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Abstract

Wide-spread infrastructures for electric vehicle battery charging stations are essential in

order to significantly increase the implementation of electric vehicles (EVs) in the foreseeable

future. Therefore, we propose a stochastic model and charge scheduling methods for an

EV battery charging system. We utilize a flexible Poisson process with a hidden Markov

chain for modeling the complexity of the time-varying behavior of the EV stream into the

system. Relevant random factors and constraints, which include parking times, requested

amounts of electricity, the number of parking lots (charging facilities), and maximal demand

level, are considered within the proposed stochastic model. Performance measures for the

proposed charge scheduling are analytically derived by obtaining stationary distributions
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of states concerning the number of inbound EVs, waiting time distributions, and the joint

distributions of parking time and electricity charged during random parking times.

Keywords. electric vehicles, battery charging station, stochastic modeling, charge scheduling,

Markov-modulated Poisson process, performance measures.

1 Introduction

Electric vehicles (EVs) are considered to be the most significant green transportation alternative

for the foreseeable future. Recent studies concerning EVs address many aspects, including EV

development, the social impact of substituting fossil-fuel vehicles, and public policy that enables

the spread of EVs. Although government-provided motivation and environmental benefits exist,

EV implementation has not been significantly fast. One of the primary restrictions of the public

spread of EVs is the lack of EV battery charging infrastructures [8, 9, 17]. In conventional

battery charging technology, slow (regular) chargers require an average of three to six hours

in order to fully charge an empty battery for common-size EVs, whereas fast chargers can

substantially reduce the charging time to less than half an hour. However, high-speed charging

facilities incur significantly higher costs and still require substantially more service time than

conventional fuel-based automobile stations. When compared with existing gas stations, the

battery charging time required for even fast charging equipment can be considered too long by

many drivers. Therefore, the efficient operation of battery charging stations is an important

factor in the acceleration of the public spread of EVs.

Some recent publications examine the strategic levels of EV battery charging stations, such

as stochastic demands, optimal locations, and spread [6, 12, 13, 14]. However, analytic or

computational approaches to operational levels, such as system efficiency and charge scheduling

performance, remain relatively unexplored [2, 15, 18].

This paper proposes a more realistic stochastic model for EV battery charging stations. Two

typical charge scheduling methods, the first-in-first-served (FIFO) and processor sharing (PS),
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are considered. The framework for the incoming stream of EVs under the proposed stochastic

model addresses the time-varying behavior of EV arrivals by exploiting a flexible Poisson process

of the Markov-modulated Poisson process (MMPP). Performance measures for the charging

scheduling are analytically derived by obtaining stationary distributions for the states that

account for the status of inbound EVs, waiting time distributions, and joint distributions of

parking time and charged electricity amount during random parking times.

The remainder of this paper is organized as follows. In section 2, we propose a stochastic

framework for the EV changing stations and two charge scheduling methods. In section 3,

we introduce and analytically obtain performance measures of the charge scheduling under the

proposed stochastic system by deriving stationary distributions of the status of EVs in the

parking lot, waiting time distributions and Laplace-Stieltjes transformations of the parking time

and amount of electricity charged during the time an EV is parked. Numerical examples in

section 4 demonstrate some practical interpretations for the proposed system under stochastic

environments. And concluding remarks follow in section 5.

2 Stochastic modeling

2.1 EV charging station

Our scenario represents the likely event that multiple EV drivers arrive a location, such as an

apartment building, department store, or office building, within a given time period and imme-

diately plug in their EVs in order to electrically charge them while they are parked. Although

the primary reason EV drivers enter a station is to park their EVs, these facilities may decide

to provide the additional service of electrical charging because of capacity limitation of EVs’

battery and a substantial growth in EV usage. In this paper, we consider a station for EVs

that has parking spaces, each of which is connected to the EV battery charging facility. An EV

that arrives at the station occupies one parking space, assuming an unoccupied parking space
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exists, and departs the station after a random parking time. The EV leaves the station after the

random parking time, regardless of whether its requested amount of energy has been charged.

If all spaces are already occupied when the EV arrives, it will immediately depart the parking

facility without waiting. After an EV parks in the station, it immediately plugs into an electrical

charger and continues to charge while it is parked. The electrical charge amount requested by

an incoming EV varies according to the EVs situation.

In order to effectively model the EV battery charging station system, we must first summa-

rize the system’s description and the notation used for the main deterministic and stochastic

components.

Parking time (Sn)

The random parking time of the station’s nth incoming EV, denoted by {Sn, n ≥ 1}, is assumed

to have an independent and identical exponential distribution with mean parameter ν−1.

Requested charging electricity amount (Yn)

The amount of electricity requested by the nth incoming EV, which we represent using {Yn, n ≥

1}, is an independent and identical exponential distribution with mean parameter μ−1. The vari-

ables for parking time and requested amount of charging energy are assumed to be stochastically

independent.2

2We consider in this paper only the cases that it is reasonable to assume that parking time and requested

amount of energy are not strongly dependent in EV stations. Dependence assumption could be reasonably

acceptable according to circumstances and types of EVs’ stations. It should also be mentioned that the analytical

analysis for performance measures proposed in this paper will be extremely challenging without the independence

assumption.
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Maximal charging rate

The maximal charging rates for all chargers are equal. Without loss of generality, the maximal

charging rate for an EV is set to be 1. Note that the actual charging rates at specific times can

differ according to the charge scheduling.

Charge amount during time parked (Xn)

The amount of electricity charged for the nth incoming EV while it is parked, denoted by

{Xn, n ≥ 1}, is also stochastically distributed. Note that the amount of electricity charged

satisfies the inequality Xn ≤ min{Sn, Yn}.

Number of battery chargers and parking lots (K)

Slow (regular) EV battery chargers are installed in every parking lot, i.e., the amount of charging

equipments equals the number of parking lots.

Maximum demand level (P )

The voltage constraint of the electricity distribution system, which is a typical voltage regulation

limit specified by many electricity distribution utilities, is used to set a ceiling limit for the

maximum system demand in order to prevent the total power consumption overload produced

by the EVs charging at any given time.3

3Note that random charging activities that do not have ceiling limits for the maximum system demand could

significantly stress the electricity distribution grid by causing severe voltage fluctuations. This also affects the

dispatching suboptimality of the power generation. It degrades system efficiency and economy, and it increases

the likelihood of blackouts due to network overloads [4, 16]. The upper limit of the maximum system demand is

often applied to smart grid systems that facilitate bidirectional communication infrastructures in order to address

these problems.
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2.2 Markov-modulated Poisson process for EV arrival stream

Because the MMPP is widely considered to be a very flexible stochastic framework that can be

used to model unusual events and is a well-defined probabilistic model that can accommodate

the flexibility of stochastic integer inputs, we employ this process in order to characterize the

stochastic inbound process of the arrival of EVs into a battery charging station for our proposed

stochastic model.

