
with Ford, dates back to a time when planning was less process
driven and resource constrained, so the models did not consider
all the timing and compatibility requirements that are essential
today. Reference [26] formulates the prototype vehicle test
Please cite this article as: Shi Y, et al. An analytical approach to pro
10.1016/j.omega.2016.05.003i
scheduling problem using mixed integer programming. While
their model incorporates many of the same factors as the model
we develop, it has limited computational tractability. It also differs
in its assumptions around the vehicle build decision process; they
introduce flexibility in determining the build schedule whereas
the build schedule is inflexible in our model, which is aligned with
the current operational process at Ford. Reference [27] proposes a
hybrid model for scheduling prototype vehicle tests: integer pro-
gramming is the first stage model that determines vehicle speci-
fication (e.g., hybrid or conventional engine, manual or automatic
transmission) and test-to-vehicle assignments; constraint pro-
gramming is the second stage model that determines timing and
sequencing. While their approach is effective on smaller instances,
their computational results demonstrate a lack of scalability. The
first stage continues to provide candidate solutions for the second
stage, but their constraint programming model cannot con-
sistently reassign the tests to produce a feasible schedule.
3. Test scheduling problem

For each vehicle program, one engineer from each department
(powertrain, safety, and electrical) is typically responsible for
entering the department's testing requirements into a shared
Excel file. These requirements include test durations, vehicle
specification requirements, test severity and additional informa-
tion. Once all the requirements have been gathered, a test planner
begins developing the program schedule.

Three main decisions are required for scheduling:

� How many prototype vehicles need to be built?
� What specifications are required for those vehicles (moonroof,

manual transmission, and engine type)?
� Which tests are assigned to each vehicle?

Each vehicle is released on a given date during the testing
horizon. These dates (i.e., the build schedule) are provided by the
group in charge of building the prototypes and reflects its pro-
duction capacity, whereas the exact vehicle specifications for each
day may be flexible and decided as part of the scheduling process.
The calendar template shown in Fig. 1 is used for inputting the
build schedule. Each row corresponds to one day and includes the
maximum number of vehicles that can potentially be delivered on
that day. The fields are described in Table 1. The vehicle capacity
(time) is the number of available business days from its release
date to the end of the testing phase, which is set by the overall
timeline for the vehicle program.

In addition to ensuring that schedules allocate sufficient
amounts of time for each test to be completed by its individual
deadline, the test planner must also ensure that compatibility
relations between tests assigned to the same vehicle are not vio-
lated. For example, if one test requires a 6-cylinder V6 engine and
another test requires a 4-cylinder I4 engine, they are not compa-
tible with each other and cannot be assigned to the same vehicle.
Another example is test severity, i.e., if one test is destructive, it
may render a vehicle unusable for (certain kinds of) further
testing.

Expertise on compatibility of tests currently resides with
individuals, so we partnered with those experts to develop tem-
plates for storing their knowledge in standardized formats. During
the scheduling process, these compatibility rules can be accessed
systematically. While the actual compatibility rules are con-
fidential, the matrix in Table 2 provides an illustrative example.

Notice that compatibility is not symmetric. In the example in
Table 2, B may be performed after A, but not before. This is typical
of testing requirements. For example, consider two crash tests: a
totype vehicle test scheduling. Omega (2016), http://dx.doi.org/

http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003

Fig. 1. Calendar sheet describing the prototype vehicle build schedule.

Table 1
Description of fields in the calendar.

Release date: Date
Day of week: Su, M, Tu, W, Th, F, Sa
Is holiday: Is it a company holiday?
Day of planning period: # of days since the start of the planning period
Number of vehicles to be built: Max # of prototype vehicles delivered

Table 2
Test compatibility table; “F” indicates that the test in this
row cannot be performed prior to the test in the column,
“T” indicates otherwise.

Test A Test B

Test A F T
Test B F F

Fig. 2. A sample schedule.

Y. Shi et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎4
crash test at 2 miles per hour (MPH), e.g., a sensor test on the front
bumper of a vehicle, and a 30 MPH structural test also striking the
front bumper. Running the 2 MPH test first will not damage the
bumper, so the 30 MPH test can follow. However, running the 30
MPH test first will render the bumper unusable for the sensor test
to follow.

