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In this paper we study the effect of a decision maker's risk attitude on the median and center problems,
two well-known location problems, with uncertain demand in the mean–variance framework. We
provide a mathematical programming formulation for both problems in the form of quadratic pro-
gramming and develop solution procedures. In particular, we consider the vertex and absolute median
problems separately, and identify a dominant set for the center problem. Glover's linearization method is
applied to solve the vertex median problem. We also develop a branch and bound algorithm and a
heuristic as the linearization technique takes too long for the vertex median problem on large networks.
A computational experiment is conducted to compare the performance of the algorithms. We demon-
strate the importance of taking into account the volatility and correlation structure when a location
decision is made. The closest assignment property is also discussed for these location problems under the
mean–variance objective.

& 2016 Elsevier Ltd. All rights reserved.
1. Introduction

Decisions to locate facilities such as plants, warehouses and
shopping malls are very important, and are often classified as
strategic decisions [32,26,16,27]. They usually result in significant
fixed costs and more importantly they have considerable impacts
on growth prospects of a firm. Moreover, relocating facilities is
usually not easy and very costly. As a result, location decisions are
made carefully as the executives are aware of their significant
economical importance.

To our knowledge, there has been no literature on managerial
perceptions of risk specifically for location decision-making pro-
blems. However, many studies of risk taking by business execu-
tives and managers have attested the importance of risk assess-
ment and management to decision making from the managerial
perspective [6]. Most managers interviewed in these studies
depicted themselves as risk averse or risk seeking. It has been
inferred that their risk attitudes could be attributed to cultural,
organizational, occupational and individual differences. Given the
substantial impact of a facility location decision, it is arguable that
the decision maker may not always be risk neutral, a common
assumption in the facility location literature.
r Bish.

. Berman),
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al. Location choice and risk
1.1. Risk analysis in facility location

It is assumed that the decision maker is risk neutral in all the
early and much of the recent facility location literature, in parti-
cular, on the median and center problems. However, there are
studies that introduce the notion of volatility to these classical
location problems. Table 1 summarizes the risk analysis measures
used in these studies.

The probability-related measure approach seeks to maximize
the probability to achieve a target level of distance or coverage.
Value-at-risk (VaR) and conditional value-at-risk (CVaR) are pop-
ular measures of risk in finance. β-VaR and β-CVaR at a probability
level β are defined, respectively, as the β-quantile of a random loss
(or cost) and the conditional expected loss (or cost) exceeding β-
VaR [28].

The mean–variance theory [24] is classical in financial portfolio
management that makes a trade-off between the mean return and
the associated risk. A mean–variance optimization model is to
maximize the mean–variance objective function

UðYÞ ¼ EðYÞ�λVarðYÞ; ð1Þ

where Y is a random payoff with mean E(Y) and variance Var(Y), U
(Y) is the decision maker's utility, and λ is a risk attitude coeffi-
cient. Note that the decision maker is risk averse, risk neutral and
risk seeking when λ40, λ¼ 0 and λo0, respectively. The mag-
nitude of λ reflects the degree of the decision maker's risk attitude.
It was shown that the mean–variance objective is consistent with
a quadratic expected utility function [17,30,29,9].
attitude of a decision maker. Omega (2016), http://dx.doi.org/
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Table 1
Selected literature on risk analysis in the median and center problems.

Risk measure Single-facility problems Multiple-facility problems

Probability measure Frank [10,11]
Berman et al. [3]

Variance Frank [10]
Mean–variance Jucker and Carlson [20]

Hodder and Jucker [18]
Value-at-risk Wang [34,35] Wagner et al. [33]
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The mean–variance approach has been criticized for taking into
account both the favorable and unfavorable deviations of the
random payoff Y from the mean E(Y) in its risk measure, namely
the variance Var(Y). As punishing desirable fluctuations when the
probability distribution of Y is asymmetric may lower the mean
payoff, alternative measures that consider the downside risk only
have been proposed [25]. However, the studies by Grootveld and
Hallerbach [15], and Choi and Chiu [8] suggested that the mean–
variance approach and the mean-downside-risk approaches tend
to return similar results in most cases. Grootveld and Hallerbach
[15] also pointed out that downside-risk measures were much
more prone to estimation risk than the variance.

Knowing the controversy over the mean–variance approach,
we nonetheless adopt Eq. (1) as the optimization criterion in the
current study for the reasons stated below:

� The mean–variance approach is applicable to explore the trade-
off between the mean and variance of the random payoff Y for
any stochastic optimization problem, including the location
analysis problem.

� Using variance to quantify risk is intuitive, the mean–variance
model can be applied by decision makers of different risk atti-
tudes (risk neutral, risk averse and risk seeking), and the mean–
variance approach requires only the first two moments of the
random variable Y. On the contrary, alternative risk measures
such as VaR and CVaR usually reflect the downside risk-averse
behavior only, and entail the knowledge of the probability
distribution of the random payoff Y.

� Unlike the mean–variance optimization model with a constraint
to bound variance from above, the mean–variance objective (Eq.
(1)) does not exclude solutions with a high mean payoff and
high variability from consideration. Therefore, we would not
expect that the negative impact the approach's flaw has on
solution quality be significant as long as the risk attitude
coefficient λ is not too large.

As a remark, we realize that there are controversies over the
pros and cons of various risk measures and believe that a com-
parative study on these measures for location problems would
greatly facilitate the application of stochastic location analysis
models.

The mean–variance objective was used by Jucker and Carlson
[20] and Hodder and Jucker [18] to study the uncapacitated plant-
location problem with uncertain prices and demand. Hodder and
Jucker's problem is to some extent similar to the version of the p-
median problem to be studied in this paper. A major difference is
that they chose a very specific correlation structure for the prices
charged by facilities (which were the random variables in their
model) whereas we use a general correlation structure for the
random demand weights. Consequently, our optimization problem
is much harder than theirs.

In Wagner et al. [33], the uncapacitated plant-location problem
was studied with an objective to maximize the VaR of a future
profit. Under the normality assumption the objective function was
converted into the mean–variance framework and a nonlinear
Please cite this article as: Berman O, et al. Location choice and risk
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integer programming model was solved. The algorithmic approach
proposed by Wagner et al. [33] works only for a risk-averse deci-
sion maker. The authors reported a computational experiment on
small networks only for the vertex version of the model, where
facilities can be located on the nodal points only. Different from
their study, in this paper we discuss both the absolute (facilities
can be located anywhere on the network) and vertex p-median
problems, and conduct an extensive computational study on net-
works of various sizes. We also develop a motivating example to
show that when the mean value of Y is non-decreasing in the
variance the decision maker may have a reason to be risk seeking,
and present algorithms that are not restricted by the decision
maker's risk attitude.

1.2. Outline of the study

In this paper we consider the decision maker's risk attitude and
investigate how it can change the optimal solutions to the median
and center location problems with uncertain demand weights that
were well studied under the assumption of risk-neutrality. Our
main objective is to show how the decision maker's risk attitude
can affect the optimal facility locations. We also try to shed some
light on the important role that demand variability and correlation
structure play to choose optimal risk-averse or risk-seeking
locations.

Under the mean–variance objective, each optimization problem
is formulated in the form of a quadratic programming model. We
discuss how we can solve the problems using linearization tech-
niques, which have been shown to be quite effective for problems
with quadratic objective function [7]. Specifically, Glover's [14]
linearization method is adopted for the vertex median problem.
We also develop a branch and bound algorithm and a vertex
substitution heuristic for the problem because our computational
experience suggests that the linearization method is not always
efficient for large networks.

The rest of the paper is organized as follows. In Section 2, we
discuss the mean–variance objective, and in Sections 3 and 4 we
analyze the median and center problems with uncertain demand
under the mean–variance objective. In Section 5, we provide
insights on optimal locations under different risk preferences and
changing parameters. In Section 6, a computational experiment is
reported to compare the performance of the algorithms developed
for the models. Finally, we provide a brief summary and outlook
in Section 7.
2. The mean–variance objective

Let G¼ ðN; LÞ be an undirected network with a set of nodes N
ð Nj j ¼ nÞ and a set of links L. Let x denote both the location of point
x on link (a, b) and the distance between this point and the left end
node a. The shortest distance between any two points x and y
located somewhere in G is denoted by dðx; yÞ ¼ dðy; xÞ. To uniquely
define a link ða; bÞAL, it is required that the index of the left end
node a is smaller than that of the right end node b. We further
require that the length of each link (a, b), denoted by lab, is equal to
the shortest distance between nodes a and b.

Given a set of p ðponÞ points Xp ¼ ðxð1Þ; xð2Þ; � � �; xðpÞÞ, let
dðx;XpÞ ¼ min

1r jrp
fdðx; xðjÞÞg. Demand is assumed to originate from

the nodes of G only. The demand weight at node i, hi, is random
with mean μi and standard deviation σi. Random variables hi and
hk may be correlated with a correlation coefficient ρik.