An intensity function is the sole rate parameter used to determine the Poisson process. We

suppose that the arrival rate of EVs to a parking lot is governed by the process {J(t) : t ≥ 0}

with values in the set, {1, 2, . . . ,m}, of finite elements that represent m cases for the traffic

circumstances. For i = 1, 2, . . . ,m, we let λi be the arrival rate of EVs to the parking lot

for traffic state i. That is, when J(t) = i, the EV arrival rate is λi at time t. Note that

{J(t) : t ≥ 0} is a continuous time Markov process. Also, note that an EV arrives at the parking

lot according to a doubly stochastic Poisson process with stochastic intensity λJ(t). Here, the EV

arrival process is said to be an MMPP with representation (Q,Λ), where Q is the infinitesimal

generator of continuous time Markov process {J(t) : t ≥ 0}, and Λ ≡ diag(λ1, . . . , λm) is a

Poisson arrival rate matrix according to the traffic situations.

2.3 Charge scheduling

FIFO scheduling

Although every EV can be charged to its maximal charging rate when the number of EVs

charging in the station is less than P , only P EVs should be charged with the maximal charging

rate when the total requested charging amount for the parking lot exceeds the upper limit of

electrical power. As the FIFO rule under stochastic models can be seen for instance in [3, 21], the

selection criterion is simple. The first P EVs to arrive in the parking facility are chosen, and the

remaining EVs wait in the parking lot. From the waiting EVs, the first to arrive is chosen to be

charged when an EV completes its charging or leaves without charging completely. Therefore, in

6



the FIFO scheduling, the EVs in a given parking lot are classified into three categories: charging,

waiting to charge, or remaining in the lot even though their charge is complete.

PS scheduling

The PS scheduling operates similarly to the FIFO scheduling when the total requested EV

charging amount for a given parking lot does not exceed the upper limit of the electrical power.

Once this limit is exceeded, the PS scheduling evenly distributes electrical power to all charging

EVs by sharing the available total voltage. Consequently, each EV charges with a lower maximal

rate. Therefore, the adjusted charging rate for each charging EV is P/n when the number of

charging EVs exceeds P .

3 Performance analysis

3.1 Performance measures

This section discusses the performance measures used for two charge scheduling methods, the

FIFO and PS scheduling, under a flexible stochastic model of EV battery charging stations.

Strategic approaches to the efficient operation of charging stations can be inferred using the

analytic results of our proposed performance measures.

In order to illustrate the mathematical concepts of the performance measures, it is helpful to

analyze the charging station system from the perspective of an arbitrary EV within the system.

When at least one EV is charging in the station at time t = 0, we choose an arbitrary charging

EV and label it the “tagged EV”. Following are the random factors that a tagged EV interacts
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with at the charging station:

S ≡ parking time of the tagged EV,

Y ≡ requested amount of energy from the tagged EV,

X ≡ charged amount of energy for the tagged EV during its parking time S,

J ≡ state of the Markov process J(t) at a time that the tagged EV arrives.

Decision makers may be interested in performance measures of the system such as the proba-

bility that an inbound EV will fully charge while it is parked, and the proportion of the expected

amount of charged energy and the possible maximum charge amount while it is parked. The

probability that an inbound EV will be fully charged during its parking time as the first per-

formance measure, which we represent using pi(y), will be expressed in terms of the conditional

probability with Y = y, S ≥ y and J = i, i.e.,

pi(y) ≡ P(X = y|Y = y,S ≥ y,J = i).

The second measure is the rational expectation of energy consumed considering the time parked

and the requested energy. The ratio of the two conditional expectations X and min{Y,S} when

J = i is defined to be

mi =
E[X|J = i]

E[min{Y,S}|J = i]
.

3.2 Stationary distributions

The stationary distributions of steady states, the waiting time of EVs in parking lots, and

the amount of charging energy while the EVs are parked play important roles when analyzing

the performance measures under the proposed stochastic model. It should be noted that the

stationary probability for steady states is unaffected by the different schemes provided by the

two charge scheduling methods.
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1) Stationary probabilities for steady states

If we let

N(t) = number of EVs that are in charge or waiting for charging at a time t,

L(t) = number of EVs to have completed charging

but be still staying in parking lot at the time t,

then {(N(t), L(t), J(t)) : t ≥ 0} is a continuous time Markov process with (K+1)(K+2)m
2 states.

The state space is

E ≡ {(n, l, j) : n = 0, 1, . . . ,K, l = 0, 1, . . . ,K − n, j = 1, . . . ,m}.

A clarification of the possible state changes of the continuous time Markov process {(N(t), L(t), J(t)) :

t ≥ 0}, and their transition rates follow:

• (n, l, i) → (n + 1, l, i): This transition occurs when an EV arrives at the parking lot and

finds an unoccupied space. Because the EV arrival rate is λi when J(t) = i, the transition

rate from (n, l, i) to (n+ 1, l, i) is λi.

• (n, l, i) → (n− 1, l, i): This transition occurs when an EV that is not fully charged leaves

the parking lot. Each charging EV departs the parking lot with a rate of ν. Therefore,

the transition rate from (n, l, i) to (n − 1, l, i) is nν.

• (n, l, i) → (n− 1, l + 1, i): This transition occurs when an EV completes charging.

– FIFO scheduling: When n ≤ P , the transition rate is nμ, and if n > P , the transition

rate is Pμ.

– PS scheduling: Each EV completes charging with a rate of rnμ given n EVs that are

charging in the parking lot, where rn = min{1, P/n}.

Note that the transition rate from (n, l, i) to (n−1, l+1, i) is nrnμ for both the FIFO and

PS scheduling methods.
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• (n, l, i) → (n, l − 1, i): This transition occurs when a parked EV that has completed

charging departs the parking lot. Each of these EVs departs the parking lot with a rate

of ν. Therefore, the transition rate from (n, l, i) to (n, l − 1, i) is lν.

• (n, l, i) → (n, l, j), i �= j: This transition occurs when J(t) transits from i to j. Hence, the

transition rate from (n, l, i) to (n, l, j) is qij, where qij is the (i, j)th entry of Q.

Given these possible changes of state and their corresponding transition rates provided by

the continuous time Markov process, we can obtain an infinitesimal generator Q̃, which can be

expressed in the lexicographic order:

Q̃ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B0 A0

C1 B1 A1

C2 B2 A2

. . .
. . .

. . .

CK−1 BK−1 AK−1

CK BK

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where An, Bn and Cn are the following matrices.

• Matrix An, with n = 0, 1, . . . ,K − 1, is a (K − n+ 1)m× (K − n)m matrix given by

An =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Λ O · · · O

O Λ · · · O

. . .
. . .