An example schedule is shown in Fig. 2.
4. Integer programming model

In this section, we introduce our original integer programming
formulation for optimizing test plan schedules.

Sets and parameters

� T—set of tests
� V—set of available vehicles
� E� T � T—set of incompatible ordered test pairs (e.g., in Table 2,

E¼ fðA;AÞ; ðB;AÞ; ðB;BÞg)
� pt—duration of test t
� rt—release date of test t
� dt—deadline of test t
� qv—delivery date of vehicle v
Please cite this article as: Shi Y, et al. An analytical approach to pro
10.1016/j.omega.2016.05.003i
Decisions

� uv—binary; 1 if vehicle v is in the schedule, 0 otherwise
� xt;v—binary; 1 if test t is assigned to vehicle v, 0 otherwise
� yt1 ;t2—binary; 1 if test t1 and test t2 are performed on the same

vehicle and t1 precedes t2, 0 otherwise
� st—continuous; starting time of test t.

Formulation

min
X
vAV

uv ð1Þ

s:t: xt;vruv vAV ; tAT ð2Þ
X
vAV

xt;v ¼ 1 tAT ð3Þ

st1 þpt1 rst2 þMð1�yt1 ;t2 Þ ðt1; t2ÞAT � T : t1at2 ð4Þ

yt1 ;t2 þyt2 ;t1 r1 ðt1; t2ÞAT � T : t1at2 ð5Þ

xt1 ;vþxt2 ;v�1ryt1 ;t2 þyt2 ;t1 vAV ; ðt1; t2ÞAT � T : t1at2 ð6Þ

yt1 ;t2 ¼ 0 ðt1; t2ÞAE ð7Þ

stZrt tAT ð8Þ

stZ
X
v

qvxt;v tAT ð9Þ

stþptrdt tAT ð10Þ

xtA 0;1f g; yt1 ;t2 A 0;1f g; stZ0:
totype vehicle test scheduling. Omega (2016), http://dx.doi.org/

http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003

Fig. 3. Fit-and-Swap algorithm illustration.

Y. Shi et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 5
In this formulation, objective (1) is to minimize total vehicle
usage. Constraints (2) link the assignment decision variables x with

the vehicle usage variables u. Constraints (3) ensure that each test
gets assigned to exactly one vehicle. Constraints (4) and (5) enforce
pairwise sequencing relationships for tests that are assigned to the
same vehicle through the precedence disjunctive decision variables y,
using a big-M formulation. Constraints (6) link those variables with
the assignment variables. Constraints (7) enforce compatibility for
tests assigned to the same vehicle. Constraints (8)–(10) ensure that
each test is performed during its time window, and starts after the
delivery of the vehicle to which it is assigned.

There are two problems with the above formulation that can
lead to poor solvability: symmetry caused by identical vehicles
(i.e., ones with the same release dates) and lack of tightness of the
linear programming relaxation caused by the big-M constraints
(4). To improve the formulation, we have included symmetry-
breaking constraints: for any two identical vehicles with indices vi
and vj where virvj, we require that uvi ruvj , and xt;vi Zxt;vj 8 tAT ,
i.e., we require that vi is used before vj, thus breaking the sym-
metry between two identical vehicles. Moreover, we setM equal to
be the length of the planning period, starting from the delivery of
the earliest vehicle to the latest deadline by which all tests need to
be completed—the best available easily computable a priori value.