We study the median and center problems with random
demand weights under the mean–variance objective (Eq. (1)), for
which the random payoff Y will be, respectively, defined for either
attitude of a decision maker. Omega (2016), http://dx.doi.org/
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problem. In Section 5 we will show that the impact of λ on optimal
locations also depends on the values of E(Y) and Var(Y). In the
current study we attempt to develop general models and algo-
rithms that are independent of λa0. The reader is referred to
Jucker and Carlson [20] for a summary of four suggested methods
to select λ.

Example 1. To motivate our study, consider a 1-median problem
with uncertain demand weights on a segment of z units long. For
simplicity, we assume that the two random demand weights
associated with the two end nodes 1 and 2 of the segment are
independent.

The deterministic 1-median problem is to locate a single facility
so as to minimize the total weighted distance from demand to the
facility. Let x be the location site of a single facility. When the demand
weights are uncertain, the random payoff Y for the 1-median pro-
blem is formulated as YðxÞ ¼ �h1dð1; xÞ�h2dð2; xÞ.

Note that �YðxÞ ¼ h1dð1; xÞþh2dð2; xÞ is the total weighted
distance from demand to the facility located at point x. It is easy to
derive

Eð�YðxÞÞ ¼ μ1xþμ2ðz�xÞ;
and

Varð�YðxÞÞ ¼ σ2
1x

2þσ2
2ðz�xÞ2: ð2Þ

Let uðxÞ ¼ Eð�YðxÞÞ and vðxÞ ¼ Varð�YðxÞÞ. We have

duðxÞ
dx

¼ μ1�μ2;

dvðxÞ
dx

¼ 2ðσ2
1þσ2

2Þx�2σ2
2z;

and

dvðxÞ
duðxÞ ¼

2ðσ2
1þσ2

2Þx�2σ2
2z

μ1�μ2
:

It follows that the mean and variance of the total weighted
distance are positively correlated, negatively correlated, and not

correlated if x4 σ2
2

σ2
1 þσ2

2
z and μ14μ2 (or xo σ2

2
σ2
1 þσ2

2
z and μ1oμ2),

xo σ2
2

σ2
1 þσ2

2
z and μ14μ2 (or x4 σ2

2
σ2
1 þσ2

2
z and μ1oμ2), and μ1 ¼ μ2,

respectively. The mean–variance diagram will look like the curved
shape in Fig. 1.

It is well known that either node 1 or node 2 is the risk-neutral
1-median that minimizes function u(x). The following conclusions
can be easily made from the figure for the risk-averse 1-median
that maximizes UðYðxÞÞ ¼ �uðxÞ�λvðxÞ when λ40 and the risk-
seeking 1-median that maximizes UðYðxÞÞ ¼ �uðxÞ�λvðxÞ when
λo0:

� The risk-neutral 1-median will coincide with the risk-averse
1-median if it also minimizes function v(x).

� The risk-neutral 1-median will coincide with the risk-seeking
1-median if it also maximizes function v(x).
Fig. 1. Example 1: Mean–variance diagram.
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� If the risk-neutral 1-median does not minimize function v(x),
then the risk-averse 1-median corresponds to a point some-
where between A and B on the curve in Fig. 1. As u(x) and v(x)
are negatively correlated along the curve between A and B, the
risk-averse solution reduces variability (i.e., the likelihood of
long total weighted distances under unfavorable random
demand scenarios) at the expense of increasing the mean total
weighted distance.

� By Eq. (2), function v(x) is convex over the segment. It follows
that UðYðxÞÞ is a convex function of xAð0; zÞ if λo0, which
implies that either node 1 or node 2 is the risk-seeking solution.
Note that B and C in Fig. 1 correspond to these two nodal points.
It is easy to see that the mean–variance combination at B (that
is the risk-neutral 1-median) will also be the risk-seeking
solution when the magnitude of λ is sufficiently small even if
the risk-neutral 1-median is not a maximizer to function v(x). If
the mean–variance combination at C in Fig. 1 is the risk-seeking
solution, however, it has a larger mean total weighted distance
than the risk-neutral solution. Thus a risk-seeking 1-median
may not be a sensible location if the total weighted distance to
it is too long on average even though it gives the decision maker
a chance to realize short total weighted distances under favor-
able random demand scenarios.

As an illustration, consider two scenarios of discrete probability
distributions of the random weights presented in Table 2.

Let z¼1. For scenario (a), it is easy to verify μ1 ¼ 10, μ2 ¼ 8:8,
σ2
1 ¼ 1 and σ2

2 ¼ 15:36. Note uðxÞ ¼ 10xþ8:8ð1�xÞ ¼ 8:8þ1:2x, and
vðxÞ ¼ 1x2þ15:36ð1�xÞ2 ¼ 16:36x2�30:72xþ15:36 at any point x
on the segment. Given x, the objective function UðYðxÞÞ can
be written as UðYðxÞÞ ¼ �uðxÞ�λvðxÞ ¼ �16:36λx2�ð1:2�30:72λÞ
x� 15:36λ�8:8.

The risk-averse solution under λ¼0.5 and the risk-neutral
solution are x¼0.87 and x¼0, respectively. As shown in Table 3,
the risk-averse solution appears better to a risk-averse decision
maker than the risk-neutral solution because it ensures a more
certain value of �Y , i.e., 8.35, 9.39, 10.09 and 11.13 (corresponding
to demand weight realizations (9, 4), (9, 12), (11, 4) and (11, 12)) are
close to its mean value of 9.84, and avoids a highly likely long total
weighted distance of 12. This scenario suggests that a mean–var-
iance objective is necessary to account for the risk of big losses.

For scenario (b), we have μ1 ¼ 8, μ2 ¼ 8:4, σ2
1 ¼ 1 and

σ2
2 ¼ 29:04. It follows that uðxÞ ¼ 8xþ8:4ð1�xÞ ¼ 8:4�0:4x, vðxÞ ¼

1x2þ29:04ð1�xÞ2 ¼ 30:04x2�58:08xþ29:04 and UðYðxÞÞ ¼
�uðxÞ�λvðxÞ ¼ �30:04λx2þð0:4þ58:08λÞx�29:04λ�8:4.

The risk-neutral solution is x¼1.0. The risk-averse 1-median
with λ¼0.5 and the risk-seeking 1-median with λ¼�0.5 are
x¼0.98 and x¼ 0, respectively. Since the risk-averse solution is
very close to the risk-neutral solution, the distributions of �Y for
the risk-neutral solution and the risk-seeking solution only are
presented in Table 3. Comparing the two distributions, we note
that a decision maker may have reasons to be risk-seeking in this
scenario. The mean total weight distance is 8.0 at the risk-neural
1-median, and 8.4 at the risk-seeking 1-median. Without
increasing the weighted distance on average significantly, the risk-
seeking 1-median could secure a much shorter weighted distance
than the risk-averse 1-median or the risk-neutral 1-median if the
realized demand at node 2 were 4, which would occur with a
Table 2
Example 1: Demand weight distributions.

(a) h1 h2 (b) h1 h2

Probability 0.5 0.5 0.4 0.6 Probability 0.5 0.5 0.6 0.4
Demand 9 11 4 12 Demand 7 9 4 15

attitude of a decision maker. Omega (2016), http://dx.doi.org/
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Table 3
Example 1: Probability distributions of �Y .

(a) Risk-averse 1-median Risk-neutral 1-median

Probability 0.2 0.3 0.2 0.3 0.4 0.6
Weighted distance 8.35 9.39 10.09 11.13 4 12

(b) Risk-seeking 1-median Risk-neutral 1-median
Probability 0.6 0.4 0.5 0.5
Weighted distance 4 15 7 9

O. Berman et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎4
probability of 0.6. However, the risk-seeking 1-median might also
result in a weighted distance of 15 with a probability as high as 0.4.

It can be inferred from the analysis above that the probability
distribution of the total weighted distance at the risk-neutral
1-median can help us predict the solution quality under differ-
ent risk preferences. A risk-averse solution might be beneficial if
the distribution has a either a high probability of unfavorable
values or a likelihood of unacceptably large values, while a risk-
seeking solution might be advantageous if the distribution has a
high probability of favorable values (and therefore a low prob-
ability of undesirable values).