O · · · O Λ

O O · · · O

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (1)
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• Matrix Bn, with n = 0, 1, . . . ,K, is a (K − n+ 1)m× (K − n+ 1)m matrix given by

Bn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

Dn0

νIm Dn1

2νIm Dn2

. . .
. . .

(K − n)νIm Dn,K−n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

in which

Dnk =

⎧⎪⎨
⎪⎩

Q− (nrnμ+ (n + k)ν)Im, if k = K − n,

Q− Λ− (nrnμ+ (n+ k)ν)Im, otherwise,

and, for positive integer k, Ik is the k-dimensional identity matrix.

• Matrix Cn, with n = 1, 2, . . . ,K, is a (K − n+ 1)m× (K − n+ 2)m matrix given by

Cn =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

nνIm nrnμIm

nνIm nrnμIm

. . .
. . .

nνIm nrnμIm

nνIm nrnμIm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

We note that the continuous time Markov process {(N(t), L(t), J(t)) : t ≥ 0} is a level dependent

Quasi-Birth-and-Death (QBD) process. Therefore, we are interested in the stationary proba-

bility that process (N(t), L(t), J(t)) remains at (n, l, j). We denote this stationary probability

using πnlj, i.e.,

πnlj = lim
t→∞P

(
(N(t), L(t), J(t)) = (n, l, j)

)
.

If we let

πnl = (πnl1, . . . , πnlm), n = 0, 1, . . . ,K, l = 0, 1, . . . ,K − n,

πn = (πn0, . . . ,πn,K−n), n = 0, 1, . . . ,K, and

π = (π0, . . . ,πK),
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then π is the stationary probability vector of the continuous time Markov process {(N(t), L(t), J(t)) :

t ≥ 0}. Moreover, this stationary probability vector π can be calculated using the matrix ana-

lytic method [7, 10, 11]. Given the level dependent QBD structure of infinitesimal generator Q̃,

stationary probability vector π can be obtained by defining a matrix Gn, with n = 0, 1, . . . ,K−1,

to be

G0 = −B−1
0 A0, (2)

Gn = −(Bn + CnGn−1)
−1An, n = 1, 2, . . . ,K − 1, (3)

and letting βK be the unique m-dimensional row vector that satisfies

βK(BK + CKGK−1) = 0 and βK1 = 1, (4)

where 1 and 0 are column vectors of appropriate size whose components are all ones and zeros,

respectively, in which row vectors βn are

βn = −βn+1Cn+1(Bn + CnGn−1)
−1, n = K − 1,K − 2, . . . , 1, (5)

β0 = −β1C1(B0)
−1. (6)

Therefore, the stationary probability can be obtained from the following theorem.

Theorem 1. The stationary probability vector π = (π0,π1, . . . ,πK) can be expressed by nor-

malizing vector (β0,β1, . . . ,βK) as follows:

πn =
1∑K

k=0 |βk|
βn, (7)

where |βk| is the l1-norm of βk.

In order to have further examination of steady states, we must also introduce a loss proba-

bility. When an arriving EV finds all parking spaces already occupied, an EV may immediately

depart the station without waiting. In this case, we say that the EV is lost. The loss probability

12



for an arbitrary EV that arrives when process J(t) is at i can easily be obtained using the

stationary probability.4

Furthermore, if κ ≡ (κ1, . . . , κm) is the stationary probability vector of the continuous time

Markov process {J(t) : t ≥ 0}, i.e., κQ = 0 and κ1 = 1, then the effective (average) EV arrival

rate λ can be obtained from λ ≡ κΛ1, in which 1 is the m-dimensional column vector with 1 in

every entry.

Lemma 1. The loss probability, denoted by plossi , that an arbitrary EV which arrives when

process J(t) is at i, will immediately leave without parking can straightforwardly be obtained:

plossi =
1

κi

K∑
n=0

πn,K−n,i . (8)

The loss probability plossi is important as a required quantity to derive performance measures

pi(y) and mi for both the FIFO and PS scheduling methods. Note that the loss probability plossi ,

which is expressed as a weighted average of the stationary distributions for steady states, can

be determined from capability and status of the parking facility in the EV station, but not from

charge scheduling or status of incoming EVs.

4Note that if we define a new continuous Markov process, the loss probability can be derived differently.

Consider a continuous time Markov process {(N(t) + L(t), J(t)) : t ≥ 0}, which has (K + 1)m states with an

infinitesimal generator Q̂, provided by

Q̂ =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

B̂0 Â0

Ĉ1 B̂1 Â1

Ĉ2 B̂2 Â2

. . .
. . .

. . .

ĈK−1 B̂K−1 ÂK−1

ĈK B̂K

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

,

where Ân = Λ, B̂n = Q −min{n, P}μIm − Λ and Ĉn = min{n, P}μIm. Because ψni =
∑n

l=0 πl,n−l,i, we can let

ψni be the stationary probability of {(N(t) + L(t), J(t)) : t ≥ 0}, plossi = φKi/κi.
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2) Conditional waiting time distribution for the FIFO scheduling

In addition to the stationary probabilities for steady states, we also consider the following

random factors, which affect the tagged EV under the systems circumstances.

W = waiting time of the tagged EV for charging,

N0 = number of EVs that are in charge or waiting for charging

at the time that the tagged EV arrives.

We see that W + X ≤ S, and

X d
=

⎧⎪⎨
⎪⎩

Eν+μ if W < S,

0 if W ≥ S,
(9)

in which Eλ is exponentially distributed with mean λ−1 and
d
= denotes the equality in distribu-

tion. The probability that waiting time W of the tagged EV remains under the parking time S is

the primary interest of this subsection. Since {W < S} and J are independent, the conditional

waiting time distribution is expressed in terms of products of two probabilities of waiting time

and number of EVs that are in charge or waiting for charging, that is,

P(W < S|J = i) =

K−1∑
n=0

P(W < S|J = i,N0 = n)P(N0 = n|J = i)

=
K−1∑
n=0

P(W < S|N0 = n)P(N0 = n|J = i). (10)

Since, when N0 ≤ P − 1, the tagged EV can be charged immediately after arriving the charging

station, i.e., W = 0, X is identical to min{S,Y} with exponential distribution with mean

(ν + μ)−1. And in the case of N0 ≥ P , the tagged EV in FIFO scheduling should wait for

charging until all the EVs in the queue that arrived before the tagged EV start to be charged.

We further denote τ̂n and τ̃ a first passage time that the number of EVs which arrive earlier

than the tagged EV, but are still waiting for charging becomes n, and waiting time that the
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tagged EV starts to be charged if N0 = P and S = ∞, respectively, i.e.,

τ̂n = inf{t ≥ 0 : there exist n number of EVs that arrive earlier than the tagged EV,

but are still waiting for charging},

τ̃ = W, given N0 = P and S = ∞.