We tested the resulting formulation on instances of varying
sizes with limited success. On smaller instances (ones consisting of
only crash tests for a program), CPLEX was able to find optimal or
near-optimal solutions within an hour. However, for any of the
three problem instances (representative of a full program) repor-
ted in our computational experiments in Section 6, CPLEX was
unable to produce even a feasible solution.
5. Heuristic algorithm

In this section, we introduce a heuristic and optimization
subproblems that we can combine to obtain high-quality feasible
solutions for larger problem instances.
Please cite this article as: Shi Y, et al. An analytical approach to pro
10.1016/j.omega.2016.05.003i
5.1. Fit-and-swap test scheduling heuristic

We propose a greedy heuristic for generating a test schedule.
The heuristic attempts to assign tests, in decreasing order of
duration, to the vehicle with the largest capacity. Our method is
similar to the First-Fit algorithm used in bin packing problems, and
has a greedy flavor similar to methods used in [6,7,15], for their
respective objectives; however, before assigning a test to a vehicle,
we must consider compatibility, order restrictions, test time win-
dows, and vehicle delivery date to determine if this assignment is
feasible.

The algorithm, which we refer to as the Fit-and-Swap heuristic,
is summarized in Algorithm 1 and illustrated in Fig. 3 on an
instance with 3 vehicles and 6 tests. Procedurally, first we order
the tests in decreasing order of their durations, and the vehicles in
decreasing order of their (time) capacities, as shown in Fig. 3a. We
then select the vehicle at the top of the list (one with largest
capacity), and attempt to fill the time available on this vehicle with
an ordered sequence of tests. We search through the test list in
order until we find one that is compatible (in terms of vehicle
specifications) with tests already assigned to this vehicle (if any),
and has sufficiently short duration to fit in the (remaining) avail-
able time on the vehicle, as shown in Fig. 3b. If the vehicle already
has some tests assigned, we solve the Ordering Satisfiability Pro-
blem (defined in Section 5.2) that determines whether there is a
feasible order for combining the new test with already assigned
ones, taking into account each test's time window and test
sequencing restrictions. If not, this test cannot be assigned to the
vehicle and the algorithm proceeds to the next test in the list.

When the end of the test list is reached, the identified set of
tests is fixed, and the vehicle list is searched to find a vehicle with
the smallest capacity that is sufficient for these tests (determined
by solving the corresponding instances of the Ordering Satisfia-
bility Problem). If such a vehicle differs from the current one, then
the set of tests (possibly in a different order) is assigned to the
former, and the latter is emptied, as shown in Fig. 3c. By swapping
the vehicles, as in Fig. 3d, we may find opportunities for increasing
totype vehicle test scheduling. Omega (2016), http://dx.doi.org/

http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003

Y. Shi et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎6
vehicle utilization. For example, if the tests assigned to a vehicle
with 100 available days only require 95 days, then we would
assign this group of tests to a vehicle with 95 days, and the 100 day
vehicle would remain available. The algorithm terminates when
there are no unassigned tests, as shown in Fig. 3e, or there is
insufficient remaining vehicle capacity to assign additional tests.

We observed that the current manual procedure for assigning
tests is similar to this heuristic. Current practice already requires
engineers to produce highly efficient schedules. Our goal for this
work was to produce equivalent or slightly more efficient sche-
dules, but do so significantly faster.
Algorithm 1. Fit-and-Swap algorithm.
5.2. Ordering satisfiability problem.

When attempting to add each new test to a vehicle within the
Fit-and-Swap algorithm, we must be able to determine whether a
feasible ordering exists, based both on compatibility relationships
between tests (Table 2) and individual test release dates and
deadlines. To do this efficiently, we solve the Ordering Satisfiability
Problem, which can be seen as a significant simplification of the
full integer programming model in Section 4, and is formulated as
follows:

st1 þpt1 rst2 þMð1�yt1 ;t2 Þ ðt1; t2ÞAT � T : t1at2 ð11Þ

yt1 ;t2 þyt2 ;t1 ¼ 1 ðt1; t2ÞAT � T : t1at2 ð12Þ

yt1 ;t2 ¼ 0 ðt1; t2ÞAE ð13Þ
Please cite this article as: Shi Y, et al. An analytical approach to pro
10.1016/j.omega.2016.05.003i
stZrt tAT ð14Þ

stZqv tAT ð15Þ

stþptrdt tAT ð16Þ

yt1 ;t2 A 0;1f g; stZ0:

Here, T is the candidate set of tests at the current iteration of the
Fit-and-Swap algorithm, and v is the vehicle being filled. Unlike in
the original integer program (1)–(10), which optimized vehicle
usage, here a vehicle and a subset of assigned tests are pre-
selected, making the Ordering Satisfiability Problem a feasibility
problem. The only variables needed are the binary sequencing
variables yt1 ;t2 and continuous start time variables st. Vehicle usage
and test assignment constraints (2) and (3) are no longer required,
and the original constraints (5), (6) and (9) reduce to (12) and (15),
respectively.

