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Abstract 

In the analytic hierarchy process (AHP), interval judgments instead of precise ratios are 

widely accepted and can be practically used to solve decision-making problems when 

uncertainty exists because of scant information available or insufficient understanding of the 

problem. This paper presents a simple and effective method for finding the extreme points in 

a range of interval ratios (such as loose articulation, minimum number of interval ratios, and 

general interval ratios) and ultimately for establishing the dominance relations among 

alternatives using the identified extreme points. This is followed by an enumeration or 

simulation approach to manage situations in which the best or a full ranking of alternatives 

remains unidentified.  

Keywords: Analytic hierarchy process (AHP); Interval ratio; Extreme point; Enumeration 
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1. Introduction 

People frequently face the problem of choosing the best option from among several 

alternatives or of making a partial or full ranking of alternatives on the basis of multiple 

conflicting criteria. Such problems are termed multiple criteria decision-making (MCDM) 

problems and have received considerable attention in the decision science literature [15, 29, 

30]. The analytic hierarchy process (AHP) provides a practical solution based on the divide 

and conquer principle, compared with other sophisticated MCDM methods. Since the 

introduction of AHP by Saaty [31], AHP has been successfully applied to a variety of real-

world MCDM problems. See Vaidya and Kumar [36] for an extensive survey categorized by 

themes and areas of application. 

The AHP decision process consists of three main parts: decomposition, measurement of 

preferences, and synthesis. In this paper, we focus on the latter two parts of the process. In 

measuring preferences, pairwise comparison judgments are mostly elicited as point estimates 

on a ratio scale from 1/9 to 9. However, it is not uncommon for a decision-maker to be 

uncertain about his or her preferences, which can be attributed to two types of uncertainty: (a) 

uncertainty about the occurrence of events and (b) uncertainty about the range of judgments 

used to express preferences [32]. The first uncertainty is beyond the control of the decision-

maker, whereas the second uncertainty is a consequence of the amount of information 

available to the decision-maker and his or her understanding of the problem [32]. Moreover, 

situations such as time pressure, lack of domain knowledge, limited attention, and 

information processing capabilities can heighten the uncertainty of the problem at hand [38]. 

In these circumstances, many people, when asked for a subjective judgment about the 

parameters of a problem, are reluctant to specify a unique number and would prefer to specify 
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an interval within which the true judgment lies. To capture a decision-maker’ uncertainty in 

making pairwise comparisons, many researchers have used interval ratio judgments to elicit 

the decision-maker’s preferences instead of adhering to precise ratio judgments. However, the 

specific analysis of interval ratios differs depending on the assumptions of the interval ratios 

themselves and the aggregation methods: a fuzzy set approach to the interval ratio [10, 11, 20, 

25], a distribution function approach for the weights of feasible region constructed by interval 

judgments [15], a simulation-based approach [8, 13, 32], and a goal programming approach 

[17].  

Our focus in this paper is deriving priority vectors for three types of interval ratios (the loose 

articulation, minimum number of interval ratios, and general interval ratios) via extreme 

points. In the loose articulation, the decision-maker specifies that one factor is at least n times 

as important as another and so on. A consistent interval pairwise comparison matrix (PCM) 

can always be constructed if at least (𝑛 − 1) ratio bounds, the minimum number of interval 

ratios, are given when considering 𝑛 factors. In the most general interval ratio case, a total 

of 𝑛(𝑛 − 1)/2 ratio bounds are specified by the decision-maker. Judging from the range of 

preference formats, we deal with a variety of specifications compared with other established 

methods for using interval ratios. Furthermore, our proposed methods to derive the extreme 

points of interval ratios are distinct from previous ones. In the case of the loose articulation, 

cone theory and the inverse positivity property of a matrix provide the theoretical foundation 

for finding its extreme points. A dual programming technique provides another approach to 

obtain the same result. The analysis of the minimum number of interval ratios via the change 

of variables leads to their extreme points, which is easy to understand and apply. In the case 

of general interval ratios, we extract a minimum number of interval ratios, incorporate the 
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remaining interval ratios into the extracted set one by one, and on each occasion modify the 

current extreme points until all remaining ones have been considered. This approach 

consistently results in the desired extreme points whereas Arbel’s method [7] successively 

finds priority vectors by applying a technique based on a pivoting operation in the linear 

programming, but it often fails to produce all vertices. It should be noted that all of these 

methods to derive extreme points are valid when the set of interval ratios is not empty; 

otherwise, a fuzzy preference programming, a simulation-based approach, or a goal 

programming approach is more suitable for obtaining the priority vector.  

We use the identified extreme points to establish dominance relations among the alternatives, 

unlike previous works that need to solve linear programs (LPs). We also offer an enumeration 

or simulation approach to manage situations in which the best or a full ranking of alternatives 

remains unidentified, as is often the case with a dominance criterion applied to interval PCMs. 

The remainder of the paper is organized as follows. Section 2 describes the three types of 

interval ratios and methods to find their extreme points. In Section 3, we establish dominance 

relations among the alternatives by applying several decision-aiding approaches. A numerical 

example is illustrated in Section 4, followed by concluding remarks in Section 5. 

 

2. Three types of interval ratios and their extreme points 

A typical matrix of interval pairwise comparison judgments consists of 𝑤𝑖/𝑤𝑗 ∈ [𝑙𝑖𝑗, 𝑢𝑖𝑗], 

𝑖, 𝑗 = 1,⋯ , 𝑛 where 𝑙𝑖𝑗 and 𝑢𝑖𝑗 represent the lower and upper bounds, respectively. The 

range of bounds is assumed to be between 1/9 and 9 inclusive, 𝑢𝑖𝑗 = 1/𝑙𝑗𝑖 and 

𝑙𝑖𝑗 = 1/𝑢𝑗𝑖.  



5 

 

(

  
 

1

[𝑙21, 𝑢21]

⋮

[𝑙𝑛1, 𝑢𝑛1]

 

[𝑙12, 𝑢12]

1

⋮

[𝑙𝑛2, 𝑢𝑛2]

 

⋯

⋯

⋮

⋯

 

[𝑙1𝑛, 𝑢1𝑛]

[𝑙2𝑛, 𝑢2𝑛]

⋮

1 )

  
 

   (1) 

In the loose articulation, any (𝑛 − 1) judgments of the upper or lower triangle of the interval 

PCM are made while their upper bounds are limited to 9. Presumably, the decision-maker 

first selects the most important factor, for example, 𝑤1, and then compares it with the other 

factors in a ratio scale, thus resulting in 𝑤1/𝑤2 ≥ 𝑙12,⋯, 𝑤1/𝑤𝑛 ≥ 𝑙1𝑛. Another approach is 

to successively compare each factor with the others, resulting in 𝑤1/𝑤2 ≥ 𝑙12, 𝑤2/𝑤3 ≥ 𝑙23, 

⋯, 𝑤𝑛−1/𝑤𝑛 ≥ 𝑙𝑛−1∙𝑛, which we adopt in this paper without loss of generality for further 

analysis (see also Form 2 below). The minimum number of interval ratios assumes that any 

(𝑛 − 1) interval ratios of (1) are known; the remaining interval ratios excluded in this 

specification can be obtained consistently with the given ratios. Finally, the general interval 

ratios require that every element of (1) be specified by ratio bounds, which is likely to cause 

information overload for the decision-maker and thus result in inconsistencies in the interval 

PCM. We summarize the three forms of uncertain judgments as follows: 

Form 1 (LA: Loose Articulation): 𝑤𝑗 ≥ 𝑙𝑗𝑤𝑗+1, 1 ≤ 𝑗 ≤ 𝑛 − 1 

Form 2 (MR: Minimum Interval Ratios): 𝑙𝑗𝑤𝑗+1 ≤ 𝑤𝑗 ≤ 𝑢𝑗𝑤𝑗+1, 1 ≤ 𝑗 ≤ 𝑛 − 1      (2) 