We note that under the mean–variance objective the closest
assignment property (i.e., demand originating from each node is
served by the closest open facility) does not necessarily hold for a
multiple-facility location problem when the decision maker is not
risk neutral, which will be evidenced by illustrative examples in
Section 5. In order to avoid counter-intuitive solutions (e.g. cus-
tomers residing at a node with an open facility are assigned to a
facility somewhere else), we will discuss the closest assignment
property for either model and enforce the closest assignment
restriction when necessary. We further note that the loss of the
closest assignment property is not unusual in facility location
problems. Gerrard and Church [13] claimed that most network-
based location models do not have this property and require some
form of a closest assignment constraint to enforce it. In Section 5,
we will use a numerical example to show that the closest
assignment property is not necessarily guaranteed in a model to
minimize CVaR.
3. The median problem

In this section we study the p-median problem with uncertain
demand (p-MPUD). If the demand weight is deterministic at any
node, the objective of the p-median problem is to locate p facilities
so as to minimize the total weighted distance between the
demand nodes and the facilities. Mathematically, the problem is to
find a set of p points Xp such that

Pn
i ¼ 1 hidði;XpÞ is minimized. As

a natural extension of this model to the domain of stochastic
weights, p-MPUD is to maximize U(Y) with Y ¼ �Pn

i ¼ 1 hidði;XpÞ.
Let FðXpÞ ¼ Eð�YÞþλVarð�YÞ. Note

FðXpÞ ¼ E
Xn
i ¼ 1

hidði;XpÞ
" #

þλVar
Xn
i ¼ 1

hidði;XpÞ
" #

¼
Xn
i ¼ 1

μidði;XpÞþλ
Xn
i ¼ 1

X
k ¼ 1

n

dði;XpÞdðk;XpÞσik; ð3Þ

with σik ¼ ρikσiσk being the covariance of random weights hi and
hk. Since UðYÞ ¼ �FðXpÞ, p-MPUD is equivalent to

min
Xp � G

FðXpÞ: ð4Þ

If Xp is restricted to be a set of p nodes, then we call Eq. (4) the
vertex p-MPUD. Otherwise, we have the absolute p-MPUD. It is
easy to see that p-MPUD with λ¼ 0 reduces to the p-median
problem for which at least one set of p nodes is optimal, i.e., an
Please cite this article as: Berman O, et al. Location choice and risk
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optimal solution to the vertex p-MPUD is also optimal to the
absolute p-MPUD. But vertex optimality in general does not carry
over to λa0.

We next analyze p¼1 and p41, respectively, for λa0.

3.1. 1-MPUD

It is trivial to solve the vertex 1-MPUD. We now consider sol-
ving the absolute 1-MPUD. Arbitrarily select a link ða; bÞAL. Define
an antipode yi on link (a, b) as a point such that the distance from
yi to node i through node a is equal to the distance from yi to node
i through node b. Following Berman et al. [1], we refer to the
region between two consecutive antipodes on link (a, b) as a pri-
mary region . Note that for any point inside a primary region on
link (a, b) the sets of nodes optimally reachable via nodes a and b,
respectively, remain unchanged. Denote these two sets by A and B,
respectively.

For a point x inside a primary region on link (a, b), Eq. (3)
reduces to

FðxÞ ¼
X
iAA

μi xþdði; aÞð Þþ
X
iAB

μi lab�xþdði; bÞð Þ

þλ
X
iAA

X
kAA

xþdði; aÞð Þ xþdðk; aÞð Þσikþ2λ
X
iAA

X
kAB

xþdði; aÞð Þ labð

�xþdðk; bÞÞσikþλ
X
iAB

X
kAB

lab�xþdði; bÞð Þ lab�xþdðk; bÞð Þσik:

The above expression can be rewritten in a quadratic function
form of FðxÞ ¼ C1x2þC2xþC3, where

C1 ¼ λ
X
iAA

X
kAA

σik�2
X
iAA

X
kAB

σikþ
X
iAB

X
kAB

σik

 !
;

C2 ¼
X
iAA

μi�
X
iAB

μiþ2λ
X
iAA

X
kAA

dði; aÞσik

(
þ
X
iAA

X
kAB

½labþdðk; bÞ

�dði; aÞ�σik�
X
iAB

X
kAB

½labþdði; bÞ�σik

)
;

C3 ¼
X
iAA

μidði; aÞþ
X
iAB

½labþdði; bÞ�μiþλ
X
iAA

X
kAA

dði; aÞdðk; aÞσik

(

þ2
X
iAA

X
kAB

dði; aÞ½labþdðk; bÞ�σikþ
X
iAB

X
kAB

½labþdði; bÞ�½lab

þdðk; bÞ�σik
�
:

In the following lemma, we prove a structural property for
function F(x), which will facilitate finding an optimal solution.

Lemma 1. Function F(x) is (i) convex with respect to x within any
primary region if λ40 and (ii) concave if λo0.

Proof. Notice C1 ¼ λVarðPiAAhi�
P

iABhiÞ. The convexity and
concavity are thus established under λ40 and λo0,
respectively. □

Based on the above lemma it is trivial to prove the theorem
below.

Theorem 1. Let xn be an optimal solution of the 1-MPUD on a pri-
mary region ½r; s�. (i) When λ40, xn ¼ � C2

2C1
if ro� C2

2C1
os, and xn ¼

arg minfFðrÞ; FðsÞg otherwise. (ii) When λo0, xn ¼ arg minfFðrÞ; FðsÞg.
Applying Theorem 1, we can find the optimal location inside

every primary region and then the best one is chosen as the
optimal solution to the entire network.

3.2. p-MPUD (p41)

3.2.1. Absolute p-MPUD
The shortest paths to some nodes may shift as potential facility

locations move along the links. In order to formulate the objective
attitude of a decision maker. Omega (2016), http://dx.doi.org/
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Fig. 2. Example 2: A three-node network.
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function explicitly in terms of the single facility location, we
analyzed 1-MPUD in the previous sub-section over each primary
region, in which such shifts cannot occur. If multiple facilities are
to be located, determining the closest facility to each node may
pose additional difficulty for deriving the objective function, which
requires subdividing primary regions.

We now examine a set of points Xp ¼ ðxð1Þ; xð2Þ;…; xðpÞÞ within p
selected primary regions, where xðjÞ denotes a point inside primary
region ½rðjÞ ; sðjÞ � on link ðaðjÞ ; bðjÞ Þ that is at a distance of xðjÞ away from
node aðjÞ . It is possible that two points xðjÞ and xðmÞ are located
within the same primary region. For any node i, dði; xðjÞÞ is equal to
dði; aðjÞ ÞþxðjÞ if dði; aðjÞ ÞþsðjÞ r dði; bðjÞ Þþ laðjÞbðjÞ �sðjÞ, or dði; bðjÞ Þþ laðjÞbðjÞ �
xðjÞ otherwise. That is, the functional form of dði; xðjÞÞ in terms of xðjÞ
is invariant for xðjÞA ½rðjÞ ; sðjÞ �. Let δ be the set of constraints
rðjÞrxðjÞrsðjÞ .

Recall dði;XpÞ ¼min1r jrpfdði; xðjÞÞg for node i. Given node i,
we denote by ϖði; xðjÞÞ the set of constraints to ensure
dði; xðjÞÞ ¼ dði;XpÞ. It is easy to see that this set contains linear
constraints with respect to xm m¼ 1;2;…; p. We call ϖði; xðjÞÞ fea-
sible if there exists at least one set Xp with rðmÞ rxðmÞrsðmÞ satis-
fying all the constraints.

LetΩi be the collection of feasible setsϖði; xðjÞÞ j¼ 1;2;…; p and
Γ be the Cartesian product of Ωi iAN. A feasible element γ in Γ,
which does not contain contradictory constraints with δ defines
the functional form of dði;XpÞ for every node i and hence the
objective function FðXpÞ can be formulated in terms of points
ðxð1Þ; xð2Þ;…; xðpÞÞ. Suppose dði;XpÞ ¼ dði; xðjÞÞ. It follows that dði;XpÞ is
a linear function of xðjÞ. The conclusion below is natural.

Lemma 2. Function FðXpÞ with respect to Xp in the feasible region
defined by δ and γAΓ is quadratic and (i) convex if λ40, and (ii)
concave if λo0.

Proof. Note FðXpÞ ¼ f ðdð1;XpÞ; dð2;XpÞ;…;dðn;XpÞÞ, where f ðq1; q2;
…; qnÞ ¼

Pn
i ¼ 1 μiqiþλ

Pn
i ¼ 1

Pn
k ¼ 1 qiqkσik. It is easy to see that the

quadratic function f ð�Þ is convex if λ40 and concave if λo0. The
lemma follows for FðXpÞ because dði;XpÞ is a linear function of Xp

in the feasible region defined by δ and γAΓ. □

By the lemma, minimizing the objective function FðXpÞ under
constraint sets δ and γAΓ is equivalent to minimizing a convex
function when λ40 or a concave function when λo0 subject to
linear constraints. The former can be solved as a convex quadratic
programming model using the simplex method [36,31] and a
global optimum is guaranteed. The latter is generally not a convex
programming problem. Consequently, its local optima could differ
from the global one. A global optimization algorithm such as the
one proposed by Kalantari and Rosen [21] can be applied with an
attempt to “escape” from a local optimum and move towards a
global one.