Compared with the original IP in Section 4, which became
intractable for larger problem instances, a typical instance of the
Ordering Satisfiability Problem can be solved in under 1 s by an
integer programming solver. With subset T containing no more
than 20 pre-selected tests that are already assigned to a pre-
selected vehicle, the problem size is limited to at most 400 binary
variables, of which many are eliminated by constraints (13).

When all tests in the set T have the same release dates and
deadlines, the ordering sub-problem can be reduced even further
totype vehicle test scheduling. Omega (2016), http://dx.doi.org/

http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003

Y. Shi et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 7
to the following linear constraint:

zt2 rzt1 �1 ðt1; t2ÞAE; ð17Þ
where the values of continuous decision variables zt ; tAT ; provide
the order of the tests. Alternatively, one can formulate this special
case as a problem of topologically sorting all nodes in a directed
graph, where each test t corresponds to a node and directed arcs
reflect ordering possibilities among compatible tests.

5.3. Integer programming models for grouping crash tests

Due to the destructive nature of crash tests, their scheduling is
both particularly important and restricted. The test scheduling
process in the safety department is focused on maximizing crash
rehits—multiple crashes on the same vehicle—so that the fewest
number of vehicles is destroyed, thereby increasing the supply of
undamaged parts that can be made available for other purposes or
programs.

The safety department is in the unique position of consistently
being the last user of shared vehicles. While other groups’ tests
may be staggered throughout the schedule, crash tests are con-
solidated. Therefore, isolating and scheduling them separately is
convenient, and does not significantly impact the optimality of the
overall schedule. To implement this approach, we first aggregate
crash tests into groups using an integer optimization model. These
groups are then passed into the Fit-and-Swap algorithm, which
schedules all the tests, treating the grouped crashes as a single test
each. The computational results presented in the next section
confirm the benefits of this pre-grouping approach, which con-
sistently reduces the number of crashed vehicles.

One method to group crash tests is to formulate and solve an
instance of the integer program (1)–(10) with the set T containing
only crash tests. (We refer to this approach to crash test grouping
as grouping via full IP.) However, obtaining solutions and proving
optimality can still be computationally prohibitive, even for these
smaller subproblems. Thus, we also consider a simplified approach
to crash test grouping.
Algorithm 2. Group release time calculation algorithm.
In practice, it is rare to have more than three crash tests exe-
cuted on a single vehicle. Moreover, a balanced schedule is pre-
ferable; for example, it is generally better to have two vehicles
with two crash tests each than three on one and one on the other.
This motivated us to use the following matching-based model.
(We refer to this approach as grouping via matching.)

Let TS � T be the set of all safety (i.e., crash) tests. The for-
mulation below uses binary variables wt1 ;t2 ;v for all t1; t2ATS with
t1ot2 and all vAV to indicate whether t1 and t2 can be matched
and executed on vehicle v. (We do not define variables w for t24
t1 to avoid double-counting; however, test t2 may be scheduled
before t1.)

maximize
X
vAV

X
t1 ;t2 :t1 o t2

wt1 ;t2 ;v ð18Þ
Please cite this article as: Shi Y, et al. An analytical approach to pro
10.1016/j.omega.2016.05.003i
s:t:
X
vAV

X
t2 :t2 o t1

wt2 ;t1 ;vþ
X

t2:t1 o t2

wt1 ;t2 ;v

 !
r1; t1ATS ð19Þ

X
t1 ;t2 :t1 o t2

wt1 ;t2 ;vr1; vAV ð20Þ

wt1 ;t2 ;v ¼ 0; ft1; t2gAEv; vAV ð21Þ

wt1 ;t2 ;vA 0;1f g; t1; t2ATS : t1ot2; vAV

For each vehicle v, set Ev enumerates all pairs ft1; t2g of safety tests
that are incompatible based on specification, ordering, or vehicle-
specific timing and deadline restrictions; we identify the set Ev in a
pre-processing step. The objective (18) maximizes the number of
matches among safety tests, while constraints (19) ensure that
each test is combined with at most one other, and the pair of tests
is assigned to at most one vehicle. Constrains (20) ensure that each
vehicle is used at most once, and constraints (21) enforce com-
patibility requirements.