Form 3 (GR: General Interval Ratios): 𝑙𝑖𝑗𝑤𝑗 ≤ 𝑤𝑖 ≤ 𝑢𝑖𝑗𝑤𝑗, 1 ≤ 𝑖 ≤ 𝑛, 𝑖 + 1 ≤ 𝑗 ≤ 𝑛 

 

2.1. Loose articulation (LA) 

A loose articulation indicates that pairwise comparisons between the relevant elements at 

each level of the hierarchy are expressed in the form of weak inequalities [7]. This denotes a 

preference judgment such that factor 𝑖 is at least 𝑙𝑖𝑗 times preferred to factor 𝑗, which 
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produces the following set of constraints (3) about local priorities:  

𝑊𝐿𝐴 = {𝑤𝑗/𝑤𝑗+1 ≥ 𝑙𝑗, 1 ≤ 𝑗 ≤ 𝑛 − 1, 𝑤𝑛 ≥ 0, ∑ 𝑤𝑗
𝑛
𝑗=1 = 1}2   (3) 

where 𝑙𝑗 ∈ [
1

9
, 9]. The set 𝑊𝐿𝐴 can be equivalently represented by matrix notation with the 

sum to unity constraint excluded,  

Aw ≥ 0, w ≥ 0 

where  

A =

(

 
 

1
0
⋮
0
0

  

−𝑙1
1
⋮
0
0

  

0
−𝑙2
⋮
0
0

  

…
…
⋮
…
…

  

0
0
⋮

−𝑙𝑛−1
1 )

 
 

 and wT = (𝑤1, ⋯ ,𝑤𝑛). 

Notice that matrix A has special structure in its elements, and is a so-called class of Z-

matrices whose off-diagonal entries are less than or equal to zero. Specifically, a Z-matrix 

satisfies 𝑍 = (𝑧𝑖𝑗), 𝑧𝑖𝑗 ≤ 0, 𝑖 ≠ 𝑗. Furthermore, a Z-matrix is called an M-matrix, a class of 

inverse-positive matrices, when all the elements of its inverse are nonnegative. Of course, not 

every inverse-positive matrix is an M-matrix. The necessary and sufficient condition for a Z-

matrix to be an M-matrix is that all of its principal minors are positive [16]. From these 

definitions, the 𝑛 × 𝑛 nonsingular matrix A belongs to a class of Z-matrix and further is an 

M-matrix because all of its principal minors are positive, judging from the upper diagonal 

matrix with positive diagonal elements. The extreme directions, and thereby the extreme 

points, can be easily identified based on the inverse-positive matrix. A closed convex cone 𝐶, 

defined by 𝐶 = {w ∈ 𝑅𝑛: Aw ≥ 0,w ≥ 0}, is a simplicial cone that has exactly 𝑛 extremal 

rays because A is a nonsingular matrix of order 𝑛. It follows that (𝐴𝑅+
𝑛)∗ = (𝐴−1)𝑇𝑅+

𝑛, 

based on the dual of 𝐶, defined by 𝐶∗ = {y ∈ 𝑅𝑛: s ∈ 𝐶 → s ∙ y ≥ 0} where s ∙ y denotes 

                                           
2
 For notational simplicity, we denote 𝑙𝑗 = 𝑙𝑗(𝑗+1). 

http://en.wikipedia.org/wiki/Z-matrix_(mathematics)
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the inner product [9]. Therefore, a set of extremal vectors of 𝐶 is composed of 𝑛 column 

vectors of A−1. To isolate the unique set of directions, each vector is normalized by its 

column sum, thereby yielding the extreme points. 

According to the theory, we compute A−1 and then normalize it to obtain E, a matrix of the 

extreme points of 𝑊𝐿𝐴, as in (4):  

A−1 =

(

 
 
 
 

1

0

0

⋮

0

  

𝑙1

1

0

⋮

0

  

𝑙1𝑙2

𝑙2

1

⋮

0

  

…

…

⋮

…

…

  

𝑙1⋯𝑙𝑛−1

𝑙2⋯𝑙𝑛−1

𝑙3⋯𝑙𝑛−1

⋮

1 )

 
 
 
 

, E =

(

 
 
 
 
 

1

0

0

⋮

0

  

𝑙1

𝛽2
1

𝛽2

0

⋮

0

  

𝑙1𝑙2

𝛽3
𝑙2

𝛽3
1

𝛽3

⋮

0

  

…

…

⋮

…

…

  

𝑙1𝑙2⋯𝑙𝑛−1

𝛽𝑛
𝑙2𝑙3⋯𝑙𝑛−1

𝛽𝑛
𝑙3𝑙4⋯𝑙𝑛−1

𝛽𝑛

⋮
1

𝛽𝑛 )

 
 
 
 
 

    (4) 

where 𝛽1 = 1 and 𝛽𝑗 = 1 + 𝑙𝑗−1𝛽𝑗−1 for 2 ≤ 𝑗 ≤ 𝑛. See also the other approaches to find 

the extreme points of 𝑊𝐿𝐴 [6, 12, 22, 23, 27].  

As an alternate method to determine the extreme points of 𝑊𝐿𝐴, we present a dual 

programming approach that can be extended to other types of uncertain preference judgments 

beyond 𝑊𝐿𝐴. To do so, we first formulate a primal LP (5) with a set of constraints 𝑊𝐿𝐴: 

minimize  𝑧1 = 𝑐1𝑤1 + 𝑐2𝑤2 +⋯+ 𝑐𝑛𝑤𝑛 

s.t. 

𝑤𝑗 − 𝑙𝑗𝑤𝑗+1 ≥ 0   𝑗 = 1,⋯ , 𝑛 (𝑤𝑛+1 = 0)        (5) 

∑ 𝑤𝑗
𝑛
𝑗=1 = 1  

where 𝑐𝑗, 𝑗 = 1,⋯ , 𝑛 are arbitrary real numbers. 

Then, we formulate a dual program (6) associated with (5) as follows: 

maximize 𝑧2 = 𝜇𝑛+1 

s.t. −𝑙𝑗−1𝜇𝑗−1 + 𝜇𝑗 + 𝜇𝑛+1 ≤ 𝑐𝑗, 𝑗 = 1,⋯ , 𝑛 (𝑙0 = 𝜇0 = 0)    (6) 
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𝜇𝑗 ≥ 0, 𝑗 = 1,⋯ , 𝑛, 𝜇𝑛+1: unrestricted in sign3 

 

Theorem 1. The optimal objective function value to (6) is obtained by  

𝜇𝑛+1
∗ = 𝑚𝑖𝑛1≤𝑗≤𝑛 (

𝑐𝑗+∑ (𝑐𝑖∏ 𝑙𝑘
𝑗−1
𝑘=𝑖 )

𝑗−1
𝑖=1

𝛽𝑗
)     (7) 

where 𝛽1 = 1, 𝛽𝑗 = 1 + 𝑙𝑗−1𝛽𝑗−1 for 2 ≤ 𝑗 ≤ 𝑛 and ∑ (𝑐𝑖∏ 𝑙𝑘
𝑗−1
𝑘=𝑖 )

𝑗−1
𝑖=1 = 0 for 𝑗 = 1.  

Proof. It follows that 𝑢𝑛+1 ≤ 𝑐1 from 𝑢1 ≤ 𝑐1 − 𝑢𝑛+1 for 𝑗 = 1 to satisfy the non-

negative variable constraint 𝜇1 ≥ 0, which means that 𝑢1 attains its maximum, 𝑢1
∗ = 𝑐1 −

𝑢𝑛+1 subject to 𝑢𝑛+1 ≤ 𝑐1 =
𝑐1

𝛽1
. Similarly, it follows that 𝑢𝑛+1 ≤ 𝑐2 + 𝑙1𝑢1 from 

𝑢2 ≤ 𝑐2 + 𝑙1𝑢1 − 𝑢𝑛+1 for 𝑗 = 2 to satisfy 𝜇2 ≥ 0, yielding 𝑢2
∗ = 𝑐2 + 𝑙1𝑢1

∗ − 𝑢𝑛+1 

subject to 𝑢𝑛+1 ≤
𝑐2+𝑙1𝑐1

1+𝑙1
=
𝑐2+𝑙1𝑐1

𝛽2
. Continuing in this manner, 

𝑢𝑛+1 ≤
𝑐𝑛+𝑙𝑛−1𝑐𝑛−1+⋯+𝑙1⋯𝑙𝑛−1𝑐1

𝛽𝑛
 for 𝑗 = 𝑛; thus, the optimal objective function value reduces 

to a minimum of {𝑐1,
𝑐2+𝑙1𝑐1

𝛽2
, ⋯ ,

𝑐𝑛+𝑙𝑛−1𝑐𝑛−1+⋯+𝑙1⋯𝑙𝑛−1𝑐1

𝛽𝑛
}. 