The following procedure is designed to solve the absolute
p-MPUD on a network:

� Step 1: Find the antipodes for every node on each link. Construct
all primary regions.

� Step 2: For each possible combination of p primary regions
(primary regions may be repetitive), implement Steps 3 to 5 and
then go to Step 6 if all combinations have been fathomed.

� Step 3: Construct constraint sets δ and Γ.
� Step 4: For each feasible element γAΓ, find the optimal solution

to minimize the objective function FðXpÞ subject to constraints
in δ and γ.

� Step 5: Compare all the optima obtained in Step 4 and choose
the best one as the optimal solution for this combination of p
primary regions. Return to Step 2.
Please cite this article as: Berman O, et al. Location choice and risk
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� Step 6: Compare the optima for all possible combinations and
choose the best one as the optimal solution for the entire
network.

Example 2. To illustrate the exposition above, consider solving a
2-MPUD on the network presented in Fig. 2. The number next to
each link in the figure reveals its length, while the parameters of
random weights are μ1 ¼ 4, σ1 ¼ 2, μ2 ¼ 3, σ2 ¼ 2, μ3 ¼ 5, σ3 ¼ 3,
ρ12 ¼ �0:6, ρ13 ¼ �0:5, and ρ23 ¼ 0:3.

It is easy to verify that x¼3.0 on link ð1;2Þ is an antipode of
node 3, and that the intervals ½0;3� and ½3;5� are the two primary
regions on link ð1;2Þ, while the other two links are also primary
regions, respectively.

In the Appendix, we present the process to solve the 2-median
problem with λ¼1 and �1 on two primary regions: the interval
½3;5� on link ð1;2Þ and link ð1;3Þ.

It is noted that the algorithm presented above for the absolute
p-MPUD is cumbersome even when the network size is small.
Next, we consider the vertex p-MPUD for which exact solution
algorithms are efficient at least for networks that are not too large.

3.2.2. Vertex p-MPUD
The vertex p-MPUD can be formulated as a mathematical

programming model. We define the following binary variables:

Yj ¼
1 if a facility is located at node j;

0 otherwise;

(

Xij ¼
1 if node i is assigned to the facility located at node j;

0 otherwise:

�

The vertex p-MPUD, referred to as ðPMÞ, can now be formulated
as follows:

min Z ¼
Xn
j ¼ 1

Xn
i ¼ 1

μidði; jÞXijþλ
Xn
j ¼ 1

Xn
i ¼ 1

Xn
l ¼ 1

Xn
k ¼ 1

dði; jÞdðk; lÞσikXijXkl

s:t:

Xn
j ¼ 1

Xij ¼ 1; for i¼ 1;2;…;n

Xn
j ¼ 1

Yj ¼ p

Yj�XijZ0 for i; j¼ 1;2;…;nXn
j ¼ 1

Xijdði; jÞþðM�dði; kÞÞYkrM for i; k¼ 1;2;…;n

YjAf0;1g; XijAf0;1g; i; j¼ 1;2;…;n: ð5Þ

The constraint set (5) requires that customers be assigned to
the closest facility (see [2]), where M is a very large number. One
attitude of a decision maker. Omega (2016), http://dx.doi.org/
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can define M¼maxi;jAN dði; jÞ� �
. It is easy to see that a shorter

distance between a demand node and the assigned facility is
preferred in the above model when (i) the decision maker is risk
neutral, or (ii) the decision maker is risk averse but the random
demand weights are independent. Therefore, the closest assign-
ment property is self-enforced and the constraint set (5) can be
removed from the model in the above cases.

However, customers traveling to the closest facility is not cer-
tainly favorable to the mean–variance objective when λo0 or
when random demand weights are correlated even if λ40. For
instance, suppose that the weight associated with a demand node
is negatively correlated with some others. Routing customers
originating from that node to a facility far away may help reduce
the variance of Y and thus improve the objective function when
λ40. As a result, the closest assignment property cannot be
automatically guaranteed and thus the constraint set (5) has to be
explicitly incorporated.

The above formulation is an integer quadratic programming
model. Kariv and Hakimi [22] proved that the deterministic vertex
p-median problem is NP-hard. Therefore, the vertex p-MPUD
problem is also NP-Hard. Two exact solution approaches and a
heuristic are developed below.

A branch and bound algorithm: Jarvinen et al. [19] presented a
branch and bound algorithm to seek the deterministic p-median of
a network. Extending its principle we construct a branch and
bound algorithm for model ðPMÞ. In the algorithm, the original
problem is partitioned into many sub-problems, each of which
divides the set of nodes N into two sub-sets: Nr contains the nodes
where no facility is open ð1rrrn�pÞ, while Nn� r ¼N⧹Nr con-
tains the nodes that are potential sites to locate facilities. Note that
a sub-problem yields a feasible location decision to the original
problem when r¼ n�p.

We first generate sub-problems where only one node is closed.
Subsequently, for each sub-problem with r closed nodes
ð1rron�pÞ, we partition it by choosing one more node to be
taken away and evaluate its lower bound. Given Nr and Nn� r ,
suppose that Xp �Nn� r is a set of locations to site p facilities. It is
easy to verify that the objective function value can be written as

Z ¼
Xn
i ¼ 1

1
n
μidði;XpÞþλ½dði;XpÞ�2σ2

i

� �

þ
Xn
i ¼ 1

Xn
k ¼ 1;ka i

1
2n

½μidði;XpÞþμkdðk;XpÞ�þλdði;XpÞdðk;XpÞσik

� �

¼
X
iANr

X
kANr

~Rikþ2
X
iANr

X
kANn� r

~Rikþ
X

iANn� r

X
kANn� r

~Rik;

where

~Rik ¼
1
n
μidði;XpÞþλ½dði;XpÞ�2σ2

i ; if i¼ k;

1
2n

½μidði;XpÞþμkdðk;XpÞ�þλdði;XpÞdðk;XpÞσik; if iak:

8>><
>>:

Since the vector of the shortest distances (dð1;XpÞ; dð2;XpÞ;…;
dðn;XpÞ) contains p zero terms, there exist at least p values of kA
Nn� r such that ~Rik ¼ μidði;XpÞ

2n holds for every node iANr or
iANn� r⧹Xp. In addition, we have ~Rii ¼ 0 and ~Rik ¼ 0 for nodes i, kA
Xp. It follows that Z ¼ ~R1þ2 ~R2þ2 ~R3þ ~R4þ2 ~R5, where ~R1 ¼

P
iANrP

kANr ~Rik, ~R2 ¼
P

iANr
P

kANn� r⧹Xp
~Rik, ~R3 ¼ p

2n

P
iANrμidði;XpÞ, ~R4 ¼P

iANn� r⧹Xp

P
kANn� r⧹Xp

~Rik, and ~R5 ¼ p
2n

P
iANn� r⧹Xp

μidði;XpÞ.

Note that

Xn
i ¼ 1

min
jANn� r

1
n
μidði; jÞþλ½dði; jÞ�2σ2

i

� �
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þ
Xn
i ¼ 1

Xn
k ¼ 1;ka i

min
jANn� r

min
lANn� r

1
2n

½μidði; jÞþμkdðk; lÞ�þλdði; jÞdðk; lÞσik

� �

ð6Þ
bounds the objective function of a sub-problem (Nr, Nn� r) from
below. Let

Rik ¼
min

jANn� r ;ja i

1
nμidði; jÞþλ½dði; jÞ�2σ2

i

� �
; if i¼ k;

min
jANn� r ;ja i

min
lANn� r ;la k

1
2n½μidði; jÞþμkdðk; lÞ�þλdði; jÞdðk; lÞσik
� �

; if iak

8><
>:

for each pair of nodes (i, k) and

R
0
i ¼

μi

2n
min

jANn� r ;ja i
dði; jÞ

for each node i. It can be shown that LB¼ R1þ2R2þ2R3þR4þ2R5

is a lower bound of the sub-problem with R1 ¼
P

iANr
P

kANrRik,
R2 ¼

P
iANr the sum of the n�r�p smallest values of Rik

(kANn� r), R3 ¼ p
P

iANrR
0
i, R4 ¼ the sum of the n�r�p smallest

values of Rii (iANn� r) þ2� the sum of the ðn� r�pÞðn� r�p�1Þ
2

smallest values of Rik (i; kANn� r , iak), and R5 ¼ p� the sum of the
n�r�p smallest values of R

0
i (iANn� r).

The branch and bound algorithm is presented below:

� Step 1: r¼ 1;U ¼1. Generate sub-problems Nr ¼ f1g; f2g;…; fng.
Go to Step 3.

� Step 2: Let r be the number of closed nodes associated with sub-
problem P0. Increase r by 1, delete sub-problem P0, and generate
sub-problems for which all nodes taken away in P0 and an
additional node are closed. To avoid repetition, the new node to
be closed should have an index higher than the existing ones.