Note that a probability that the waiting time is less than a parking time when N0 = n, denoted

by wn, i.e.,

wn = P(W < S|N0 = n) = P(τ̃ + τ̂0 < S|N0 = n),

can be obtained from the following recursive relationship between the waiting time and the first

passage time

wn = P(τ̂n−P−1 < S|N0 = n)wn−1 for n > P,

and wP = P (μ+ν)
P (μ+ν)+ν becauseW d

=EP (μ+ν). Therefore, using P(τ̂n−1 < S|N0 = n) = P (μ+ν)+nν
P (μ+nu)+nν+ν

for n ≥ 1 from τ̂n−1
d
=EnP (μ+ν) when N0 = n, the waiting time wn can be explicitly determined

as

wn =

⎧⎪⎨
⎪⎩

1 for n < P,

P (μ+ν)
Pμ+nν+ν for n ≥ P.

(11)

And the probability of number of EVs that are in charge or waiting for charging under the

stochastic environment J = i is easily obtained by making use of the conditional Poisson arrivals

see time averages (conditional PASTA) property;

P(N0 = n|J = i) =
1

κi(1− plossi )

∑
0≤l≤K−1−n

πnli. (12)

Finally, on substituting (12) and (11) into (10), the probability that the tagged EV is served

before leaving when J = i can be obtained in the following theorem.

Theorem 2. The probability that the tagged EV is served before leaving when J = i is given by

P(W < S|J = i) =
1

κi(1− plossi )

( ∑
0≤n<P

0≤l<K−n

πnli +
∑

P≤n<K
0≤l<K−n

πnli
P (μ+ ν)

Pμ+ nν + ν

)
. (13)
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3) Conditional joint distribution of X and S for the PS scheduling

In order to obtain the performance measures of the PS scheduling, we must derive the conditional

joint distribution of charged amount of energy and parking time. We further denote

Ỹ ≡ remained charging amount from the requested amount of energy by the tagged EV,

σ ≡ epoch that the tagged EV departs the parking lot,

χ(t1, t2) ≡ charged amount of energy during [t1, t2] for the tagged EV.

We can also define the joint stationary distribution of the charged amount and parking time and

its Laplace-Stieltjes transform, which are represented by Φnli(x, s) and φnli(w, z), respectively,

to be

Φnli(x, s) = P(χ(0, σ) ≤ x, σ ≤ s|N(0) = n,L(0) = l, J(0) = i, Ỹ = ∞),

and

φnli(w, z) ≡
∫ ∞

0

∫ ∞

0
e−wx−zsΦnli(dx, ds),

= E[e−wχ(0,σ)−zσ|N(0) = n,L(0) = l, J(0) = i, Ỹ = ∞]

where n = 1, 2, . . . ,K, l = 0, 1, . . . ,K − n, i = 1, . . . ,m. In order to derive φnli(w, z), we

introduce a first passage time τn

τn ≡ inf{t > 0 : N(t) = n}, n = 1, 2, . . . ,K.

Henceforth, we use τK+1 ≡ ∞ for notation convenience. Given n = 1, 2, . . . ,K − 1, let G∗
n(w, z)

be the (K − n+ 1)m× (K − n)m matrix whose ((l, i), (k, j))th entry is given by

(G∗
n(w, z))(l,i),(k,j)

≡ E[e−wχ(0,τn+1)−zτn+1�{τn+1<σ,L(τn+1)=k,J(τn+1)=j} | N(0) = n,L(0) = l, J(0) = i, Ỹ = ∞],

0 ≤ l ≤ K−n, 0 ≤ k ≤ K−n−1, 1 ≤ i, j ≤ m. Furthermore, if n = 1, 2, . . . ,K, we let h∗
n(w, z)

signify a (K − n+ 1)m-dimensional column vector whose (l, i)th component is

(h∗
n(w, z))(l,i) ≡ E[e−wχ(0,σ)−zσ

�{τn+1≥σ} | N(0) = n,L(0) = l, J(0) = i, Ỹ = ∞],
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0 ≤ l ≤ K − n, 1 ≤ i ≤ m. Consequently, G∗
n(w, z) and h∗

n(w, z) can be recursively calculated

using the following proposition.

Proposition 1. Given complex number (w, z) with Re(w, z) ≥ 0, matrix G∗
n(w, z) and column

vector h∗
n(w, z) are provided by

G∗
1(w, z) =

(
(wr1 + z)IKm −B∗

1

)−1
A1, (14)

G∗
n(w, z) =

(
(wrn + z)I(K−n+1)m −B∗

n − C∗
nG

∗
n−1(w, z))

−1An, n = 2, 3, . . . ,K − 1, (15)

h∗
1(w, z) = ν

(
(wr1 + z)IKm −B∗

1

)−1
1, (16)

h∗
n(w, z) =

(
(wrn + z)I(K−n+1)m −B∗

n − C∗
nG

∗
n−1(w, z)

)−1
(ν1+ C∗

nh
∗
n−1(w, z)),

n = 2, 3, . . . ,K, (17)

where An is the (K−n+1)m×(K−n)m matrix given by (1), B∗
n is a (K−n+1)m×(K−n+1)m

matrix given by

B∗
n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

D∗
n0

νIm D∗
n1

2νIm D∗
n2

. . .
. . .

(K − n)νIm D∗
n,K−n

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

with

D∗
nk =

⎧⎪⎨
⎪⎩

Q− ((n − 1)rnμ+ (n+ k)ν)Im, if k = K − n,

Q− Λ− ((n− 1)rnμ+ (n+ k)ν)Im, if 1 ≤ k ≤ K − n− 1,
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and C∗
n is a (K − n+ 1)m× (K − n+ 2)m matrix given by

C∗
n =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

(n− 1)νIm (n− 1)rnμIm

(n− 1)νIm (n− 1)rnμIm

. . .
. . .

(n− 1)νIm (n− 1)rnμIm

(n− 1)νIm (n − 1)rnμIm

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

Proof. The proof of this is provided in Appendix A.

We are finally able to obtain the Laplace-Stieltjes transform φ(w, z) using the following theorem.

Theorem 3. Given complex number (w, z) with Re(w, z) ≥ 0, the vector representation of the

Laplace-Stieltjes transforms of the stationary distributions for charged amount φn(w, z) can be

recursively obtained:

φK(w, z) = h∗
K(w, z), (18)

φn(w, z) = h∗
n(w, z) +G∗

n(w, z)φn+1(w, z), n = K − 1,K − 2, . . . , 1, (19)

where φnl(w, z) = (φnl1(w, z), . . . , φnlm(w, z))�, n = 1, 2, . . . ,K, l = 0, 1, . . . , L− n,

and φn(w, z) = ((φn0(w, z))
�, . . . , (φn,K−n(w, z))

�)�, n = 1, 2, . . . ,K.