Once the number of pairings is maximized, we can search for
triplets and quadruplets of tests by solving another instance of the
matching problem on the set of previously identified pairs and
remaining individual tests.

Each of the identified rehit grouping is passed to the Fit-and-
Swap heuristic as an individual test with the following associated
parameter values: for a grouping-based test tG ¼ ðt1;…; tnÞ,
ptG ¼

Pn
i ¼ 1 pi,

dtG ¼ ptG þ min
i ¼ 1;…;n

di�
Xi
k ¼ 1

pk

()
;

and rtG computed by the following Algorithm 2:
Finally, we apply the Fit-and-Swap heuristic to schedule all tests in

the program, treating the identified rehit groupings as single tests.
Recall that the heuristic assigns longer tests first, which in effect gives
scheduling priority to groups of safety tests, ensuring that all deadlines
within the group are met. Note that the assignments of test groups to
vehicles made in the grouping subroutines may differ from the final
assignments generated by the Fit-and-Swap heuristic.

5.4. Test planning algorithm

The Test Planning Algorithm combines the heuristic and opti-
mization subproblems presented above to obtain feasible solutions
to the integer programming model in Section 4. The steps of the
Test Planning Algorithm are summarized as follows:

� Read in the tests and create set T and crash test subset TS.
� Read in the calendar (Fig. 1) and create vehicle set V.
� Read in compatibility rules and construct set E.
� (Optional) Formulate and solve a grouping IP on TS and V

(Section 5.3) and update T with grouped tests.
totype vehicle test scheduling. Omega (2016), http://dx.doi.org/

http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003

Y. Shi et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎8
� Run the Fit-and-Swap algorithm on T and V and return the schedule.
6. Computational experiments

For our computational experiments, we tested instances from
three recent vehicle programs at Ford. The total number of tests,
and the number of safety tests, in each program are presented in
Table 3. We attempted to solve these instances using the IP pre-
sented in Section 4 with the symmetry-breaking constraints
added, but CPLEX was unable even to find a feasible solution
within the 1 h time limit, also noted in Table 3.

Next, we applied the Fit-and-Swap heuristic algorithm from
Section 5.1, without safety tests grouping, and with grouping via
matching and via IP. Table 4 presents vehicle usage results for the
three methods. The first important takeaway is the significant
reduction in the number of vehicles crashed when using either of
the grouping subroutines. On the three instances tested, both
subroutines arrived at the same number of crashed vehicles,
demonstrating the effectiveness of the simpler matching-based
approach. The actual pairings though were different, evidenced by
the differences in the overall solutions.

While Fit-and-Swap without grouping produced solutions
inferior in all respects for two of the instances, for Instance 2 the
total number of vehicles was actually slightly fewer. However, this
would come at the expense of crashing 11 more vehicles, thereby
destroying expensive resources.

We also report vehicle utilization, which is calculated as the
ratio between the sum of capacities of all vehicles used in a
schedule, and the total duration of all the tests in the program.
This metric can be used to compare efficiency of test schedules in
different programs, which may vary in size and therefore in the
number of vehicles used. However, considered in isolation this
metric may be misleading. As can be seen in Table 4, solutions
with different numbers of vehicles can yield identical utilizations
Table 4
Vehicle usage results for the three methods.