� Step 3: Compute LB for each newly generated sub-problem.
Denote the sub-problem with the smallest LB by P0.

� Step 4: If ron�p, then go to Step 2.
� Step 5: If r¼ n�p, then P0 is a feasible solution of model ðPMÞ.

Update U with LB of P0. Delete any sub-problem with LBZU. If
there exists no sub-problem, then the algorithm terminates;
otherwise, denote the sub-problem with the smallest LB by P0

and go to Step 2.

Linearization: Glover's [14] linearization method is applied in
our study to solve the vertex p-MPUD as follows.

Define

Wij ¼ dði; jÞXij

Xn
l ¼ 1

X
k ¼ 1

n

dðk; lÞσikXkl;

Cþ
ij ¼ dði; jÞ

Xn
l ¼ 1

X
k ¼ 1

n

dðk; lÞσik1fρik 40g;

C�
ij ¼ dði; jÞ

Xn
l ¼ 1

X
k ¼ 1

n

dðk; lÞσik1fρik o0g:

We can replace dði; jÞXij
Pn

l ¼ 1
Pn

k ¼ 1 dðk; lÞσikXkl in the objective
function of model ðPMÞ with Wij. Notice that in the formulation
below, Wij is equal to dði; jÞPn

l ¼ 1
Pn

k ¼ 1 dðk; jÞσikXkl when Xij is 1,
and Wij is equal to 0 when Xij is 0. Model ðPMÞ can be written as a
mixed-integer linear programming model:

min Z ¼
Xn
j ¼ 1

Xn
i ¼ 1

½μidði; jÞþλWij�

s:t:

constraints of ðPMÞ and
C�
ij XijrWijrCþ

ij Xij; for i; j¼ 1;2;…;n

WijZdði; jÞ
Xn
l ¼ 1

X
k ¼ 1

n

dðk; lÞσikXkl�Cþ
ij 1�Xij
� �

; for i; j¼ 1;2;…;n
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Wijrdði; jÞ
Xn
l ¼ 1

X
k ¼ 1

n

dðk; lÞσikXkl�C�
ij 1�Xij
� �

; for i; j¼ 1;2;…;n

WijAR; i; j¼ 1;2;…;n: ð7Þ

The theorem below indicates that the above model returns the
optimal solution to p-MPUD.

Theorem 2. The vertex p-MPUD is equivalent to model (7).

Proof. The theorem is straightforward because the corresponding
feasible solutions (Yj;Xij) to models (PM) and (Yj;Xij;Wij) to model
(7) have an identical objective function value. □

An interchange procedure: This heuristic first finds a feasible
solution using a greedy algorithm and then attempts to search for
better solutions by swapping a node in the current solution with a
node that does not have an open facility. The pair of nodes for
interchange is such that the objective function is improved as
much as possible. This process continues until no improvement
could be made at the current solution. The procedure is formally
stated below:

� Step 1: Let X¼∅, r¼0, UB¼1.
� Step 2: For any node jAN⧹X, if FðX [ fjgÞoUB, then let UB¼

FðX [ fjgÞ and jn ¼ j.
� Step 3: Let r¼ rþ1 and X¼ X [ fjng. If rop, then let UB¼1

and go to Step 2.
� Step 4: For each pair of nodes (j,k) jAN⧹X and kA X, if

FðX [ fjg⧹fkgÞoUB, then let UB¼ FðX [ fjg⧹fkgÞ and
ðjn; knÞ ¼ ðj; kÞ.

� Step 5: If UB was not improved in Step 4, then return X.
Otherwise, let X¼ X [ fjng⧹fkng and go to Step 4.
Fig. 3. Example 3: Functions Fið�Þ when λ¼1.
4. The center problem

The deterministic p-center problem is to seek locations for p
facilities with the objective of minimizing the maximum weighted
distance from a demand node to the closest facility. Under the
mean–variance objective, the center problem with uncertain
demand (p-CPUD) can be formulated as

max
Xp � G

min
iAN

Uð�hidði;XpÞÞ ¼ max
Xp � G

min
iAN

E �hidði;XpÞ
� ��

�λVar �hidði;XpÞ
� ��¼ � min

Xp � G
max
iAN

½μidði;XpÞþλ dði;XpÞ
� �2σ2

i �:

ð8Þ
We note that correlation between random demand weights does
not affect the optimal solution to the above model. In addition, the
closest assignment property is automatically implied if λZ0 as
shorter distances are always preferred.

For a given node iAN, let FiðXpÞ ¼ μidði;XpÞþλ dði;XpÞ
� �2σ2

i .
p-CPUD is equivalent to

min
Xp � G

max
iAN

FiðXpÞ: ð9Þ

4.1. 1-CPUD

We start with p¼1. Arbitrarily select a primary region ½r; s� on
link (a, b). Using the notations defined in Section 3, we have

diðxÞ ¼
dði; aÞþx; if iAA;

dði; bÞþ lab�x; if iAB

(

for any point xA ½r; s�. Note that Fi(x) is a convex quadratic function
within a primary regionwhen λ40. Since the maximum of convex
Please cite this article as: Berman O, et al. Location choice and risk
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functions is convex, CðxÞ ¼maxiANFiðxÞ is a convex function and
therefore has a unique minimum over every primary region. Note
that the stationary point of function Fi(x) is

x¼
� μi

2λσ2
i
þdði; aÞ

� 	
; if iAA;

μi
2λσ2

i
þ labþdði; bÞ; if iAB;

8>><
>>:

which is outside the link (a, b). Hence Fi(x) over a primary region is
a monotone increasing function if iAA or a monotone decreasing
function if iAB.

Kariv and Hakimi [23] constructed a set of dominant points for
the deterministic 1-center problem on a link. We can make similar
claims: (i) a dominant point on link (a, b) for 1-CPUD is x¼0 (node
a), or x¼ lab (node b), or x is a point where two functions Fið�Þ and
Fjð�Þ intersect inside a primary region with iAA and jAB. (ii) Let X
be the set of these dominant points. The optimal solution to
1-CPUD on link (a, b) is xn ¼ arg minxAXCðxÞ.

Therefore, to solve 1-CPUD on a link, we can simply find all the
dominant points and then implement claim (ii) stated above. The
monotonicity of function Fið�Þ within each primary region implies
that the antipode associated with node i, if available, is a max-
imum point of function Fið�Þ over the link. We note that it cannot
be a global minimum point of function Cð�Þ unless it belongs to the
dominant set X.

Example 3. As an example, we revisit the network in Fig. 2. The
mean and standard deviation of each demand node are as follows:
μ1 ¼ 2;μ2 ¼ 2;μ3 ¼ 5;σ1 ¼ 2;σ2 ¼ 1:5 and σ3 ¼ 1: We also assume
λ¼ 1. Let us examine link ð1;2Þ:

Recall that link ð1;2Þ consists of two primary regions ½0;3� and
½3;5� . It is easy to derive F1ðxÞ ¼ 2xþ4x2, F2ðxÞ ¼ 2ð5�xÞþ2:25

ð5�xÞ2 and F3ðxÞ ¼
5ð2þxÞþð2þxÞ2; 0rxr3;
5ð8�xÞþð8�xÞ2; 3rxr5:

(

A plot of functions Fi(x)'s is given in Fig. 3.
The dominant set can be constructed as X¼ f0;1:663; 2:185;

3:192;5:0g because functions F2ð�Þ and F3ð�Þ, F1ð�Þ and F2ð�Þ, F1ð�Þ
and F3ð�Þ meet at x¼1.663, 2.185 and 3.192, respectively. The
optimal solution on link (1, 2) is xn ¼ 1:663 with an objective
function value CðxnÞ ¼ 31:729.

For any node i, Fi(x) is a concave function (though not neces-
sarily monotone increasing or decreasing) within a primary region
when λo0. Based on Zangwill's [37] Theorems 1 and 4, the
maximum of concave functions is a piecewise concave function.
Similar to the case of λ40, we conclude (i) a dominant point on
link (a, b) for 1-CPUD is x¼0 (node a), or x¼ lab (node b), or x is a
point where two functions Fið�Þ and Fjð�Þ intersect inside a primary
region with derivatives of opposite signs, or x is an antipode
attitude of a decision maker. Omega (2016), http://dx.doi.org/
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Fig. 4. Example 3: Functions Fið�Þ when λ¼�1.

Table 4
Example 4: Risk-neutral median, min-var median and max-var median.