Proof. The proof of this can be found in Appendix B.

3.3 Calculating performance measures

In order to obtain the performance measures for the FIFO scheduling, we present the following

theorem.

Theorem 4. In the FIFO scheduling, the performance measures are obtained as follows:

1. The conditional probability pi(y) given Y = y, S ≥ y and J = i is obtained as

pi(y) =
1

κi(1− plossi )

( ∑
n<P

0≤l<K−n

πnli +
∑

P≤n<K
0≤l<K−n

πnli
P (μ + ν)

Pμ+ nν + ν

)
.
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2. The expectation of X given J = i is given by

E[X|J = i] =
1

κi(1− plossi )

1

ν + μ

( ∑
n<P

0≤l<K−n

πnli +
∑

P≤n<K
0≤l<K−n

πnli
P (μ + ν)

Pμ+ nν + ν

)
.

Therefore, we have

mi =
1

κi(1− plossi )

( ∑
n<P

0≤l<K−n

πnli +
∑

P≤n<K
0≤l<K−n

πnli
P (μ + ν)

Pμ+ nν + ν

)
.

Proof. Because P (X ≥ y | Y = y,J = i) = P (X ≥ y | Y = ∞,J = i), the performance measure

pi(y) can be written as

pi(y) =
P(X = y,S ≥ y | Y = y,J = i)

P(S ≥ y | Y = y,J = i)

=
P(X ≥ y | Y = y,J = i)

P(S ≥ y)

= eνyP(X ≥ y | Y = ∞,J = i)

= eνyP(X ≥ y,W < S | Y = ∞,J = i)

= eνyP(X ≥ y | W < S,Y = ∞,J = i)P(W < S | Y = ∞,J = i) .

And, because X is exponentially distributed with mean ν−1 when Y = ∞ and W < S, and

{Y = ∞} and W < S are independent, the conditional probability pi(y) becomes identical to

the conditional waiting time distribution in Theorem 2;

pi(y) = P(W < S | Y = ∞,J = i)

= P(W < S | J = i).

Moreover, given (9), we can calculate the following expectation:

E[X|J = i] = E[Eν+μ|W < S,J = i]P(W < S|J = i)

=
1

ν + μ
P(W < S|J = i).

and

E[min(Y, S)|J = i] =
1

ν + μ
.

Therefore, mi = pi(y) = P(W < S|J = i) in the FIFO scheduling. The proof is completed.
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In order to analyze the PS scheduling, we need to establish a conditional probability. This

probability represents the tagged EVs request of energy amount Y = y in the J = i environment

of an inbound stream that can charge up to energy amount X = x within the time parked S = s.

This conditional probability can be expressed as

Fi(x, s|y) = P(X ≤ x,S ≤ s|Y = y,J = i).

=

⎧⎪⎨
⎪⎩

Fi(x, s|∞) if x < y,

1− e−νs if x ≥ y.

(20)

Because (X ,Y,S,J ) and (χ(0, σ), Ỹ , σ, J(0)) have the same distribution when applying the PS

scheduling, Fi(x, s|∞) can be expressed as

Fi(x, s|∞) = P(X ≤ x,S ≤ s|Y = ∞,J = i)

= P(χ(0, σ) ≤ x, σ ≤ s|Ỹ = ∞, J(0) = i) .

Therefore, Fi(x, s|∞) can be obtained by employing the stationary distributions πnli and Φn+1,l,i(x):

Fi(x, s|∞) =
1

κi(1− plossi )

K−1∑
n=0

K−n−1∑
l=0

πnli Φn+1,l,i(x). (21)

It should be noted that the Laplace-Stieltjes transform of conditional distribution Fi(x, s|∞)

substantially helps us determine the explicit functional expressions of the proposed performance

measures. We define the Laplace-Stieltjes transform of conditional distribution Fi(x, s|∞) to be

fi(w, z|∞) ≡
∫ ∞

0

∫ ∞

0
e−wx−zsFi(dx, ds|∞),

= E[e−wχ(0,σ)−zσ|J(0) = i, Ỹ = ∞], i = 1, . . . ,m.

Finally, we have the following proposition for the Laplace-Stieltjes transformation of conditional

distribution Fi(x, s|∞) based on the results of equations (14)-(19) by utilizing concept of the

Laplace-Stieltjes transformation method for waiting time distributions in queueing models [5].

Proposition 2. The Laplace-Stieltjes transform of Fi(x, s|∞) is given by

fi(w, z|∞) =
1

κi(1 − plossi )

K−1∑
n=0

K−n−1∑
l=0

πnliφn+1,l,i(w, z) (22)
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for complex numbers w and z with Re(w),Re(z) ≥ 0, where φnli(w, z) is obtained using (18)

and (19) with G∗
n(w, z) and h∗

n(w, z), which can be determined using (14)-(17).

Conditional distribution Fi(x, s|∞) can be calculated using the numerical inversion of Laplace-

Stieltjes transform fi(w, z|∞). Many numerical inversion algorithms for Laplace transforms have

been developed in order to obtain probability distributions in stochastic models. The survey

presented by [1], indicates that the Gaver-Stehfest, Euler, and Talbot algorithms are some of

the popular one dimensional inversion techniques. Furthermore, given the Fourier-series method

based on the Euler summation, we expect the Euler algorithm to adequately calculate the con-

ditional distribution Fi(x, s|∞) by exploiting its Laplace-Stieltjes transform fi(w, z|∞), which

was presented in Proposition 2. The inversion formula of the Euler algorithm is

Fi(x, s|∞) ≈ 1

xs

nk∑
k=0

nj∑
j=0

Re
{
ωkfi(

αk

x
,
βj
s
|∞)

}
, 0 < x, s < ∞, (23)

where weights ωk and nodes αk and βj are complex numbers, which depend on n, but do not

depend on the transform fi, x or s.5 The weights ωk and nodes αk and βk are needed to specify

according to the desirable error bound. More details can be found in [19] and [20].

Finally, applying the previously proposed theorems, lemma, and propositions allows us to

calculate the measures of the PS scheduling according to the following theorem.

Theorem 5. In the PS scheduling, the performance measures are obtained as follows:

1. The conditional probability pi(y) when Y = y, S ≥ y and J = i, is given by

pi(y) = eνy
(
1− Fi(y,∞|∞)

)
.

