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Efficient methods have been proposed in the literature for the management of a set of railway main-
tenance operations. However, these methods consider maintenance operations as deterministic and
known a priori. In the Stochastic Tactical Railway Maintenance Problem (STRMP), maintenance opera-
tions are not known in advance. In fact, since future track conditions can only be predicted, maintenance
operations become stochastic. The STRMP is based on a rolling horizon. For each month of the rolling
horizon, an adaptive plan must be addressed. Each adaptive plan becomes deterministic, since it consists
of a particular subproblem of the whole STRMP. Nevertheless, an exact resolution of each plan along the
rolling horizon would be too time-consuming. Therefore, a heuristic approach that can provide efficient
solutions within a reasonable computational time is required. Although the STRMP has already been
introduced in the literature, little work has been done in terms of solution methods and computational
results. The main contributions of this paper include new methodology developments, a linear model for
the deterministic subproblem, three efficient heuristics for the fast and effective resolution of each
deterministic subproblem, and extensive computational results.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Development of an efficient plan for preventive maintenance is
crucial in many fields [28,30,19]. The plethora of activities for
which preventive maintenance must be scheduled includes rail-
way transportation. To ensure a good daily service in terms of
punctuality and safety, railway infrastructure managers have to
plan and perform maintenance operations for whole railway net-
works. Most of these operations involve preventive maintenance
at a tactical level within a medium time horizon, usually of 1 year.
The aim of preventive maintenance activities is to control track
failure probability to guarantee a stable and safe service and
minimize maintenance costs. ACEM-Rail [26] is a European project
to improve the optimization and automation of railway infra-
structure maintenance. One of the objectives of the ACEM-Rail
project is to develop new algorithms for efficient planning of
railway infrastructure maintenance tasks based on stochastic data
drawn from predictions. Several studies have addressed railway
maintenance planning. Cheung et al. [9] studied the railway track
possession assignment problem (RTPAP) using constraint
r Raviv.
: þ39 0110907099.

New heuristics for the Stoch
satisfaction. The problem involves assigning railway tracks to
scheduled maintenance tasks according to the satisfaction of a set
of constraints. The aim of the RTPAP is to produce a plan that
maximizes the assignment of jobs with the highest priority. To
effectively achieve this goal, an engineering work track possession
assignment system based on the CHIP constraint programming
language [27] substituted manpower used to find a manual solu-
tion for the RTPAP. The performance of the system was ten times
more efficient than the manual method, and its solutions are free
of human errors. Budai et al. [6,7] proposed a preventive main-
tenance scheduling problem in which routine activities and pro-
jects were scheduled within a given time horizon by minimizing
possession costs. The authors provided an integer programming
model for the problem and proved that it is NP-hard. Moreover,
they provided three fast but simple heuristics. To reduce the gap
yielded by these heuristics, Budai et al. [8] tackled the same pro-
blem using genetic and memetic algorithms. van Zante-de Fokkert
et al. [29] studied a problem in which the whole network was
divided into basic working zones named single-track grids. The
authors proposed a method yielding a maintenance schedule in
two phases. Moreover, they provided a mixed integer program-
ming model with a lexicographic objective function that first
minimizes the number of nights (i.e., the length of the plan) and
then the sum of the maximum workloads scheduled.
astic Tactical Railway Maintenance Problem. Omega (2015), http:
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Although these methods efficiently address railway main-
tenance planning at a tactical level, they deal with a known set of
maintenance tasks to be scheduled within a given time horizon.
However, within the predictive setting of the ACEM-Rail project,
future track conditions are not known in advance and the devel-
opment of the deterioration process can be only predicted.
Therefore, maintenance tasks are affected by uncertainty resulting
from unknown deterioration processes. The resulting problem
involving creation and solution of an efficient adaptive main-
tenance plan to minimize overall costs when maintenance tasks
are not known a priori but subject to uncertainty is the Stochastic
Tactical Railway Maintenance Problem (STRMP). We call the
deterministic STRMP subproblem that the infrastructure manager
has to solve in each month of the rolling horizon Deterministic
Tactical Railway Maintenance Problem (DTRMP). Very little has
been proposed so far in the literature to address the STRMP. Hei-
nicke et al. [16] outlined a preliminary methodology in which
capacity and risk constraints are treated as soft constraints.
Nevertheless, their results were limited to three instances. The aim
of our study is to complete the work started by Heinicke et al. [16]
and provide a formal definition of the problem, improved heur-
istics to address the problem, and extensive computational results.
We extend the preliminary work of Heinicke et al. [16] with a
number of contributions. We provide a formal definition of the
problem setting for both the STRMP and the DTRMP. Moreover we
formulate an integer linear programming model for the DTRMP
and treat capacity and risk constraints as hard constraints. The
STRMP and the DTRMP show a number of analogies with the bin
packing problem (BPP) [18], in particular with one of the latest
variants, namely the stochastic generalized BPP (SGBPP) [22], and
its deterministic variant, the generalized BPP (GBPP) [2]. Using a
linear model and exploiting the analogies with these BPPs, we
present three efficient heuristics that can address the DTRMP. The
first heuristic, named ADAPTED FIRST FIT DECREASING (AFFD), is an adap-
tation of the FIRST FIT DECREASING (FFD) heuristic [18], which is widely
used for BPPs. The second heuristic is a GREEDY RANDOMIZED ADAPTIVE