 

Corollary 1. The extreme points of 𝑊𝐿𝐴 reduce to 𝐸 in (4). 

Proof. The dual optimal value 𝜇𝑛+1
∗  can be equivalently represented as 𝜇𝑛+1

∗ = min[cE] 

where c = (𝑐1, 𝑐2, ⋯ , 𝑐𝑛) and E in (4), which proves that E is the matrix of the extreme 

points of 𝑊𝐿𝐴 because 𝜇𝑛+1
∗ = 𝑧1

∗ at optimality, according to the primal-dual relationship. 

 

2.2. Minimum interval ratios (MR) 

Suppose that without loss of generality, the (𝑛 − 1) interval ratios are successively given as 

                                           
3
 A dual variable 𝜇𝑛+1 corresponds to the sum to unity constraint in the primal. 
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follows: 

𝑊𝑀𝑅 = {𝑙𝑗𝑤𝑗+1 ≤ 𝑤𝑗 ≤ 𝑢𝑗𝑤𝑗+1, 1 ≤ 𝑗 ≤ 𝑛 − 1,𝑤𝑛 ≥ 0, ∑ 𝑤𝑗
𝑛
𝑗=1 = 1}   (8) 

where 𝑙𝑗 and 𝑢𝑗  are a decision-maker’s preferences taken from the 1/9 − 9 comparison 

scale. This type of information is often used to determine the ranking of factors that one 

should infer when the decision-maker uses interval judgments rather than point estimates [7, 

8, 15, 19, 21, 37]. 

The other missing ratios in the interval PCM can be induced by using the given interval ratios. 

For instance, a ratio bound 𝑙𝑖𝑘 ≤
𝑤𝑖

𝑤𝑘
≤ 𝑢𝑖𝑘 for 𝑖 < 𝑘, 𝑘 ≠ 𝑖 + 1, 1 ≤ 𝑖, 𝑘 ≤ 𝑛 can be 

inferred by multiplying the given ratio bounds sequentially, thus resulting in: 

∏ 𝑙𝑗
𝑘−1
𝑗=𝑖 ≤ ∏

𝑤𝑗

𝑤𝑗+1

𝑘−1
𝑗=𝑖 ≤ ∏ 𝑢𝑗

𝑘−1
𝑗=𝑖 .   (9) 

 

Theorem 2. Given (𝑛 − 1) ratio bounds, 

(a) the total number of extreme points is 2𝑛−1 and  

(b) all extreme points are determined by solving 2𝑛−1 systems of linear equations:  

𝑤𝑗

𝑤𝑗+1
= 𝑙𝑗 (or 𝑢𝑗), 1 ≤ 𝑗 ≤ 𝑛 − 1, ∑ 𝑤𝑗

𝑛
𝑗=1 = 1.   (10) 

Proof. See Ahn and Park [5]. 

 

Remark. It is noteworthy that Theorem 2 is valid when the ratio bounds induced by (9) 

belong to [1/9, 9]; otherwise, we rely on the procedure in Section 2.3. 

 

To illustrate, consider a set of ratio bounds adopted from Arbel [7]: 

𝑊𝑀𝑅 = {1 ≤
𝑤1

𝑤2
≤ 2, 2 ≤

𝑤2

𝑤3
≤ 3,𝑤1 + 𝑤2 + 𝑤3 = 1}. 
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Multiplying the two given ratio bounds yields a ratio bound of 𝑤1/𝑤3 such as 

{2 ≤ 𝑤1/𝑤3 ≤ 6}, which belongs to [1/9, 9] and thus completes a consistent interval PCM, 

as shown in (11): 

𝐴 = (

1 [1,2] [2,6]

[1
2
, 1] 1 [2,3]

[1
6
, 1
2
] [1

3
, 1
2
] 1

)   (11) 

Introducing 𝑞𝑖 such that 𝑞1 =
𝑤1

𝑤2
, 𝑞2 =

𝑤2

𝑤3
, and 𝑞3 =

𝑤3

𝑤1
, leads to a set 𝑄 wherein, in 

particular, the product of 𝑞𝑖s appears differently from the sum to unity constraint in 𝑊𝑀𝑅:  

𝑄 = {𝑞: 1 ≤ 𝑞1 ≤ 2, 2 ≤ 𝑞2 ≤ 3,
1

6
≤ 𝑞3 ≤

1

2
, 𝑞1 ∙ 𝑞2 ∙ 𝑞3 = 1}4. 

Furthermore, we obtain the equivalent sets 𝑅 and 𝑆 by letting 𝑟𝑖 = ln 𝑞𝑖, 𝑖 = 1,2,3, and 

successively 𝑠1 = 𝑟1, 𝑠2 = 𝑟2 − ln 2, and 𝑠3 = 𝑟3 + ln6:  

𝑅 = {𝑟: 0 ≤ 𝑟1 ≤ ln 2 , ln 2 ≤ 𝑟2 ≤ ln3 ,− ln 6 ≤ 𝑟3 ≤ −ln 2 , 𝑟1 + 𝑟2 + 𝑟3 = 0}  

𝑆 = {𝑠: 0 ≤ 𝑠1 ≤ ln 2 , 0 ≤ 𝑠2 ≤ ln
3

2
, 0 ≤ 𝑠3 ≤ ln3 , 𝑠1 + 𝑠2 + 𝑠3 = ln3}. 

The change of variables such that 𝑡𝑖 = 𝑠𝑖/ ln 3, 𝑖 = 1, 2, 3 yields set 𝑇:  

𝑇 = {𝑡: 0 ≤ 𝑡1 ≤ 𝑎, 0 ≤ 𝑡2 ≤ 𝑏, 0 ≤ 𝑡3 ≤ 𝑐, 𝑡1 + 𝑡2 + 𝑡3 = 1} 

where 𝑎 =
ln2

ln3
< 1, 𝑏 =

ln3/2

ln3
< 1, and 𝑐 = 1 Then selecting at least two end points of 𝑡𝑖 

summing to one gives the extreme points of 𝑇 as follows: 

(𝑎, 0, 1 − 𝑎), (𝑎, 𝑏, 0), (0, 𝑏, 1 − 𝑏), and (0, 0, 1)   (12) 

For each extreme point in terms of 𝑡𝑖, make the change of variables backward: 

𝑡 → 𝑠 → 𝑟 → 𝑞 → 𝑤. 

Specifically, for 𝑡 = (𝑎, 0, 1 − 𝑎), multiplying each element by ln 3 gives 

                                           
4
 It is possible to directly determine a set of extreme vectors {(1, 2,

1

2
) , (1, 3,

1

3
) , (2, 2,

1

4
) , (2, 3,

1

6
)} from the set 𝑄 

to find the extreme points of 𝑊𝑀𝑅. Note that a feasible vector, for instance, (1,
5

2
,
2

5
) in 𝑄, is not considered an 

extreme vector. 
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𝑠 = (ln 2 , 0, ln 3
2
), adding (0, ln 2 , −ln 6) to 𝑠 gives 𝑟 = (ln 2 , ln 2 , ln 1

4
), applying 

𝑞𝑖 = 𝑒
𝑟𝑖 to 𝑟 gives 𝑞 = (2, 2, 1

4
), and finally solving the following system of equations 

gives an extreme point (
4

7
,
2

7
,
1

7
): 

𝑤1 = 2𝑤2, 𝑤2 = 2𝑤3, 𝑤1 + 𝑤2 + 𝑤3 = 1. 