5Because we only need Fi(x,∞|∞) in order to obtain the performance measures in Theorem 5, one-dimensional

Euler-Laplace inversion, which is described in the following formula, is necessary:

Fi(x,∞|∞) ≈ 1

x

nk∑
k=0

Re
{
ω̃kfi(

α̃k

x
, 0|∞)

}
, 0 < x <∞, (24)

in which weights ω̃k and nodes α̃k are complex numbers that depend on n but not on the Laplace transform fi

or variable x.
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2. The expectation of X given J = i is given by

E[X|J = i] =
1− fi(μ, 0|∞)

μ
.

Therefore, we have the rational expectation

mi =
μ+ ν

μ
(1− fi(μ, 0|∞)).

Proof. Performance measure pi(y) can be rewritten in terms of a conditional distribution Fi(y,∞|∞);

pi(y) =
P(X = y,S ≥ y | Y = y,J = i)

P(S ≥ y | Y = y,J = i)

=
P(X ≥ y | Y = y,J = i)

P(S ≥ y)

= eνy
(
1− Fi(y,∞|∞)

)
.

For mi, we have

E[X|J = i] = E[X�{X=Y}|J = i] + E[X�{X<Y}|J(0) = i]

=

∫ ∞

0
μe−μy

E[y�{X=y}|J = i,Y = y]dy

+

∫ ∞

0
μe−μy

E[X�{X<y}|J = i,Y = y]dy. (25)

In addition, the first term in the right-hand side of (25) can be written as

∫ ∞

0
μe−μy

E[y�{X=y}|J = i,Y = y]dy

=

∫ ∞

0
μye−μy

E[�{X≥y}|J(0) = i,Y = ∞]dy

= E[

∫ X

0
μye−μydy|J(0) = i,Y = ∞]

= E[−X e−μX +
1− e−μX

μ
|J = i,Y = ∞]

= −
∫ ∞

0
e−μxxFi(dx,∞|∞) +

1− fi(μ, 0|∞)

μ
(26)
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Moreover, the second term in the right-hand side of (25) can be written as

∫ ∞

0
μe−μy

E[X�{X<y}|J = i,Y = y]dy

=

∫ ∞

0
μe−μy

E[X�{X<y}|J = i,Y = ∞]dy

=

∫ ∞

0
μe−μy

∫ y

0
xdFi(dx,∞|∞)dy

=

∫ ∞

0

∫ ∞

x
μe−μydyxdFi(dx,∞|∞)

=

∫ ∞

0
e−μxxdFi(dx,∞|∞). (27)

Substituting (26) and (27) into (25) provides

E[X|J(0) = i] =
1− fi(μ, 0|∞)

μ
.

Therefore

mi =
μ+ ν

μ
(1− fi(μ, 0|∞)).

This completes the proof.

4 Numerical Examples

In this section, we perform numerical examples to demonstrate the practical interpretations via

comparing the two proposed charge scheduling methods from the various aspects of the flexible

stochastic modeling. The useful view points will be discussed in terms of each incoming EV, the

operations of a charging station, and two performance measures.

We consider a simple case with the parameters

Q =

⎡
⎢⎣ −0.25 0.25

0.1 −0.1

⎤
⎥⎦ , Λ =

⎡
⎢⎣ 5 0

0 1

⎤
⎥⎦ , μ =

1

4
, ν =

1

6
.

Note from λ1 = 5 and λ2 = 1 that the five times as many as EVs on average arrive the

charging station when the traffic circumstance J(0) = 1, compared with the case in which

J(0) = 2. Once the loss probability plossi , the stationary distribution πnli and the conditional
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distribution Fi(y,∞|∞) are calculated, the conditional probability measure pi(y) = P(X =

y|Y = y,S ≥ y,J = i) can be numerically obtained. Note again the rational expectation

measure mi = pi(y) = P(W < S|J = i) in the FIFO scheduling.

Figure 1 plots the performance measure pi(y) of the FIFO and the PS charge scheduling

methods with respect to the requested charging electricity amount Y = y when the number of

chargers and the maximum demand level are 30 and 5, respectively, i.e., K = 30 and P = 5.

It is seen from the left panel of Figure 1 that in the case of J(0) = 1, while the conditional

probability measure pi(y) for the FIFO rule is constant because it is independent of the requested

charging electricity amount Y = y, the conditional probability measure pi(y) for the PS rule is

a decreasing function. The PS charge scheduling is superior to the FIFO charge scheduling up

to a certain point of the requested charging electricity amount, but after the certain point, the

FIFO charge scheduling outperforms to the PS charge scheduling. The right panel of Figure 1

shows that the switching point that the FIFO charge scheduling starts to be superior to the PS

charge scheduling becomes greater in the traffic circumstance J(0) = 2 that relatively fewer EVs

arrive. In addition, Figure 2 shows the performance comparison between the FIFO and the PS

scheduling methods when the maximum demand level P increases to be P = 10. The switching

points when P = 10 become greater than those when P = 5 in both stochastic circumstances

of J(t) = 1, 2. It should be noted that interestingly, unlike when P = 5, the switching point

in J(0) = 1 is bigger than the switching point in J(0) = 2. Therefore, it is observed that the

uniform superiority between the FIFO and the PS charge scheduling methods doesn’t exist.

The superiority depends on many circumstances such as the capacity of a charging station, the

requested charging electricity amounts and the stochastic incoming environment.

Now, consider the operational aspects of a charging station with respect to the change of

the maximum demand level P . Figure 3 shows that there also exist switching points for the

superiority of the FIFO and the PS charge scheduling methods. The FIFO charge scheduling

is superior to the PS charge scheduling only when the maximum demand level P is lower than
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Figure 1: The conditional probability measure pi(y) with respect to Y when P = 5 and K = 30.
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Figure 2: The conditional probability measure pi(y) with respect to Y when P = 10 andK = 30.
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a certain switching point, and after the maximum demand level P gets higher than the certain

switching point, the PS charge scheduling outperforms to the PS charge scheduling. It is also

interesting that the switching point of the maximum demand level P becomes lower when the

number of EVs in charge is stochastically smaller. It is seen once again that the uniform

superiority between the FIFO and the PS charge scheduling methods doesn’t exist. Therefore,

we suggest that practitioners need find optimal charging strategies depending on their own

circumstances and goal functions. It should also be mentioned that, when a charging station

makes a contract with an electricity distribution company, the optimal maximal demand level

can be determined on the basis of the proposed stochastic model and its performance analysis.

Lastly, Figure 4 shows that the rational expectation measure mi of the FIFO and the PS

charge scheduling methods is very close, from which one should note that, although the rational

expectation measure mi should be useful to quantify the performance of a charging station,

it is limited to characterize the performance differences between the FIFO and the PS charge

scheduling methods.