Scenario Risk-neutral median Min-var median Max-var median

Baseline xA ½4:0;5:0� 4.5 (0.0, 9.0)
μ1 ¼ 5 5.0 4.5 (0.0, 9.0)
μ1 ¼ 10 5.0 4.5 (0.0, 9.0)
μ1 ¼ 40 4.0 4.5 (0.0, 9.0)
μ1 ¼ 80 3.0 4.5 (0.0, 9.0)
μ3 ¼ 5 5.0 4.5 (0.0, 9.0)
μ3 ¼ 80 3.0 4.5 (0.0, 9.0)
σ21 ¼ 9 xA ½4:0;5:0� 4.86 0.0

σ21 ¼ 18 xA ½4:0;5:0� 4.74 0.0

σ21 ¼ 72 xA ½4:0;5:0� 4.09 9.0

σ21 ¼ 144 xA ½4:0;5:0� 3.46 9.0

σ23 ¼ 9 xA ½4:0;5:0� 4.7 9.0

σ23 ¼ 144 xA ½4:0;5:0� 3.92 9.0
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associated with node i when dFiðyÞ
dy j y-x� o0 and dFiðyÞ

dy j y-xþ 40. (ii)
Let X be the set of these dominant points over link (a;b). The
optimal solution to 1-CPUD on link (a, b) is xn ¼ arg minxAXCðxÞ.

Note that in contrast to λ40, the antipode associated with
node i might be the minimum point of function Fið�Þ over the link.
Such an antipode belongs to the dominant set.

We consider again the example above for λ¼ �1. It is easy to
verify F1ðxÞ ¼ 2x�4x2, F2ðxÞ ¼ 2ð5�xÞ�2:25ð5�xÞ2 and

F3ðxÞ ¼
5ð2þxÞ�ð2þxÞ2; 0rxr3;
5ð8�xÞ�ð8�xÞ2; 3rxr5:

(

A plot of functions Fi(x)'s is presented in Fig. 4.
In this example, the dominant set X¼ f0;2:088;3:0;5:0g

because functions F1ð�Þ and F2ð�Þ meet at x¼2.088, and x¼3.0 is
the minimum point of function F3ð�Þ as well as the antipode
associated with node 3. It is easy to verify that xn ¼ 3:0 is optimal
on link (1,2).

4.2. p-CPUD (p41)

We subsequently extend our analysis to the multiple-facility
case. By Theorem 3.1 in Garfinkel et al. [12], we can show that the
dominant set for p-CPUD is identical to that for 1-CPUD. Without
loss of generality let us assume that N is the acceptable dominant
set. p-CPUD can be formulated as a quadratic mathematical pro-
gramming model, which we call ðPCÞ, using the same binary
variables defined for model (PM):

min Z ðPCÞ

s:t:

constraints of model ðPMÞ and

ZZ
Xn
j ¼ 1

½μidði; jÞXijþλ dði; jÞð Þ2σ2
i X

2
ij�; for i¼ 1;2;…;n:

Note that since Xij is binary, we can easily convert the above
quadratic programming formulation to a mixed-integer linear
programming formulation, where the last set of constraints
changes to

ZZ
Xn
j ¼ 1

½μidði; jÞþλ dði; jÞð Þ2σ2
i �Xij; for i¼ 1;2;…;n:

As discussed earlier in this section, the closest assignment
constraint set (5) is necessary only when λo0. In this study, we
solve the above model using the mixed-integer linear program-
ming package Xpress MP.
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5. Numerical analysis and insights

We start this section with a sensitivity analysis of an absolute
1-MPUD to investigate the effects of risk attitudes, expected
values, variances and correlations of the demand weights on the
optimal location. The optimal solutions to a vertex 2-MPUD are
then examined to discuss the closest assignment property and the
impact of the number of facilities on the decision maker's utility in
the location models with the mean–variance objective.

Optimal solutions have been obtained under various scenarios,
e.g., independent and dependent random weights and different
mean values and variances of the demand weights, as well as
various number of facilities to locate. The observations are similar
in nature under all these scenarios for the two problems.

Example 4. In order to easily explore properties and gain insights,
we choose to focus on a line of ten nodes that are one unit away
from the neighboring nodes. The nodes are labelled as 1–10 in
sequence along the line.

5.1. Sensitivity analysis

In the baseline, each independent demand weight has a mean
value of 20 and a variance of 36. In each scenario, we change the
mean value or variance of a selected demand weight only. For the
baseline and all scenarios, the absolute 1-MPUD is solved for λ¼
70:01; 70:05; 70:1 and 720:0, respectively. The computational
results are available in Tables 4 and 5 for the baseline and selected
scenarios in which the mean value or the variance of the demand
weight at node 1 or node 3 takes a different value. Node 1 and
node 3 are chosen so as to examine the relevance of a node's
location relative to the others. In the tables, each optimal location
is expressed by its distance to node 1.

The “min-var” median problem and the “max-var” median
problem can be formulated as

min
Xp � G

Xn
i ¼ 1

X
k ¼ 1

n

dði;XpÞdðk;XpÞσik;

max
Xp � G

Xn
i ¼ 1

X
k ¼ 1

n

dði;XpÞdðk;XpÞσik:

It is easy to see that they represent the extreme scenarios of
risk averse and risk seeking, respectively. The optimal locations to
the above two models when p¼1 are referred to as the min-var
median and the max-var median in Table 4.

We have the following findings and insights from the tables:

� The median may differ substantially with risk attitudes. In most
of the instances presented, the optimal location tends to
attitude of a decision maker. Omega (2016), http://dx.doi.org/
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Table 5
Example 4: Risk-averse median and risk-seeking median.

λ 0.01 0.05 0.5 20.0

Baseline 4.5 4.5 4.5 4.5
μ1 ¼ 5 5.0 4.93 4.71 4.5
μ1 ¼ 10 5.0 4.78 4.64 4.5
μ1 ¼ 40 4.0 4.0 4.22 4.5
μ1 ¼ 80 3.0 3.96 4.0 4.5
μ3 ¼ 5 5.0 4.92 4.71 4.5
μ3 ¼ 80 3.0 3.94 4.0 4.5
σ21 ¼ 9 4.86 4.86 4.86 4.86

σ21 ¼ 18 4.74 4.74 4.74 4.74

σ21 ¼ 72 4.09 4.09 4.09 4.09

σ21 ¼ 144 4.0 4.0 3.89 3.46

σ23 ¼ 9 4.7 4.7 4.7 4.7

σ23 ¼ 144 4.0 4.0 4.0 3.92

λ �0.01 �0.05 �0.1 �20.0

Baseline (4.0,5.0) (4.0,5.0) (0.0,9.0) (0.0,9.0)
μ1 ¼ 5 5.0 8.0 9.0 9.0
μ1 ¼ 10 5.0 7.0 9.0 9.0
μ1 ¼ 40 4.0 0.0 0.0 0.0
μ1 ¼ 80 3.0 0.0 0.0 0.0
μ3 ¼ 5 5.0 8.0 9.0 9.0
μ3 ¼ 80 3.0 2.0 0.0 0.0
σ21 ¼ 9 4.0 3.0 0.0 0.0

σ21 ¼ 18 4.0 4.0 0.0 0.0

σ21 ¼ 72 5.0 9.0 9.0 9.0

σ21 ¼ 144 5.0 9.0 9.0 9.0

σ23 ¼ 9 4.0 3.0 0.0 0.0

σ23 ¼ 144 5.0 9.0 9.0 9.0

Table 6
Optimal solutions to model (PM).

Scenario (a) (b)

With the closest assignment constraint set
λ �1 3.5 �1 3.5
Optimal locations (1, 2) or (9, 10) (3, 8) (1, 2) (4, 7)
Maximum utility 6624.0 �2760.0 7027.2 �1187.2

Without the closest assignment constraint set
λ �1 3.5 �1 3.5
Optimal locations (1, 10) (3, 8) (1, 10) (3, 6)
Maximum utility 16,960.0 �2760.0 14,742.4 �914.4
Risk-neutral solution (3, 8)
λ �1 3.5 �1 3.5
Utility 480.0 �2760.0 148.8 �1600.8
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significantly deviate from the risk-neutral median when jλj is
not so small. For instance, the risk-neutral median on the line is
x¼4.0 (i.e., node 5) when μ1 ¼ 40, μi ¼ 20 for i41 and σ2

i ¼ 36
for 1r ir10. However, the risk-averse median is x¼4.5 (the
mid-point between node 5 and node 6) for λ¼ 20:0 and the
risk-seeking median is x¼0.0 (node 1) for λ¼ �0:05, �0:1, or
�20:0. It is thus apparent that incorporating the risk attitude
into location models has a considerable effect.

� The optimal location balances the mean and variance of variable
Y. The risk-averse median and the risk-seeking median are
optimal to the risk-neutral median problem when λ is close to
zero. As the decision maker's risk attitude departs from neu-
trality, the effect of the variance of the demand weights
becomes pronounced. Therefore, the risk-averse median and
the risk-seeking median approach the min-var median and the
max-var median (or one of the max-var medians), respectively,
when the magnitude of λ is large enough.