Similar computations for the other extreme vectors in (12) result in corresponding extreme 

points in terms of 𝑤𝑖 such as (
6

10
,
3

10
,
1

10
), (

3

7
,
3

7
,
1

7
), and (

2

5
,
2

5
,
1

5
).  

Theorem 2 serves as a means to find the extreme points of 𝑊𝑀𝑅 as the solutions of the 

systems of linear equations derived by combining the lower or upper bounds of 
𝑤𝑗

𝑤𝑗+1
 in 

𝑊𝑀𝑅 as many as 2𝑛−1 times. These findings are equivalent to those by Arbel [7]. 

 

2.3. General interval ratios (GR) 

Consider a set of interval ratios 𝑊𝐺𝑅 consisting of 𝑛(𝑛 − 1)/2 interval ratios, and divide 

them into two subsets 𝑊𝑀𝑅 as in (8) and 𝑊𝑂𝑇, the others that are not included in 𝑊𝑀𝑅, 

𝑊𝐺𝑅 = 𝑊𝑀𝑅 ∩𝑊𝑂𝑇:  

𝑊𝐺𝑅 = {𝑙𝑖𝑗𝑤𝑗 ≤ 𝑤𝑖 ≤ 𝑢𝑖𝑗𝑤𝑗, 1 ≤ 𝑖 ≤ 𝑛, 𝑖 + 1 ≤ 𝑗 ≤ 𝑛,∑ 𝑤𝑗
𝑛
𝑗=1 = 1}.  

We summarize a procedure for finding the extreme points of 𝑊𝐺𝑅 in four steps: 

Step 1: Determine the extreme points of 𝑊𝑀𝑅 by Theorem 2 in Section 2.2; 

Step 2: Select a ratio bound in 𝑊𝑂𝑇 and incorporate it into 𝑊𝑀𝑅; 

Step 3: Manipulate one of three cases, which occur depending on the selected ratio bound: 

(a) some modifications of the current extreme points if it is binding,  

(b) no modifications of the current extreme points if it is redundant, 

(c) inconsistency if it is infeasible; 
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Step 4: If case (c) occurs, then stop
5
; otherwise repeat Step 2 until 𝑊𝑂𝑇 is empty. 

To illustrate, suppose the following interval PCM [8]: 

A =

(

 
 
 

1 [2, 5] [2, 4]

[
1

5
,  
1

2
] 1 [1, 3]

   
[1, 3]

[1, 2]

[
1

4
,  
1

2
] [

1

3
, 1] 1

[
1

3
, 1] [

1

2
, 1] [1, 2]

   
[
1

2
, 1]

1 )

 
 
 

 

To begin, partition the set of interval ratios into two subsets 𝑊𝑀𝑅 and 𝑊𝑂𝑇 where 

𝑊𝑀𝑅 = {2 ≤
𝑤1

𝑤2
≤ 5, 1 ≤

𝑤2

𝑤3
≤ 3,

1

2
≤
𝑤3

𝑤4
≤ 1,∑ 𝑤𝑗

4
𝑗=1 = 1}  

𝑊𝑂𝑇 = {2 ≤
𝑤1

𝑤3
≤ 4, 1 ≤

𝑤1

𝑤4
≤ 3, 1 ≤

𝑤2

𝑤4
≤ 2}. 

The interval PCM proves to be consistent because each element in 𝑊𝑂𝑇 belongs to its 

counterpart induced by multiplying the appropriate elements in 𝑊𝑀𝑅, such as 2 ≤
𝑤1

𝑤3
=
𝑤1

𝑤2
×

𝑤2

𝑤3
≤ 15, 1 ≤

𝑤1

𝑤4
≤ 15, and 

1

2
≤
𝑤2

𝑤4
≤ 3. Therefore, the next step is finding the extreme 

points of 𝑊𝑀𝑅 by solving eight systems of linear equations based on Theorem 2. The 

resulting extreme points are: v1 = (
1

3
,
1

6
,
1

6
,
1

3
), v2 = (

5

9
,
1

9
,
1

9
,
2

9
), v3 = (

1

2
,
1

4
,
1

12
,
1

6
), v4 =

(
5

7
,
1

7
,
1

21
,
2

21
), v5 = (

2

5
,
1

5
,
1

5
,
1

5
), v6 = (

5

8
,
1

8
,
1

8
,
1

8
), v7 = (

6

11
,
3

11
,
1

11
,
1

11
), and v8 = (

3

4
,
3

20
,
1

20
,
1

20
). 

Then select any ratio bound in 𝑊𝑂𝑇, for instance 𝐶1 = {2 ≤
𝑤1

𝑤3
≤ 4}, and incorporate it into 

𝑊𝑀𝑅, which divides the current set of extreme points into two subsets; 𝑀1 = {v1, v5} 

satisfying 𝐶1, and 𝑀1 = {v2, v3, v4, v6, v7, v8 } not satisfying 𝐶1. To see whether 𝐶1 

intersects with the edge connecting, for example, a pair of v1 ∈ 𝑀1 and v3 ∈ 𝑀1, construct 

a line segment (i.e., a convex combination) between v1 and v3 in (13) and check whether 

                                           
5
 To deal with an inconsistent interval PCM, identify the constraint where the inconsistency first occurs while 

finding the extreme points and provide it to the decision-maker to revise. Then proceed to find the extreme 

points that characterize the revised uncertain statements. 
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feasible 𝜆s are found by solving equations (14a) and (14b): 

(

 
 

1

3

1

6
1

6
1
3)

 
 
+

(

 
 

1

2
− 1

3
1

4
− 1

6
1

12
− 1

6
1

6
− 1

3)

 
 
𝜆 =

(

 
 

1

3
+ 1

6
𝜆

1

6
+ 1

12
𝜆

1

6
− 1

12
𝜆

1

3
− 1

6
𝜆)

 
 

, 0 ≤ 𝜆 ≤ 1.    (13) 

𝑤1

𝑤3
=

(
1
3
+
1
6
𝜆)

(
1
6
−
1
12
𝜆)
= 2 for 

𝑤1

𝑤3
≥ 2   (14a) 

𝑤1

𝑤3
=

(
1
3
+
1
6
𝜆)

(
1
6
−
1
12
𝜆)
= 4 for 

𝑤1

𝑤3
≤ 4.   (14b) 

The solutions to (14a) and (14b) are 𝜆 = 0 and 𝜆 = 2

3
, respectively, which give the current 

extreme point v1 = (
1

3
,
1

6
,
1

6
,
1

3
) and a candidate extreme point (

4

9
,
2

9
,
1

9
,
2

9
), respectively.

6
 A 

further check to see whether the candidate extreme point is generated from invalid line 

segments in spite of a feasible 𝜆 proves it to be legitimate, because it gives eight basic 

variables when substituted for the eight constraints (six constraints in 𝑊𝑀𝑅 plus two 

constraints in 𝐶1) used to find the candidate extreme point. Repeat this procedure until every 

line segment connecting the pairs of 𝑀1 and 𝑀1 has been examined. Table 1 lists the 

modified extreme points resulting from the incorporation of 𝐶1 into 𝑊𝑀𝑅. 

 

Table 1 

Modified extreme points resulting from the incorporation of 𝐶1 into 𝑊𝑀𝑅. 

Vertex #1 Vertex #2 Vertex #3 Vertex #4 Vertex #5 Vertex #6 
1

3
 

2

5
 

1

2
 

4

9
 

4

7
 

1

2
 

1

6
 

1

5
 

1

8
 

2

9
 

1

7
 

1

4
 

1

6
 

1

5
 

1

8
 

1

9
 

1

7
 

1

8
 

1

3
 

1

5
 

1

4
 

2

9
 

1

7
 

1

8
 

 

                                           
6
 A pair of (v1, v2) produces 𝜆 = 0 for 

𝑤1

𝑤3
≥ 2 and no feasible 𝜆 for 

𝑤1

𝑤3
≤ 4. 
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Likewise, select 𝐶2 = {1 ≤
𝑤1

𝑤4
≤ 3} and 𝐶3 = {1 ≤

𝑤2

𝑤4
≤ 2} sequentially in 𝑊𝑂𝑇 and 

compute modified extreme points to obtain the final six vertexes shown in Table 2.  