Instance ID Total number of
vehicles

Number of vehicles
crashed

Vehicle utilization

No crash test grouping subroutine
Instance 1 109 57 0.871
Instance 2 143 43 0.946
Instance 3 112 13 0.923

Crash test grouping via matching
Instance 1 96 52 0.941
Instance 2 144 32 0.946
Instance 3 110 11 0.937

Crash test grouping via full IP
Instance 1 97 52a 0.939
Instance 2 145 32 0.945
Instance 3 110 11 0.937

a Note that for Instance 1 the full IP in the subroutine was not solved to
optimality: after 60 min, the optimality gap was 7.7% the best feasible solution
found in that time is reported.

Table 3
Description of problem instances used in computational experiments. The full IP
formulation (1)–(10) of Section 4 did not produce feasible solutions within 1 h time
limit on any of these instances.

Instance ID Number of tests Number of safety tests IP feasible solution?

Instance 1 501 82 No
Instance 2 474 49 No
Instance 3 434 14 No

Please cite this article as: Shi Y, et al. An analytical approach to pro
10.1016/j.omega.2016.05.003i
by selecting vehicles of different capacities. For this reason, max-
imizing utilization is not the primary objective, but it is still an
important metric for assessing the schedule.

Table 5 summarizes the runtimes of the three approaches,
separating runtimes for the subroutines and the Fit-and-Swap
heuristics applied to the resulting test sets. The full IP has limited
tractability even when used as a subroutine, while the matching IP
is solved quite efficiently. The Fit-and-Swap heuristic is quick in
all cases.
7. Discussion

In 2012, we piloted our scheduling models and algorithms for
the first time on a vehicle program with 108 prototype vehicles
budgeted, with an average vehicle cost of around $250 K. The
vehicles were scheduled to be delivered starting in May of 2013, at
a rate of about 13/week, with a ramp-up period at the beginning.
Engineers submitted over 500 test requests.

Practically speaking, producing an initial schedule with a uti-
lization of 95%—based exactly on engineer-submitted test requests
—exceeded expectations for our initial pilot. To further increase
utilization, test planners typically negotiate timing with engineers
as schedules are constructed. For example, if 7 days remain unused
on one vehicle and the test planner has a 10 day test needing to be
scheduled that is otherwise compatible with that vehicle, it may
be added by slightly shortening time allocated for each of the tests
assigned to that vehicle.

While the overall schedule produced successfully demon-
strated proof-of-concept for automating time-consuming aspects
of the scheduling process, it also highlighted gaps that need to be
addressed in future work. Specifically, more low-level details on
department-specific compatibility requirements need to be
incorporated into the models. Building the information systems
that collect and provide the data necessary for such detailed
models will be a process that takes time and is refined as the
system is used in more programs.

One of the major successes of our first pilot was in crash test
planning. The matching integer programming model in Section 5.3
was effectively applied to develop a crash test rehit strategy that
was estimated by the safety engineer on the program to save
weeks of manual planning time. The safety engineer supplied a list
of tests, including the corresponding vehicle specifications, time
required and deadline for each test. The initial compatibility
relationships provided by safety were updated and the integer
programming model was iteratively rerun until both the accuracy
and feasibility of the results were verified by a team of experts
within the safety department. The resulting plan supplied an
optimal rehit schedule given the original specifications.
Table 5
Runtimes, in seconds, of test grouping subroutines and Fit-and-Swap heuristics on
the resulting test sets.

Instance ID No subroutine Matching Full IP

Fit-and-Swap Subroutine Fit-and-
Swap

Subroutine Fit-and-
Swap

Instance 1 8.5 59 6.4 833a 5.2
Instance 2 3.3 2 2.6 8 2.8
Instance 3 3.2 o1 2.8 o1 3.0

a Note that for Instance 1 the full IP in the subroutine was not solved to
optimality: after 60 min, the optimality gap was 7.7%; the time reported reflects
time until finding the best feasible solution, which was passed to the Fit-and-Swap
heuristic.

totype vehicle test scheduling. Omega (2016), http://dx.doi.org/

http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003

Y. Shi et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 9
Our next step was to consider multiple what-if scenarios. In
particular, the vehicle specification constraints that are incorpo-
rated in the overall compatibility constraints in the model were
relaxed. The results highlighted strategic opportunities for shifting
tests between prototype vehicles with different types of power-
trains. By adopting some of these modifications, the safety
department reduced their vehicle count by 2 vehicles, thereby
increasing the number of rehits and vehicle utilization. The
resulting savings for the program was estimated to be $500 K.