� The risk-seeking median is optimal to the max-var median
problem when λ is no larger than �0:05 or �0:1. However, in
most of the instances solved the risk-averse median becomes
identical to the min-var median only when λ is as large as 20.
This contrast is due to the attraction of the risk-neutral median
to the risk-averse median objective function as a shorter
expected total distance is generally favorable to the minimiza-
tion of the variance of Y. Consequently, the risk-averse median
deviates from the risk-neutral median at a slower rate as λ
increases. On the contrary, the max-var median is far away from
the risk-neutral median, which suggests that the variance of Y at
the risk-neutral median is not so small. Hence, the risk-seeking
median is easily dragged away from the risk-neutral median as
a decreasing negative λ would give a heavier weight to the
variance of Y.

� Our sensitivity analysis results show that (i) the risk-averse
median tends to move away from the node with a decreasing
mean or variance of the demand weight and move towards the
Please cite this article as: Berman O, et al. Location choice and risk
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node with an increasing mean or variance of the demand
weight; while (ii) when the random demand weights are
independent, the risk-seeking median tends to move away from
the node with a decreasing mean or an increasing variance of
the demand weight and move towards the node with an
increasing mean or a decreasing variance of the demand weight.
However, the movement of the risk-seeking median is not very
consistent when the demand weights are dependent as the
trade-off between the mean and variance of Y is more subtle
due to correlations.

� It is noted that the risk-averse median is more sensitive to
changes in the variance of the demand weight at a farther node.
On the contrary, when a mean demand weight associated with
a node changes, the distance of the node to the original risk-
averse median seems to have no significant impact. For
instance, given λ¼ 0:05, the risk-averse median at the baseline
is x¼4.5, while we have x¼4.86 when σ2

1 ¼ 9, x¼4.7 when
σ2
3 ¼ 9, x¼4.92 when μ1 ¼ 5, and x¼4.93 when μ3 ¼ 5.

The above findings except the one noted regarding the move-
ment of the risk-seeking median also apply to instances with
dependent random demand weights that have been solved.

5.2. Closest assignment

As argued in Section 2, the closest assignment restriction has to
be explicitly enforced in the multiple-facility location models
under some conditions. Take the vertex p-MPUD (p41) as an
example. It was noted in Section 3 that the closest assignment
constraint set (5) should be included in model ðPMÞ when (i) λo0
or (ii) λ40 and not all random demand weights are independent.
We next show that the optimal solution to the vertex 2-MPUD in
Example 4 would not make sense if the closest assignment con-
straint set was not incorporated.

The vertex 2-MPUD problem is solved under the following two
scenarios: (a) demand weights are independent; (b) demand
weights associated with node 1, node 9 and node 10 are correlated
with ρ1;9 ¼ ρ1;10 ¼ �0:8 and ρ9;10 ¼ 0:1. In both scenarios each
independent demand weight has a mean value of 20 and a
variance of 36.

Model ðPMÞ is solved with and without the closest assignment
constraint set (5) for both scenarios with λ¼ �1 and λ¼ 3:5.
Table 6 presents the optimal locations and the maximum utility for
the instances solved.

It is easy to see from the table that the closest assignment
constraint set (5) affects the optimal locations except for λ¼3.5
under scenario (a). When the closest assignment restriction is not
enforced, at least some of the demand nodes are assigned to the
more distant facility in all the other instances. For instance, the
vertex 2-median under scenario (b) is nodes 1 and 10 when
attitude of a decision maker. Omega (2016), http://dx.doi.org/
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Table 7
Example 5: Discrete probability functions of �Y .

Scenario (a) (b)

Distance 10 50 100 130 140 170 210
Probability 0.5 0.3 0.2 0.3 0.2 0.3 0.2

Table 8
Average CPU time (in seconds).

n p p-MPUD p-CPUD

LR BB INT LR

10 2 4.8 0.1 0.1 0.3
10 4 3.3 0.1 0.1 0.1
10 6 1.8 0.1 0.1 0.1
25 5 276.8 107.0 0.1 0.8
25 10 3530.8 4184.0 0.1 1.8
25 15 1310.0 3124.3 0.1 0.6
50 10 10,800 10,800 0.1 4.3
50 20 10,800 10,800 0.1 3.5
50 30 10,800 10,800 0.1 1.3
75 15 10,800 10,800 0.1 16.8
75 30 10,800 10,800 0.1 12.0
75 45 10,800 10,800 0.1 5.3
100 20 n/a 10,800 0.8 100.3
100 40 n/a 10,800 1.3 34.8
100 60 n/a 10,800 2.5 31.0
150 30 n/a 10,800 15.5 118.8
150 60 n/a 10,800 19.0 116.5
150 90 n/a 10,800 11.5 98.8
200 40 n/a 10,800 46.0 560.5
200 80 n/a 10,800 20.3 303.8
200 120 n/a 10,800 22 497.8

Table 9
Hit rates and average optimality gaps (p-MPUD).

n Hit rate (%) Average gap (%)

LR BB INT LR BB INT

10 100 100 100 0 0 0
25 100 100 58.3 0 0 5.7
50 50 100 100 27.1 0 0
75 50 50 50 67.2 35.0 35.0
100 n/a 100 100 n/a 0 0
150 n/a 100 100 n/a 0 0
200 n/a 100 100 n/a 0 0
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λ¼ �1. However, it would not be optimal for customers residing
on any node other than node 1 to travel to the closer facility. In
particular, customers originating from node 10 with an open
facility have to patron the facility located on node 1. This example
clearly shows that longer distances may affect the variance in a
way favorable to the decision maker's utility. Therefore, the closest
assignment restriction is necessary in order to avoid counter-
intuitive solutions.

Note that the closest assignment property always holds for the
risk-neutral models. The risk-neutral solution to the above vertex
2-MPUD instances is to locate facilities at node 3 and node 8. This
solution yields a utility of �240 when λ¼ 0. To compare the
quality of solutions under different risk attitudes, the utility of this
risk-neutral solution is computed for scenario (a) or scenario (b),
with the risk attitude coefficient λ¼ �1 or λ¼3.5, and presented
in Table 6. It is evident that the risk-neutral solution is much
inferior to the risk-averse or the risk-seeking solution when risk is
taken into account. We thus infer that it is beneficial to apply the
risk-averse and risk-seeking models over the risk-neutral model
even when the closest assignment constraint set is incorporated.

As shorter distances do not always improve the mean–variance
objective function, increasing the number of facilities to open does
not necessarily raise the utility of a decision maker who is not risk-
neutral when customers are always served by the closest facility. It
is easy to infer that this effect should be frequently observed when
the decision maker is risk-seeking as longer distances tend to
increase the variance of variable Y. However, the following
numerical example suggests that it exists even when the decision
maker is risk-averse. We solve the vertex p-MPUD on the line with
p¼1 and p¼2, respectively. The demand weights associated with
node 1, node 7, node 8 node 9 and node 10 are correlated with
ρ1;7 ¼ ρ1;8 ¼ ρ1;9 ¼ ρ1;10 ¼ �0:8, ρ7;10 ¼ ρ8;10 ¼ ρ9;10 ¼ �0:1, ρ7;8 ¼
0:01 and ρ7;9 ¼ ρ8;9 ¼ 0:05. Given λ¼ 3:5, the vertex 1-median is
node 5 with a utility of 946.48, while the vertex 2-median is nodes
5 and 6 with a utility of 590.36 only.

In our study, closest assignment does not automatically occur
even for a risk-averse model when some of the weights are
negatively correlated because the risk measure (variance) could be
reduced by longer distances. It is thus conceivable that other risk
measures including downside-risk ones, may lead to the same
problem.

Example 5. As an illustration, we apply minimizing CVaR of �Y
¼ Pn

i ¼ 1 hidði;XpÞ as the objective for a simple vertex 2-median
problem on a line of three nodes that are ten units away from the
neighboring nodes. The nodes are labelled as 1 to 3 in sequence
along the line. The random demand weights for the three nodes
have the following joint probability function: Pðh1 ¼ 2;h2 ¼
10;h3 ¼ 3Þ ¼ 0:1, Pðh1 ¼ 2;h2 ¼ 10;h3 ¼ 6Þ ¼ 0:1, Pðh1 ¼ 6; h2 ¼ 5;
h3 ¼ 6Þ ¼ 0:3, Pðh1 ¼ 6;h2 ¼ 1;h3 ¼ 6Þ ¼ 0:3, and Pðh1 ¼ 10; h2 ¼ 1;
h3 ¼ 12Þ ¼ 0:2. Suppose that nodes 1 and 3 host the two facilities.
Table 7 presents the probability distributions of the total weighted
distance �Y under scenario (a) the closest assignment rule, and
scenario (b) routing both node 1 and node 2 to the open facility at
node 3.

Let the confidence level be 0.8. It is easy to verify for �Y we
have VaR¼50 and CVaR¼50 under scenario (a), and VaR¼170 and
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CVaR¼40 under scenario (b). That is, closest assignment cannot be
guaranteed under the objective of CVaR.
6. Computational experiment

A computational experiment was carried out to test the per-
formance of the linearization method as well as the other algo-
rithms in terms of CPU time and solution quality. All the solution
procedures were coded in Microsoft Visual Cþþ and run on a PC
with Intel Core i5-1.70G Hz CPU and 8 GB RAM.