 

Table 2 

The final extreme points of 𝑊𝐺𝑅. 

Vertex #1 Vertex #2 Vertex #3 Vertex #4 Vertex #5 Vertex #6 Min Max 

0.4 0.444 0.5 0.462 0.48 0.522 0.4 0.522 

0.2 0.222 0.167 0.231 0.24 0.174 0.167 0.24 

0.2 0.111 0.167 0.154 0.12 0.130 0.111 0.2 

0.2 0.222 0.167 0.154 0.16 0.174 0.154 0.222 

 

This manual process of obtaining a complete set of extreme points becomes computationally 

intensive as the number of factors being compared increases, although the results of Theorem 

2 significantly reduce the burden of computation. To enhance accuracy and speed, we 

developed an Excel VBA (Visual Basic for Applications) program to find the extreme points 

of the general interval ratios and used it to solve the illustrative example in Section 4.  

 

3. Interval AHP based on extreme points 

The previous section dealt with methods to find the extreme points of a range of interval 

ratios that evaluate pairwise comparisons between relevant elements at each level of a 

hierarchy. In this section, we introduce several decision-aiding approaches, all of which 

actively use the identified extreme points in the context of AHP. To do this, we define 

terminology as follows: 

 𝐴 = {𝑥, 𝑦, 𝑧,⋯ }: a finite discrete set of alternatives 

 𝐼 = {1, 2,⋯ , 𝑛}: a finite discrete set of criteria of multiple layers of hierarchy 

 𝐷(𝑖) ⊂ 𝐼: a set of criteria structured immediately under a criterion 𝑖, that is, the set of 

direct successors of a criterion 𝑖 
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 𝑇: a set of twig level criteria, 𝑇 = {𝑖 ∈ 𝐼|𝐷(𝑖) = ∅} 

 𝐿ℎ: a set of the hth leveled criteria, ℎ = 0, 1,⋯ ,𝑚, with 𝐿0 as the topmost level 

(goal) and 𝐿ℎ ⊆ 𝐼, ℎ ≠ 0 

 𝑁𝐷(𝑖): the number of extreme points of the interval PCM for criteria 𝐷(𝑖) 

 𝜇𝑗
𝑘(𝑥): the kth entry of alternative 𝑥 in a set of extreme points of the interval PCM for   

alternatives with respect to a criterion 𝑗 ∈ 𝑇 

 𝜌𝑗
𝑘: the kth entry of criterion 𝑗 in a set of extreme points of the interval PCM for 

criteria  𝑗 ∈ 𝐷(𝑖), 𝑘 = 1,⋯ ,𝑁𝐷(𝑖)  

Salo and Hämäläinen [33] presented an efficient algorithm for synthesizing interval 

judgments into dominance relations on the alternatives under a hierarchical tree. This 

algorithm passes the pairwise comparison values to an immediately upper node and then 

finally to the topmost goal by solving a series of LPs. Ahn et al. [3] extended their work to 

accommodate different types of incomplete preferences. Here, unlike the previous approaches 

that require solving LPs, Theorem 3 enables us to establish dominance relationships among 

the alternatives using only extreme points. Of course, this is made possible by knowing all 

the extreme points that characterize various types of interval PCMs.  

 

Theorem 3. For 𝑗 ∈ 𝑇, compute the values of pairwise comparison 

𝜋𝑗(𝑥, 𝑦) = 𝑚𝑖𝑛𝑘 [𝜇𝑗
𝑘(𝑥) − 𝜇𝑗

𝑘(𝑦)].  

For level 𝐿ℎ, ℎ = 0,⋯ ,𝑚 − 1 and for each 𝑗𝑇, calculate the values of pairwise 

comparison  

𝜋𝑗(𝑥, 𝑦) = 𝑚𝑖𝑛1≤𝑚≤𝑁𝐷(𝑗) ∑ 𝜋𝑘(𝑥, 𝑦)𝜌𝑘
𝑚

𝑘∈𝐷(𝑗) . 
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Then alternative 𝑥 is at least preferred to 𝑦, 𝑥 ≽𝑝 𝑦 if and only if 𝜋0(𝑥, 𝑦) ≥ 0.  

Proof. It follows that  

min𝑉𝑗[𝑣𝑗(𝑥) − 𝑣𝑗(𝑦)] = min𝑘 [𝜇𝑗
𝑘(𝑥) − 𝜇𝑗

𝑘(𝑦)], 𝑗 ∈ 𝑇 and 

min𝑊𝐷(𝑗)
 ∑ 𝜋𝑘(𝑥, 𝑦)𝑘∈𝐷(𝑗) 𝑤𝑘 = min1≤𝑚≤𝑁𝐷(𝑗)  ∑ 𝜋𝑘(𝑥, 𝑦)𝜌𝑘

𝑚
𝑘∈𝐷(𝑗)   

where 𝑉𝑗 is a set of constraints (i.e., incomplete statements) for the 𝑗th attribute values of 

alternatives 𝑣𝑗(∙) ∈ 𝑉𝑗, 𝑗 ∈ 𝑇 and 𝑊𝐷(𝑗) is a set of constraints on the weights 𝑤𝑘 ∈ 𝑊𝐷(𝑗) 

𝑘 ∈ 𝐷(𝑗) [3, 33]. 

 

The purpose of decision-making is generally to find the best alternative or a rank-ordering of 

alternatives. The pairwise dominance criterion applied to interval PCMs often fails to 

accomplish this goal while identifying some non-dominated alternatives. One way to cope 

with this problem is to ask the decision-maker to state more specific preferences; thereby, 

reducing the feasible region formed by the interval PCMs. Though such an interactive 

approach makes sense and occasionally yields the desired result, it can be difficult to acquire 

more specific information from the decision-maker or it could end with a deadlock in which 

s/he is unwilling to provide more restrictive values [3]. Some methods, including maximax, 

maximin, and minimax regret,
7
 have been advanced to deal with this situation [4, 27, 34]. 

The dominance measuring method, based on the outranking concept, computes the 

dominating and dominated measures of each alternative by combining pairwise dominance 

values appropriately. Their difference is then considered the net dominance value that one 

alternative has over all the other alternatives. The net dominance values are thus a measure of 

                                           

7 The classical decision rules in incomplete decision-making problems use the lower and upper bounds of each 

alternative such that 𝐿𝐵𝑗(𝑥) = min𝑘  [𝜇𝑗
𝑘(𝑥)]  and 𝑈𝐵𝑗(𝑥) = max𝑘 [𝜇𝑗

𝑘(𝑥)]  for 𝑗 ∈ 𝑇 , and 𝐿𝐵ℎ(𝑥) =

min1≤𝑚≤𝑁𝐷(𝑗)  ∑ 𝐿𝐵𝑘(𝑥)𝜌𝑘
𝑚

𝑘∈𝐷(𝑗)  and 𝑈𝐵ℎ(𝑥) = max1≤𝑚≤𝑁𝐷(𝑗)  ∑ 𝑈𝐵𝑘(𝑥)𝜌𝑘
𝑚

𝑘∈𝐷(𝑗)  for each 𝑗𝑇. 
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the preference strength for alternatives in the sense that a larger net value is better [4]. This 

idea has been extended to more elaborate dominance measuring methods [1, 14, 18, 24]. 