5 Concluding remarks

We proposed a realistic stochastic model for EV battery charging stations and analyzed perfor-

mance measures of two typical charge scheduling methods: the first-in-first-served (FIFO) and

the processor sharing (PS). After obtaining stationary distribution for steady states and some

conditional distributions, we then derived two performance measures for the charge scheduling

methods: the probability of fully charging within the system and the rational expectation of

the charged energy given the parking time and requested energy. Furthermore, we employed

a flexible Poisson process of a Markov-modulated Poisson process for an incoming stream of

EVs under the proposed stochastic model, which incorporates the time-varying behavior of EV

arrivals into the parking lot.

Strategic approaches to the efficient operation of charging stations can be inferred using the
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Figure 3: The conditional probability measure pi(4) with respect to P when K = 30.
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Figure 4: The rational expectation measure mi with respect to P when K = 30.
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analytic results of our proposed performance measures. The results of this research may be of

interest when developing the strategic operations of charging stations in the likely event that

numerous EV drivers will frequent apartment buildings, department stores, or office buildings

within a certain time period and immediately plug in their EVs in order to charge during their

visit. Parameters of the random factors and constraints of the proposed model can be estimated

or modified according to the real charging station environment. Modifications based on two

typical charge scheduling methods can also be considered, and their performance analyses can

be conducted accordingly.

Many other issues can also be addressed in future research. For example, strategic operational

decisions, such as the optimal number of fast chargers to use when both fast and slow charging

equipment are available to install or the impact of energy storage systems. Designing scheduling

methods that include the cost of the charging system and the satisfaction of EV drivers could

also be valuable. Because the unit cost of the electricity consumed in the charging station

fluctuates according to the change in electricity price at the charging time, especially during

peak demand, a cost-benefit analysis for EV charging stations connected to smart grid system

could also be of interest. This situation, which we call “demand response”, will likely be realized

in many countries in the near future.
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APPENDICES

A Proof of Proposition 1

For the process {(N(t), L(t), J(t) : t ≥ 0}, let t0 be the first transition epoch out of the initial

state , i.e., let

t0 = inf{t > 0 : (N(t), L(t), J(t)) �= (N(0), L(0), J(0))}.

Let U be defined as

U ≡

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

1 if the tagged EV departs the parking lot at t0,

2 if an EV in charge, excluding the tagged one,

departs the parking lot at t0,

3 if an EV in charge, excluding the tagged one,

completes charging its requested amount at t0,

4 if an EV in park departs the parking lot at t0,

5 if J(t) transits at t0,

6 if an EV arrives at the parking lot at t0,

and

Enli[·] = E[·|N(0) = n,L(0) = l, J(0) = i, Ỹ = ∞].
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For 1 ≤ n ≤ K − 1, 0 ≤ l ≤ K − n, 0 ≤ k ≤ K − n+ 1, 1 ≤ i, j ≤ m,

(G∗
n(w, z))(l,i),(k,j) =

6∑
u=1

P(U = u | N(0) = n,L(0) = l, J(0) = i, Ỹ = ∞)

×Enli[e
−wχ(0,τn+1)−zτn+1�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}|U = u]

=

6∑
u=1

P(U = u | N(0) = n,L(0) = l, J(0) = i, Ỹ = ∞)

×Enli[e
−wχ(0,t0)−zτ0�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}|U = u]

×Enli[e
−wχ(t0,τn+1)−z(τn+1−t0)�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}|U = u],

(28)

where the last equality follows from the fact that
(
χ(0, t0), t0

)
and

(
χ(t0, τn+1), τn+1 − t0

)
are

independent, given {N(0) = n,L(0) = l, J(0) = i, Ỹ = ∞, U = u}. Given {N(0) = n,L(0) =

l, J(0) = i, Ỹ = ∞}, t0 has the exponential distribution with mean
(
(n− 1)rnμ+(n+ l)ν+(1−

δn+l,K)λi − qii
)−1

and is independent of U , where δij is the Kronecker delta. Hence,

Enli[e
−wχ(0,t0)−zt0�{τn+1<σ,L(τn+1)=k,J(τn+1)=j} | U = u]

= Enli[e
−(wrn+z)t0 | U = u]

=
anli

rnw + z + anli
, (29)

where anli = (n− 1)rnμ+(n+ l)ν+ (1− δn+l,K)λi − qii. Furthermore, given {N(0) = n,L(0) =

l, J(0) = i, Ỹ = ∞}, U has the distribution:

P(U = 1 | N(0) = n,L(0) = l, J(0) = i, Ỹ = ∞) =
ν

anli
; (30)

P(U = 2 | N(0) = n,L(0) = l, J(0) = i, Ỹ = ∞) =
(n− 1)ν

anli
; (31)

P(U = 3 | N(0) = n,L(0) = l, J(0) = i, Ỹ = ∞) =
(n− 1)rnμ

anli
; (32)

P(U = 4 | N(0) = n,L(0) = l, J(0) = i, Ỹ = ∞) =
lν

anli
; (33)

P(U = 5 | N(0) = n,L(0) = l, J(0) = i, Ỹ = ∞) =
−qii
anli

; (34)

P(U = 6 | N(0) = n,L(0) = l, J(0) = i, Ỹ = ∞) =
(1− δn+l,K)λi

anli
. (35)
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Now we deal with the conditional expectation

Enli[e
−wχ(t0,τn+1)−z(τn+1−t0)�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}|U = u]

separately for u = 1, 2, . . . , 6:

• If N(0) = n,L(0) = l, J(0) = i, Ỹ = ∞ and U = 1, then t0 = σ. Hence

Enli[e
−wχ(t0,τn+1)−z(τn+1−t0)�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}|U = 1] = 0. (36)

• If N(0) = n, n ≥ 2, L(0) = l, J(0) = i, Ỹ = ∞ and U = 2, then N(t0) = n − 1, L(t0) = l

and J(t0) = i. Hence by the Markov property

Enli[e
−wχ(t0,τn+1)−z(τn+1−t0)�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}|U = 2]

= En−1,l,i[e
−wχ(0,τn+1)−zτn+1�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}].

Given N(0) = n−1, τn < τn+1 and (χ(0, τn), τn) is independence of (χ(τn, τn+1), τn+1−τn).