This project began in late 2011. During the first few months, the
team focused on understanding the current methods and pro-
cesses for test planning, developing the mathematical models
presented in this paper, and implementing a prototype software
application in Java. Following our initial pilot in 2012, we gained
management support to transition from the proof-of-concept
phase to developing a system with embedded optimization to be
independently run by engineers. We are currently exploring more
sophisticated optimization algorithms (e.g., column generation) to
improve solution quality. We are focusing our optimization efforts
on developing refined models for individual departments, which
will enable a bottom-up approach to prototype test scheduling. In
future work, we are also interested in incorporating uncertainty
into our models, e.g., variability in test duration and vehicle
release dates, factors which will enable us to develop even more
robust schedules.
Acknowledgment

We thank the reviewers and editors for their thorough and
thoughtful feedback that has certainly helped us improve this
paper. We thank our colleagues in Product Development at Ford
for their collaboration and contributions. This work was supported
by a grant from the Ford-University of Michigan Innovation
Alliance.
References

[1] Coffman EG, Jr., Garey MR, Johnson DS. Approximation algorithms for bin
packing: a survey. In: Approximation algorithms for NP-hard problems.
Boston, US: PWS Publishing Co.; 1996. p. 46–93.

[2] Elhedhli S, Li L, Gzara M, Naoum-Sawaya J. A branch-and-price algorithm for
the bin packing problem with conflicts. INFORMS Journal on Computing
2011;23(3):404–15.

[3] Cheng T, Sin C. A state-of-the-art review of parallel-machine scheduling
research. European Journal of Operational Research 1990;47(3):271–92.

[4] Potts CN, Strusevich VA. Fifty years of scheduling: a survey of milestones.
Journal of the Operational Research Society 2009:S41–68.

[5] Sterna M. A survey of scheduling problems with late work criteria. Omega
2011;39(2):120–9.
Please cite this article as: Shi Y, et al. An analytical approach to pro
10.1016/j.omega.2016.05.003i
[6] Cieliebak M, Erlebach T, Hennecke F, Weber B, Widmayer P. Scheduling with
release times and deadlines on a minimum number of machines. New York
City, US: Springer; 2004.

[7] Yu G, Zhang G. Scheduling with a minimum number of machines. Operations
Research Letters 2009;37(2):97–101.

[8] Lee S, Turner J, Daskin MS, Homem-De-Mello T, Smilowitz K. Improving fleet
utilization for carriers by interval scheduling. European Journal of Operational
Research 2012;218(1):261–9.

[9] Kravchenko SA, Werner F. Minimizing the number of machines for scheduling
jobs with equal processing times. European Journal of Operational Research
2009;199(2):595–600.

[10] Alidaee B, Li H. Parallel machine selection and job scheduling to minimize sum
of machine holding cost, total machine time costs, and total tardiness costs.
IEEE Transactions on Automation Science and Engineering 2014;11(1):294–
301.

[11] Finke G, Lemaire P, Proth JM, Queyranne M. Minimizing the number of
machines for minimum length schedules. European Journal of Operational
Research 2009;199(3):702–5.

[12] Zhu Z, Heady RB. Minimizing the sum of earliness/tardiness in multi-machine
scheduling: a mixed integer programming approach. Computers & Industrial
Engineering 2000;38(2):297–305.

[13] Balakrishnan N, Kanet JJ, Sridharan SV. Early/tardy scheduling with sequence
dependent setups on uniform parallel machines. Computers and Operations
Research 1999;26(2):127–41.

[14] Sawik T. An integer programming approach to scheduling in a contaminated
area. Omega 2010;38(3):179–91.

[15] Kim DW, Na DG, Chen FF. Unrelated parallel machine scheduling with setup
times and a total weighted tardiness objective. Robotics and Computer-
Integrated Manufacturing 2003;19(1–2):173–81.