Finally, we introduce an enumeration method that considers all possible combinations of the 

extreme points to rank alternatives based on how many combinations support each one. Note 

that the range for each alternative’s global priority weight resulting from this enumeration 

method is equivalent to the bounds of absolute dominance. When we denote the global 

priority weights of alternatives 𝑥 and 𝑦 by 𝐴𝑔𝑔(𝑥) ∈ [𝐿𝐵(𝑥), 𝑈𝐵(𝑥)] and 𝐴𝑔𝑔(𝑦) ∈

[𝐿𝐵(𝑦), 𝑈𝐵(𝑦)], respectively, then the degree of preference of 𝑥 over 𝑦, defined by (15), 

shows how much one alternative is preferred to the other considering the overlapping portion 

of two intervals [35, 40]: 

d(𝐴𝑔𝑔(𝑥) > 𝐴𝑔𝑔(𝑦)) =
max(𝑈𝐵(𝑥)−𝐿𝐵(𝑦),0)−max (𝐿𝐵(𝑥)−𝑈𝐵(𝑦),0)

𝑈𝐵(𝑥)−𝐿𝐵(𝑥)+𝑈𝐵(𝑦)−𝐿𝐵(𝑦)
  (15) 

Obviously, 𝑑(𝐴𝑔𝑔(𝑥) > 𝐴𝑔𝑔(𝑦)) + 𝑑(𝐴𝑔𝑔(𝑦) > 𝐴𝑔𝑔(𝑥)) = 1 and 

𝑑(𝐴𝑔𝑔(𝑥) > 𝐴𝑔𝑔(𝑦)) = 𝑑(𝐴𝑔𝑔(𝑦) > 𝐴𝑔𝑔(𝑥)) = 0.5 when 𝐴𝑔𝑔(𝑥) = 𝐴𝑔𝑔(𝑦). 

Furthermore, we can collect other statistics as a basis to evaluate alternatives [13]: the 

number of times alternative x obtains rank r and the number of times alternative x scores 

better than alternative y. 

The total number of combinations of the extreme points depends on the problem size, 

characterized by the number of layers of the hierarchy, the number of criteria in each layer, 

and the number of alternatives for the lowest level criteria. Obviously, the computations 

required to obtain the frequencies of each alternative over the others increase in a 

multiplicative fashion as the problem size increases. Therefore we rely on a simulation 

approach that considers only some combinations of the extreme points when the problem is 

too large to adopt an enumeration approach. A hybrid approach takes into account all 
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combinations of extreme points with respect to criteria while randomly selecting extreme 

points of alternatives for the lowest level criteria. This is based on the idea that the local 

priority vectors of criteria are, in general, more influential than those of alternatives in 

computing the global priority vector, as exemplified in the illustrative example.   

 

4. An illustrative example 

We illustrate the proposed method with an international supplier selection problem in which 

the purchasing department of a company considers three competing suppliers (𝑥, 𝑦, 𝑧) that 

are evaluated by the hierarchy of criteria shown in Figure 1 [2, 26, 28, 39].  

 

Suppose that the purchasing department makes approximate ratio comparisons on the 

hierarchy of criteria, as shown in Table 3. Specifically, the interval ratios between the criteria 

succeeding to foreign supplier can be equivalently written as a set of constraints 𝑊𝐷(0): 

𝑊𝐷(0) = {
1

4
𝑤2 ≤ 𝑤1 ≤

1

2
𝑤2, 2𝑤3 ≤ 𝑤2 ≤ 3𝑤3, 𝑤1 + 𝑤2 + 𝑤3 = 1,𝑤1, 𝑤2, 𝑤3 ≥ 0}. 

1: Cultural and 

communication 

barriers 

0: Foreign supplier 

2: Financial terms 3: Service 

4: Ethical 

standards 
5: Cultural 

similarity 

6: Ease of  

communication 
8: On-time 

delivery 

7: Quality  

assurance 

Fig. 1. An example of a hierarchy of criteria. 
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Similarly, the interval ratios between the criteria succeeding to cultural and communication 

barriers, and service are denoted by 𝑊𝐷(1) and 𝑊𝐷(3) respectively: 

𝑊𝐷(1) = {𝑤5 ≤ 𝑤4 ≤ 2𝑤5, 𝑤4 ≤
1

3
𝑤6, 𝑤5 ≤

1

2
𝑤6, 𝑤4 + 𝑤5 + 𝑤6 = 1,𝑤4, 𝑤5, 𝑤6 ≥ 0}  

𝑊𝐷(3) = {𝑤7 = 𝑤8, 𝑤7 + 𝑤8 = 1,𝑤7, 𝑤8 ≥ 0}. 

 

Table 3 

Pairwise comparisons between criteria.  

 Foreign supplier 

(Form 2) 

  Cultural and 

communication 

barriers (Forms 1 & 3) 

  Service 

(Form 3) 

 1 2 3   4 5 6   7 8 

1  [
1

4
,
1

2
]   4  [1, 2] [−,

1

3
]  7  [1, 1] 

2   [2, 3]  5   [−,
1

2
]  8   

3     6        

 

Furthermore, suppose that for each lowest level criterion 𝑇 = {2, 4, 5, 6, 7, 8}, the purchasing 

department’s interval ratios between alternatives are given in Table 4. Taking the criterion 

ethical standards as an example, the interval ratios between alternatives can be equivalently 

written by a set of constraints 𝑉4: 

𝑉4 = {𝑣4(𝑦) ≤ 𝑣4(𝑥) ≤ 2𝑣4(𝑦), 3𝑣4(𝑧) ≤ 𝑣4(𝑦) ≤ 4𝑣4(𝑧), 5𝑣4(𝑧) ≤ 𝑣4(𝑥) ≤ 

6𝑣4(𝑧), 𝑣4(𝑥) + 𝑣4(𝑦) + 𝑣4(𝑧) = 1, 𝑣4(𝑥), 𝑣4(𝑦), 𝑣4(𝑧) ≥ 0} 

Table 4 

Pairwise comparisons between alternatives with respect to criteria. 

 4: Ethical standards 

(Form 3) 

 5: Cultural similarity 

(Form 1) 
6: Ease of communication  

(Form 3) 

 𝑥 𝑦 𝑧   𝑥 𝑦 𝑧   𝑥 𝑦 𝑧 
𝑥  [1, 2] [5, 6]  𝑥  [1, −]   𝑥  [1, 2] [1, 1] 
𝑦   [3, 4]  𝑦   [1, −]  𝑦   [

1

4
,
1

2
] 

𝑧   −  𝑧   −  𝑧    
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2: Financial terms 

(Forms 1 & 3) 
7: Quality assurance 

(Forms 1 & 3) 
8: On-time delivery 

(Form 3) 

 𝑥 𝑦 𝑧   𝑥 𝑦 𝑧   𝑥 𝑦 𝑧 
𝑥  [1, 2] [3, −]  𝑥  [1, 2] [−,

1

4
]  𝑥  [2, 4] [1, 2] 

𝑦   [2, 3]  𝑦   [−,
1

3
]  𝑦   [

1

4
,
1

3
] 

𝑧     𝑧     𝑧    

 

To select one of the three competing suppliers (𝑥, 𝑦, 𝑧), we first determine the local priority 

vectors in terms of the extreme points from the interval PCMs in Tables 3 and 4 (Tables 5 and 

6). 

 

Table 5 

Extreme points of interval ratios between criteria.  

 #1 #2 #3 #4   #1 #2 #3   #1 

1 3

19
 

3

11
 

1

4
 

1

7
  4 0 1

5
 

2

9
  7 1

2
 

2 12

19
 

6

11
 

2

4
 

4

7
  5 0 1

5
 

1

9
  8 1

2
 

3 4

19
 

2

11
 

1

4
 

2

7
  6 1 3

5
 

6

9
    

 

Table 6 

Extreme points of interval ratios between alternatives with respect to criteria. 