Therefore the above equation can be written as

Enli[e
−wχ(t0,τn+1)−z(τn+1−t0)�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}|U = 2]

=

K−n∑
l′=0

m∑
i′=1

En−1,l,i[e
−wχ(0,τn)−zτn�{τn<σ,L(τn)=l′,J(τn)=i′}]

×E[e−wχ(τn,τn+1)−z(τn+1−τn)�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}|N(τn) = n,L(τn) = l′, J(τn) = i′, Ỹ = ∞]

=
K−n∑
l′=0

m∑
i′=1

En−1,l,i[e
−wχ(0,τn)−zτn�{τn<σ,L(τn)=l′,J(τn)=i′}]

×Enl′i′ [e
−wχ(0,τn+1)−zτn+1�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}]

=

K−n∑
l′=0

m∑
i′=1

(G∗
n−1(w, z))(l,i),(l′ ,i′)(G

∗
n(w, z))(l′ ,i′),(k,j) =

(
G∗

n−1(w, z)G
∗
n(w, z)

)
(l,i),(k,j)

. (37)

• If N(0) = n ≥ 2, L(0) = l, J(0) = i, Ỹ = ∞ and U = 3, then N(t0) = n− 1, L(t0) = l + 1
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and J(t0) = i. Hence by the Markov property,

Enli[e
−wχ(t0,τn+1)−z(τn+1−t0)�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}|U = 3]

= E[e−wχ(t0,τn+1)−z(τn+1−t0)�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}

|N(t0) = n− 1, L(t0) = l + 1, J(t0) = i, Ỹ = ∞, U = 3]

= E[e−wχ(0,τn+1)−zτn+1�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}|N(0) = n− 1, L(0) = l + 1, J(0) = i, Ỹ = ∞]

= En−1,l+1,i[e
−wχ(0,τn+1)−zτn+1�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}].

By using the same way as (37), we obtain

Enli[e
−wχ(t0,τn+1)−z(τn+1−t0)�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}|U = 3]

=
(
G∗

n−1(w, z)G
∗
n(w, z)

)
(l+1,i),(k,j)

. (38)

• If N(0) = n,L(0) = l, l ≥ 1, J(0) = i, Ỹ = ∞ and U = 4, then N(t0) = n, L(t0) = l − 1

and J(t0) = i. Hence

Enli[e
−wχ(t0,τn+1)−z(τn+1−t0)�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}|U = 4]

= E[e−wχ(t0,τn+1)−z(τn+1−t0)�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}|N(t0) = n,L(t0) = l − 1, J(t0) = i, Ỹ = ∞]

= En,l−1,i[e
−wχ(0,τn+1)−zτn+1�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}]

= (G∗
n(w, z))(l−1,i),(k,j). (39)

• If N(0) = n,L(0) = l, J(0) = i, Ỹ = ∞ and U = 5, then N(t0) = n, L(t0) = l and

J(t0) �= i. Hence

Enli[e
−wχ(t0,τn+1)−z(τn+1−t0)�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}|U = 5]

=
∑
i′ 	=i

P(J(t0) = i′|N(0) = n,L(0) = l, J(0) = i′, Ỹ = ∞, U = 5)

×E[e−wχ(t0,τn+1)−z(τn+1−t0)�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}|N(t0) = n,L(t0) = l, J(t0) = i′, Ỹ = ∞]

=
1

−qii

∑
i′ 	=i

qii′Enli′ [e
−wχ(0,τn+1)−zτn+1�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}]

=
1

−qii

∑
i′ 	=i

qii′(G
∗
n(w, z))(l,i′),(k,j). (40)
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• If N(0) = n,L(0) = l, J(0) = i, Ỹ = ∞ and U = 6, then t0 = τn+1 < σ. Hence

Enli[e
−wχ(t0,τn+1)−z(τn+1−t0)�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}|U = 6] = 1. (41)

Substituting (29)-(41) into (28) yields, for n = 1, 2, . . . ,K − 1,

(G∗
n(w, z))(l,i),(k,j) =

1

rnw + z + anli

(
(n− 1)ν(G∗

n−1(w, z)G
∗
n(w, z))(l,i),(k,j)

+(n− 1)rnμ(G
∗
n−1(w, z)G

∗
n(w, z))(l+1,i),(k,j) + lν(G∗

n(w, z))(l−1,i),(k,j)

+
∑
i′ 	=i

qii′(G
∗
n(w, z))(l,i′),(k,j) + (1− δn+l,K)λi

)
(42)

with convention G∗
0 = O. This is written in a matrix form

(rnw + z)G∗
n(w, z) −B∗

nG
∗
n(w, z) = C∗

nG
∗
n−1(w, z)G

∗
n(w, z) +An, n = 1, 2, . . . ,K − 1.

This proves (14) and (15).

In a similar way to the derivation of (42), we obtain, for n = 1, 2, . . . ,K,

(h∗
n(w, z))(l,i) =

1

rnw + z + anli

(
ν + (n− 1)ν

{
(G∗

n−1(w, z)h
∗
n(w, z))(l,i) + (h∗

n−1(w, z))(l,i)
}

+(n− 1)rnμ
{
(G∗

n−1(w, z)h
∗
n(w, z))(l+1,i) + (h∗

n−1(w, z))(l+1,i)

}

+lν(h∗
n(w, z))(l−1,i) +

∑
i′ 	=i

qii′(h
∗
n(w, z))(l,i′)

)

with convention h∗
0(w, z) = 0. This is written in a matrix form

(rnw + z)h∗
n(w, z) −B∗

nh
∗
n(w, z) = ν1+ C∗

n

(
G∗

n−1(w, z)h
∗
n(w, z) + h∗

n−1(w, z)
)
, n = 1, 2, . . . ,K,

which proves (16) and (17).

B Proof of Theorem 3

Equation (18) immediately follows from its definition. And in order to derive (19), we can write,

for n = K − 1,K − 2, . . . , 1,

φnli(w, z) = E[e−wχ(0,σ)−zσ
�{σ≤τn+1} | N(0) = n,L(0) = l, J(0) = i, Ỹ = ∞]

+
K−n−1∑
k=0

m∑
j=1

E[e−wχ(0,τn+1)−zτn+1�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}e−wχ(τn+1,σ)−z(σ−τn+1)

| N(0) = n,L(0) = l, J(0) = i, Ỹ = ∞]. (43)
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The first expectation on the right-hand side of (43) is (h∗
n(w, z))(l,i). The second expectation on

the right-hand side of (43) becomes

E[e−wχ(0,τn+1)−zτn+1�{τn+1<σ,L(τn+1)=k,J(τn+1)=j}e−wχ(τn+1,σ)−z(σ−τn+1)

| N(0) = n,L(0) = l, J(0) = i, Ỹ = ∞]

= E[e−wχ(0,τn+1)−zτn+1�{τn+1<σ,L(τn+1)=k,J(τn+1)=j} | N(0) = n,L(0) = l, J(0) = i, Ỹ = ∞]

×E[e−wχ(0,σ)−zσ | N(0) = n+ 1, L(0) = k, J(0) = j, Ỹ = ∞]

= (G∗
n(w, z))(l,i),(k,j)φn+1,k,j(w, z).

Therefore (43) can be written as φnli(w, z) = (h∗
n(w, z))(l,i)+

∑K−n−1
l=0

∑m
j=1(G

∗
n(w, z))(l,i),(k,j)φn+1,k,j(w, z),

which is the component-wise expression of (19).
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