We used the following parameter values to construct test
instances for each problem studied: Networks were randomly
generated for the number of nodes n¼10, 25, 50, 75, 100, 150 and
200; n nodes were randomly positioned inside a square with a side
length of 100 units; the distance matrix fdijg was evaluated using
the Euclidean distances; the mean and standard deviation of each
demand weight and the correlation coefficient between a pair of
demand weights were randomly chosen; the number of facilities
p¼ 0:2n, 0:4n and 0:6n; the risk attitude coefficient λ¼ �5; �1;1
and 5. In total, 84 test instances were generated for p� MPUD and
p� CPUD. In the experiment, we assumed that the nodes of a
network were potential location sites.

The mixed-integer linear programming models obtained after
linearization were solved by the MIP optimizer in Xpress-MP.
However, because the number of decision variables and con-
straints in model (7) increases quickly with n, the optimizer either
attitude of a decision maker. Omega (2016), http://dx.doi.org/
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took very long time to solve instances or could not solve them at
all due to insufficient memory when n was large enough. We
hence also ran the branch and bound algorithm (BB) and the
interchange procedure (INT) in the experiment to solve p-MPUD. A
time limit of 10,800 s was imposed on both the linearization
method (LR) and the branch and bound algorithm. The results are
summarized in Tables 8 and 9.

It is easy to see from Table 8 that the CPU time spent by each
procedure grew with n. It took the Xpress-MP MIP optimizer up to
1203 s to solve a p-CPUD instance with 200 nodes. The time
needed for λ40 was much shorter because the closest assignment
constraint set (5) was not included. Therefore, this exact solution
method is satisfactory for p-CPUD.

It is not surprising that INT ran very fast to solve p-MPUD
instances. But the CPU time that LR and BB spent rose significantly
with n. For p-MPUD, the MIP optimizer in Xpress-MP not only was
unable to solve the linearization model (7) within the time limit of
10,800 s when n reached 50, but also ran out of memory and thus
could not return a solution when n¼100, 150 and 200 (denoted by
“n/a” in Tables 8 and 9). BB was unable to find an optimal solution
within the time limit of 10,800 s when solving a p-MPUD instance
with 50 or more nodes.

Tables 9 gives the hit rate (proportion of instances for which
each algorithm returned the best known solution) and the average
optimality gap (relative difference between the returned solution
and the best known solution) for p-MPUD instances. Note that if LR
or BB terminated when reaching the time limit, the solution it
obtained might not be the true optimum. The impact of p was
insignificant on solution quality of the algorithms. Therefore, the
summary measures are organized in the table with respect to
factors other than p.

For p-MPUD, LR seldom returned the best known solution
within 3 h of CPU time once n was 50 or beyond. BB and INT
seemed to return better solutions than LR in general for networks
with 50 or more nodes. It is interesting to notice that INT was able
to find the same solution as BB in every instance on a network
with at least 50 nodes.

In view of the above computational results, we realize that the
number of nodes on a network n is a major determinant of an
algorithm's performance. Our computational experience not
shown here suggests that other parameters such as the number of
facilities to locate p, the risk attitude coefficient λ and the dis-
tributions of the mean and variance of the demand weights do not
have a substantial effect on the CPU and solution quality of the
algorithms except that the sign of λ significantly affects the CPU
time taken by the MIP optimizer in Xpress MP to solve model (PC).
We recommend Glover's linearization method for solving the
vertex p-MPUD on networks with no more than 25 nodes. The
interchange heuristic and the branch and bound algorithm can be
used to solve p-MPUD on other networks.

In network location problems n usually defines the problem
size. The computational studies in the uncertain facility location
literature seldom considered networks with 150 or more nodes
even though networks in reality could be much larger. This
restriction might be attributed to the intractability of uncertain
location problems, many of which are NP-Hard in nature and
would take very long time to solve by exact solution procedures. In
this study we chose to solve instances on networks with 200
nodes at maximum to balance the applicability of the generated
instances and the capability of the algorithms, in particular, the
linearization method and the branch and bound algorithm. The
linearization method requires a lot of decision variables for a huge
network and the resulting models might not be solvable using an
MIP optimizer due to insufficient memory. We note that Eq. (6)
cannot ensure that nodes are assigned to the closest facility. As
shown in the previous section, the solutions obtained with or
Please cite this article as: Berman O, et al. Location choice and risk
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without the closest assignment restriction may differ significantly.
Therefore, the bounds of sub-problems in the branch and bound
algorithm could be quite loose. This partly explains why the
branch and bound algorithm was not very efficient for model (PM).

Brimberg and Hodgson [5] noted that networks had become
extremely large in real applications as the economy became glo-
balized and hence it would be wise to apply heuristics that make a
trade-off between solution quality and CPU time. In this study
interchange heuristics were presented. We understand that
heuristics could be developed in a more innovative way, which is a
possible future research area.
7. Summary and outlook

In this paper we studied the median and center location pro-
blems from the point of view of a decision maker who has a
mean–variance objective. We showed how the optimal facility
locations depend on the risk attitude of the decision maker and
provided some insights on factors that would affect the optimal
locations.

For future research, one can extend the analysis for the median
and center location problems in this study to more realistic cases
such as the capacitated facility location problem [4]. We also note
that it would be interesting to compare different risk measures for
location analysis problems.
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Appendix

Solution process for Example 2.
X2 ¼ fxð1Þ; xð2Þg denotes the locations of the facilities with

δ¼ f3rxð1Þr5; 0rxð2Þr2g. Note dð1;X2Þ ¼minðxð1Þ; xð2ÞÞ, dð2;X2Þ
¼minð5�xð1Þ;5�xð2ÞÞ and dð3;X2Þ ¼ 2�xð2Þ. It follows that ϖð1;
xð1ÞÞ ¼ fxð1Þrxð2Þg, ϖð1; xð2ÞÞ ¼ fxð1ÞZxð2Þg, ϖð2; xð1ÞÞ ¼ fxð1ÞZxð2Þg,
and ϖð2; xð2ÞÞ ¼ fxð1Þrxð2Þg. As a result, we have Γ ¼ fγ1; γ2g, which
consists of two elements with γ1 ¼ fxð1Þrxð2Þg and γ2 ¼ fxð1ÞZxð2Þg.
Note that γ1 and δ are conflicting and that γ2 is implied by δ. We
may consider the constraints in δ only, under which the objective
function is expressed as

FðX2Þ ¼ 4xð2Þ þ3ð5�xð1ÞÞþ5ð2�xð2ÞÞþλ½4x2ð2Þ þ4ð5�xð1ÞÞ2

þ9ð2�xð2ÞÞ2�4:8xð2Þð5�xð1ÞÞ�6xð2Þð2�xð2ÞÞ
þ3:6ð5�xð1ÞÞð2�xð2ÞÞ�: ð10Þ

When λ¼ 1, the above expression reduces to

FðX2Þ ¼ 4x2ð1Þ þ8:4xð1Þxð2Þ þ19x2ð2Þ �50:2xð1Þ �91xð2Þ þ197:

According to Wolfe [36], an optimal solution to FðX2Þ subject to the
constraints in δ can be found by applying a revised simplex
technique on the following linear programming model given by
the Karush–Kuhn–Tucker conditions:

min y1þy2þy3þy4þy5þy6
s:t:

8xð1Þ þ8:4xð2Þ þλ1�λ2þy1 ¼ 50:2

8:4xð1Þ þ38xð2Þ þλ3�λ4þy2 ¼ 91
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xð1Þ þv1þy3 ¼ 5
xð1Þ �v2þy4 ¼ 3
xð2Þ þv3þy5 ¼ 2
�xð2Þ þv4þy6 ¼ 0
all variables Z0; ð11Þ

where λ0j s, v
0
j s and y0j s are Lagrangian multipliers, slack variables,

and artificial variables, respectively, while the complementary
slackness conditions λjvj ¼ 0 j¼ 1;2;…;6 are implicitly satisfied
with a restricted basis entry rule. Solving model (11) we have
X2 ¼ fxð1Þ ¼ 4:897; xð2Þ ¼ 1:312g as the optimal solution with
FðX2Þ ¼ 14:375:

If λ¼ �1, Eq. (10) can be re-written as

FðX2Þ ¼ �4x2ð1Þ �8:4xð1Þxð2Þ �19x2ð2Þ þ50:2xð1Þ þ89xð2Þ �147:

Applying the global optimization algorithm in Kalantari and Rosen
[21], we obtain the optimal solution X2 ¼ fxð1Þ ¼ 3; xð2Þ ¼ 0g with
FðX2Þ ¼ 50:4.
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