4: Ethical standards 5: Cultural similarity 6: Ease of communication 

 #1 #2 #3 #4   #1 #2 #3   #1   

𝑥 5

9
 

5

10
 

6

10
 

6

11
  𝑥 1 1

2
 

1

3
  𝑥 4

10
   

𝑦 3

9
 

4

10
 

3

10
 

4

11
  𝑦 0 1

2
 

1

3
  𝑦 2

10
   

𝑧 1

9
 

1

10
 

1

10
 

1

11
  𝑧 0 0 1

3
  𝑧 4

10
   

2: Financial terms 7: Quality assurance 8: On-time delivery 

 #1 #2 #3 #4   #1 #2 #3   #1 #2 #3 

𝑥 4

7
 

6

10
 

3

6
 

3

7
  𝑥 0 1

6
 

2

11
  𝑥 4

9
 

3

7
 

4

8
 

𝑦 2

7
 

3

10
 

2

6
 

3

7
  𝑦 0 1

6
 

1

11
  𝑦 1

9
 

1

7
 

1

8
 

𝑧 1

7
 

1

10
 

1

6
 

1

7
  𝑧 1 4

6
 

8

11
  𝑧 4

9
 

3

7
 

3

8
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The next step is to establish the dominance between a pair of alternatives 𝑥 and 𝑦 (see 

Table 7 for other pairs of alternatives). According to Theorem 3, the pairwise comparison 

values from the lowest level 𝐿2 are passed to an immediately upper level 𝐿1 and finally to 

the topmost level 𝐿0, 𝜋0(𝑥, 𝑦), as shown below. 

For level 𝐿2: 

𝜋4(𝑥, 𝑦) = min1≤𝑘≤4 (𝜇4
𝑘(𝑥) − 𝜇4

𝑘(𝑦)) = min {
5

9
−
3

9
,
5

10
−

4

10
,
6

10
−

3

10
,
6

11
−

4

11
} =

1

10
 , 

𝜋5(𝑥, 𝑦) = 0, 𝜋6(𝑥, 𝑦) =
2

10
  

For level 𝐿1:  

𝜋1(𝑥, 𝑦) = min1≤𝑘≤3 (𝜋4(𝑥, 𝑦)𝜌4
𝑘 + 𝜋5(𝑥, 𝑦)𝜌5

𝑘 + 𝜋6(𝑥, 𝑦)𝜌6
𝑘)  

= min (
1

10
, 0,

2

10
)

(

 
 
0

1

5

2

9

0
1

5

1

9

1
3

5

6

9)

 
 
=

7

50
  

𝜋2(𝑥, 𝑦) = 0, 𝜋3(𝑥, 𝑦) =
1

7
 

For level 𝐿0:  

𝜋0(𝑥, 𝑦) = min1≤𝑘≤4(𝜋1(𝑥, 𝑦)𝜌1
𝑘 + 𝜋2(𝑥, 𝑦)𝜌2

𝑘 + 𝜋3(𝑥, 𝑦)𝜌3
𝑘)  

= min (
7

50
, 0,

1

7
)

(

 
 

3

19

3

11

1

4
12

19

6

11

2

4
4

19

2

11

1

4

  

1

7
4

7
2

7)

 
 
=

347

6650
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Table 7 

Pairwise dominance values for each criterion
8
. 

Criteria Pair      

 𝜋𝑗(𝑥, 𝑦) 𝜋𝑗(𝑦, 𝑥) 𝜋𝑗(𝑥, 𝑧) 𝜋𝑗(𝑧, 𝑥) 𝜋𝑗(𝑦, 𝑧) 𝜋𝑗(𝑧, 𝑦) 

0 0.052 -0.31 0.018 -0.324 -0.145 -0.108 

1 0.14 -0.38 0 -0.3 -0.2 -0.04 

2 0 -0.3 0.259 -0.5 0.143 -0.286 

3 0.143 -0.233 -0.5 0.188 -0.667 0.375 

4 0.1 -0.3 0.4 -0.5 0.2 -0.3 

5 0 -1 0 -1 0 -0.5 

6 0.2 -0.2 0 0 -0.2 0.2 

7 0 -0.091 -1 0.5 -1 0.5 

8 0.286 -0.375 0 -0.125 -0.333 0.25 

 

Thus, alternative 𝑥 dominates both 𝑦 and 𝑧, based on 𝜋0(𝑥, 𝑦), 𝜋0(𝑥, 𝑧) > 0, but the 

dominance relation between 𝑦 and 𝑧 is undetermined: 

𝑥 → 𝑦, 𝑥 → 𝑧. 

If the proposed method relies on interactions with the decision-maker to obtain a complete 

ranking and s/he is willing to modify preference statements of the alternatives for “Financial 

terms” as in 𝑉2
′, we can obtain a complete ranking of 𝑥 → 𝑧 → 𝑦, based on 𝜋0(𝑥, 𝑦) =

0.196,  𝜋0(𝑥, 𝑧) = 0.000, and 𝜋0(𝑧, 𝑦) = 0.057. 

𝑉2
′ = {𝑣2(𝑦) ≤ 𝑣2(𝑥) ≤ 2𝑣2(𝑦),

1

2
𝑣2(𝑧) ≤ 𝑣2(𝑦) ≤ 𝑣2(𝑧), 2𝑣2(𝑧) ≤ 𝑣2(𝑥), 

𝑣2(𝑥) + 𝑣2(𝑦) + 𝑣2(𝑧) = 1, 𝑣2(𝑥), 𝑣2(𝑦), 𝑣2(𝑧) ≥ 0} 

However, in general, much effort is required to reach such a conclusion, not a single trial like 

this. 

When pairwise dominance fails to provide a full ranking, an alternative approach is to 

perform a simulation analysis. Note that our simulation analysis is quite different from 

                                           
8
 The absolute bounds of the alternatives are computed as [𝐿𝐵0, 𝑈𝐵0] = [0.363, 0.542], [0.202, 0.351], 
[0.214, 0.364] for alternatives 𝑥, 𝑦, 𝑧. See Appendix A for details. 
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previously reported ones, which use random observations generated from each interval ratio 

and then the eigenvector method to derive the local priority vector in the crisp PCMs.
9
 In 

contrast, our simulation analysis chooses the extreme points randomly and perform the AHP 

aggregations using the chosen extreme points, which requires a much smaller number of 

simulation runs. Enumerating all possible combinations of extreme points to see how many 

combinations support each alternative requires the consideration of 5184 different 

combinations for this small example. It is believed that the analysis produces a reliable 

outcome with a much smaller number of simulation runs than required by the enumeration 

method.  

We designed a simulation study as follows. 

1. In this example, the number of extreme points for criteria is small (12 different 

combinations); thus, we considered all of them in the analysis. 

2. For each priority vector of criteria, we randomly selected 10 different combinations of 

priority vectors for alternatives from Table 7, thus yielding a total of 120 simulation runs.
10

 

3. For the local priority vectors for criteria and alternatives chosen, we conducted the AHP 

aggregation to obtain a global priority vector for alternatives. 

The simulation analysis produced the statistical results shown in Table 8. Obviously, 

alternative x outperformed the other two alternatives in terms of the ranges of the global 

priority vectors. Similarly, as was observed in the absolute bounds and pairwise dominance 

values, alternatives 𝑦 and 𝑧 overlap each other. If the purpose of the decision is to 

                                           

9 The computational experiments comparing the proposed approach and simulation-based approaches [32] are 

described in Appendix B. 

10 We also performed the simulation analysis for 5% and 10% of all combinations of extreme points to see what 

proportion of extreme points needs to be sampled in this example. At most 10% of all combinations of extreme 

points was sufficient to infer the superiority of alternatives. See Table 8 for details. 
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determine a full ranking of alternatives, we can record the frequency that one alternative is 

preferred over the other, thus reaching the conclusion that 𝑧 is more frequently preferred to 

𝑦 than 𝑦 to 𝑧 in 120 simulation runs:  

88 counts (𝑧 ≻ y) >  32 counts (y ≻ 𝑧). 

If the frequencies between 𝑦 and 𝑧 were close to each other, unlike this example, it might 

be better to consider the difference between the sum of the global priority weights as a 

measure of the preference strength by computing the sum of global priority weights of 𝑧 for 

the instances of 𝑧 ≻ 𝑦 and that of 𝑦 for the instances of 𝑦 ≻ 𝑧. 

Table 8 

Statistical analysis. 