[16] Kurz ME, Askin RG. Heuristic scheduling of parallel machines with sequence-
dependent set-up times. International Journal of Production Research 2001;39
(16):3747–69.

[17] Heady RB, Zhu Z. Minimizing the sum of job earliness and tardiness in a
multimachine system. International Journal of Production Research 1998;36
(6):1619–32.

[18] Cao D, Chen M, Wan G. Parallel machine selection and job scheduling to
minimize machine cost and job tardiness. Computers and Operations Research
2005;32(8):1995–2012.

[19] Radhakrishnan S, Ventura JA. Simulated annealing for parallel machine
scheduling with earliness-tardiness penalties and sequence-dependent set-up
times. International Journal of Production Research 2000;38(10):2233–52.

[20] Liu C. A hybrid genetic algorithm to minimize total tardiness for unrelated
parallel machine scheduling with precedence constraints. Mathematical Pro-
blems in Engineering 2013;2013:1–11.

[21] Sivrikaya-Srifoglu F, Ulusoy G. Parallel machine scheduling with earliness and
tardiness penalties. Computers and Operations Research 1999;26(8):773–87.

[22] Lin Y-K, Hsieh F-Y. Unrelated parallel machine scheduling with setup times
and ready times. International Journal of Production Research 2014;52
(4):1200–14.

[23] Rabadi G, Moraga R, Al-Salem A. Heuristics for the unrelated parallel machine
scheduling problem with setup times. Journal of Intelligent Manufacturing
2006;17:85–97.

[24] Chen J-F, Wu T-H. Total tardiness minimization on unrelated parallel machine
scheduling with auxiliary equipment constraints. Omega 2006;34(1):81–9.

[25] Chelst K, Sidelko J, Przebienda A, Lockledge J, Mihailidis D. Rightsizing and
management of prototype vehicle testing at Ford Motor Company. Interfaces
2001;31(1):91–107.

[26] Bartels J-H, Zimmermann J. Scheduling tests in automotive R&D projects.
European Journal of Operational Research 2009;193(3):805–19.

[27] Limtanyakul K, Schwiegelshohn U. Improvements of constraint programming
and hybrid methods for scheduling of tests on vehicle prototypes. Constraints
2012;17(2):172–203.
totype vehicle test scheduling. Omega (2016), http://dx.doi.org/

http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref2
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref2
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref2
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref2
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref3
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref3
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref3
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref4
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref4
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref4
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref5
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref5
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref5
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref6
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref6
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref6
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref7
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref7
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref7
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref8
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref8
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref8
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref8
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref9
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref9
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref9
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref9
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref10
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref10
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref10
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref10
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref10
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref11
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref11
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref11
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref11
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref12
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref12
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref12
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref12
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref12
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref13
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref13
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref13
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref13
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref14
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref14
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref14
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref15
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref15
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref15
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref15
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref16
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref16
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref16
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref16
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref17
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref17
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref17
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref17
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref18
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref18
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref18
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref18
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref19
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref19
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref19
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref19
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref20
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref20
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref20
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref20
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref21
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref21
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref21
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref22
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref22
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref22
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref22
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref23
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref23
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref23
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref23
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref24
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref24
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref24
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref25
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref25
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref25
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref25
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref26
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref26
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref26
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref26
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref27
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref27
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref27
http://refhub.elsevier.com/S0305-0483(16)30208-0/sbref27
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003
http://dx.doi.org/10.1016/j.omega.2016.05.003

	An analytical approach to prototype vehicle test scheduling
	Introduction
	Literature review
	Test scheduling problem
	Integer programming model
	Heuristic algorithm
	Fit-and-swap test scheduling heuristic
	Ordering satisfiability problem.
	Integer programming models for grouping crash tests
	Test planning algorithm

	Computational experiments
	Discussion
	Acknowledgment
	References