 Enumeration 120 runs 

(2.3%) 

264 runs 

(5%) 

516 runs 

(10%) 

 x y z x y z x y z x y z 

min. .3633 .2017 .2136 .3655 .2122 .2244 .3633 .2067 .2206 .3655 .2077 .2136 

max. .5420 .3506 .3639 .5184 .3458 .3520 .5264 .3471 .3619 .5420 .3487 .3639 

avg.    .4522 .2624 .2854 .4500 .2627 .2874 .4558 .2600 .2843 

std.    .0410 .0355 .0292 .0426 .0352 .0302 .0414 .0325 .0293 

𝑧 ≻ y      .27
*
 .73  .30 .70  .29 .71 

*: 1 −%(𝑧 ≻ y) 

 

5. Concluding remarks 

In this paper, we presented an AHP-based decision-making method for uncertain judgments 

that include a range of interval ratios: loose articulation, minimum number of interval ratios, 

and general interval ratios. Our approach is distinct from previous studies in several ways. 

First, we deal with interval ratios in a unified framework in which the extreme points of the 
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loose articulation can be obtained by a formula or dual programming approach, and those for 

a minimum number of interval ratios and the general interval ratios can be obtained by a 

simple procedure. 

We also introduced two dominance criteria geared to actively use the extreme points to 

prioritize competing alternatives without solving many LP problems. After applying the 

dominance criteria, we can use an enumeration or a simulation approach to manage situations 

in which the best or a full ranking of alternatives remains unidentified. 

Obviously the efficient and successful derivation of extreme points from different formats of 

interval ratios is a critical point for the development of the proposed method; therefore, the 

underlying assumption is the existence of consistent interval PCMs. To partially handle 

inconsistency, we attempt to identify which interval ratios cause inconsistency while solving 

a system of equations to obtain a set of modified extreme points. Therefore, systematic 

diagnosis of inconsistency and recommendation of a proper (upper or lower) bound for 

resolving inconsistency, which can be accomplished more effectively by developing a DSS 

(decision support system) to better communicate with the decision-maker, is a direction for 

future study. 
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Appendix A 

The data in Table A.1 denote the absolute bounds of the alternatives at each criteria level 

according to the absolute dominance criterion, which leads to the conclusion that 𝑥 

dominates 𝑦 on the basis of 𝐿𝐵0(𝑥) > 𝑈𝐵0(𝑦). The absolute bounds fail to establish 𝑥 

over 𝑧 by a narrow margin, even though the pairwise dominance value in Table 7 establishes 

𝑥 over 𝑧. 

 

Table A.1 

Absolute bounds of alternatives at each criteria level. 

Criteria Alternative 

 x y z 

 𝐿𝐵𝑗 𝑈𝐵𝑗 𝐿𝐵𝑗 𝑈𝐵𝑗 𝐿𝐵𝑗 𝑈𝐵𝑗 

0 0.363 0.542 0.202 0.351 0.214 0.364 

1 0.4 0.56 0.18 0.3 0.258 0.4 

2 0.429 0.6 0.286 0.429 0.1 0.167 

3 0.214 0.341 0.056 0.155 0.521 0.722 

4 0.5 0.6 0.3 0.4 0.091 0.111 

5 0.333 1 0 0.5 0 0.333 

6 0.4 0.4 0.2 0.2 0.4 0.4 

7 0 0.182 0 0.167 0.667 1 

8 0.429 0.5 0.111 0.143 0.375 0.444 
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Appendix B 

We derive a global priority vector for prioritizing alternatives in the AHP problem which is 

characterized by three factors: the number of layers in the hierarchy, the number of criteria in 

each layer, and the number of alternatives. Further, various types of interval ratios in addition 

to these factors need to be considered to compare the proposed approach (extreme point 

approach) with the well-known simulation-based approach [32]. Nevertheless, to obtain a 

partial answer to how similar their priority vectors are, we create two interval PCMs (B.1) 

and (B.2), each of which has a different dimension and level of uncertainty by varying 𝛼. As 

a preliminary study, we set 𝛼 = 0 in (B.1) to make it a crisp consistent PCM and find that 

the extreme point method results in the same priority vector (𝑤1, 𝑤2, 𝑤3) = (0.6, 0.3, 0.1) as 

the eigenvector method. 

(

1

 

[2, 2 + 𝛼]

1  [3, 3 + 𝛼]

1

)   (B.1) 

(

 
 

1

 

[2,4 + 𝛼]

1
 

[3, 5 + 𝛼]

[1
2
, 1 + 𝛼]

1
 

[3, 5 + 𝛼]

[1
2
, 1 + 𝛼]

[1
3
, 1 + 𝛼]

1 )

 
 

   (B.2) 

The interval PCM (B.3) is perfectly consistent and the ranges of local priority vectors 

resulting from two comparing methods are somewhat different as shown in Table B.1 due to 

their dissimilar theoretical backgrounds.  

(

 
 

1

  

[2,4]

1
  

[1, 4]

[1
2
, 1]

1
  

[1
3
, 4]

[1
6
, 1]

[1
3
, 1]

1 )

 
 

   (B.3) 
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Table B.1 

A range of priority weights from extreme point and simulation analysis. 

 Extreme point Simulation analysis
*
 

 min max min max 

w1 0.182 0.571 0.227 0.560 

w2 0.077 0.200 0.080 0.200 

w3 0.111 0.286 0.111 0.265 

w4 0.143 0.545 0.150 0.455 

* The local priority vectors of IR > 0.1 are excluded. 

 

For (B.1) and (B.2), we calculate two summary statistics
11

; sum of average weights 

differences and degree of conformity for 𝛼 varying from 1 to 6. First, the priority vectors 

from the two methods show greater discrepancy as the uncertainty (α) increases in terms of 

the sum of average weights differences, which is computed by 

 ∑ |𝑤𝑖𝐴
𝐸 (𝛼) − 𝑤𝑖𝐴

𝑆 (𝛼)|𝑖  

where 𝑤𝑖𝐴
𝐸 (𝛼) and 𝑤𝑖𝐴

𝑆 (𝛼) are the ith average weight from the extreme point method and 

simulation-based analysis respectively for a given 𝛼. 

Second, the degree of conformity
12

, represented by the following formula, measures the 

degree of overlap between the two intervals:  

𝑑(𝑤𝑖
𝐸(𝛼) > 𝑤𝑖

𝑆(𝛼)) =
𝑚𝑎𝑥(𝑤𝑖𝑈

𝐸 (𝛼)−𝑤𝑖𝐿
𝑆 (𝛼),0)−𝑚𝑎𝑥(𝑤𝑖𝐿

𝐸 (𝛼)−𝑤𝑖𝑈
𝑆 (𝛼),0)

(𝑤𝑖𝑈
𝐸 (𝛼)−𝑤𝑖𝐿

𝐸 (𝛼))+(𝑤𝑖𝑈
𝑆 (𝛼)−𝑤𝑖𝐿

𝑆 (𝛼))
   

where 𝑤𝑖𝐿
𝐸(𝑆)(𝛼) and 𝑤𝑖𝑈

𝐸(𝑆)
(𝛼) are the lower and upper bounds of the ith weight from the 

extreme point method (simulation-based analysis) for a given 𝛼. Figure B.1 depicts the trend 

of degree of conformity from two methods applied to the interval PCM (B.1) over α. It 

shows that the interval of each weight overlaps less and less as α increases, noting that 

                                           

11 The raw data for deriving summary statistics are not included in the paper. 

12 We also call it the degree of preference in Section 3. 
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identical intervals correspond to the degree of conformity of 0.5. 

 

 

Fig. B.1 The trend of degree of conformity over α. 

 

In summary, the local priority vectors from the two methods show much difference in terms 

of the measures used. Further, if we extend this analysis to the global priority vectors, there is 

no apparent reason that we will have comparable consequences for the two methods as the 

global priority vectors are determined by the aforementioned various factors.  

  

0.3
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0.7
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Highlights 

 Interval ratio judgments are classified into three categories in the AHP.  

 They include loose articulation, minimum of ratio bounds, and general type. 

 We develop efficient methods to find their vertexes. 

 The vertexes are utilized to rank the alternatives via dominance or simulation 

analysis. 

 The extreme point-based simulation analysis is advocated if dominance criterion 

fails. 

  