SEARCH PROCEDURE (GRASP), which uses the AFFD heuristic in each
iteration of the algorithm. The last heuristic is a GENETIC ALGORITHM

(GA) that uses the GRASP in the initialization phase and the AFFD
heuristic in each iteration of the algorithm. We also present
extensive computational results for 40 instances, each consisting
of 36 plans, for a 3-year overall rolling horizon.

The remainder of the paper is organized as follows. In Section 2
we define the STRMP. Section 3 describes the DTRMP and the three
heuristics developed to address it. In Section 4 we present com-
putational results. Section 5 concludes.
2. The Stochastic Tactical Railway Maintenance Problem

The STRMP involves scheduling of predictive and preventive
maintenance activities within a given time horizon (planning
horizon) over a long-term rolling horizon. The goal is to bring the
degradation process under control by performing appropriate
maintenance activities at minimum cost.

A set of maintenance activities, called warnings, is assigned to
resolve a set of glitches on the track. Each warning can be assigned
to a temporal portion of the planning horizon, called a time slot. In
general, one glitch can be resolved by more than one warning. The
final assignment of warnings to time slots is called a plan.

Each warning is characterized by a cost, an amount of resources
for resolving the warning, and a risk. Depending on the main-
tenance carried out, warnings can be at different degradation
levels. The degradation process for warnings is modeled using a
set of degradation levels and a Markov chain that defines the
transition between the degradation levels. Therefore, the cost, the
Please cite this article as: Baldi MM, et al. New heuristics for the Stoch
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resource requirement, and the warning risk depend on the
degradation level for a given warning. Because of the different
probabilities for the degradation levels in the time slots, the above
values also depend on the time slot in which a warning is allo-
cated. Each time slot is characterized by the resource amount
available to resolve assigned warnings.

Maintenance planning also involves mandatory maintenance
periods that require track possession called fixed warnings. Track
possession clearly alters the quality of the service offered by rail-
way operators. When a warning has a long working duration
(longer than one night), the work has to be continued the next day
and passenger traffic is disturbed. To have enough time to reroute
passenger traffic, the maintenance manager has to book the track
6 months in advance. Therefore, warnings with a long working
duration have to be allocated from at least time slot 7 (i.e.,
6 months).

Each month new data are obtained from the maintenance
management system and the plan is adapted, with reallocation of
updated warnings and allocation of new warnings. At the begin-
ning of any month within the whole rolling horizon, three events
occur:

1. Warnings allocated in the current month are resolved and
deleted from the planning process.

2. The track is measured and the degradation level for warnings in
the current month becomes known. On the basis of these
measurements, the transition probabilities for the degradation
level of these warnings can be updated.

3. Track measurements can reveal possible failures. This implies
the introduction of further warnings.

Therefore, a plan is created at the beginning of each month with
predicted warnings, while resolved warnings are removed and no
longer appear in future plans.

In general, given a Δ-month plan Πi starting at month i and
ending at month iþΔ�1, plan Π iþ1 will start at month iþ1 and
end at month iþΔ and will contain the warnings allocated to
month iþ1 up to iþΔ�1 with updated probabilities and possible
new warnings arising from track measurements. Thus, each month
we produce a new plan based on the previous plan and on pre-
dicted future track conditions. This involves addressing a new
static problem each month (the DTRMP presented in Section 3.1)
but with different data.

Because of uncertainty, it is impossible to know the future
degradation level of the warnings (i.e., the exact working effort in
terms of resources and costs) when track possession is booked.
Since booking of track possession implies future fixation of
warnings to a time slot, this decision must be robust against
uncertainty. In fact, if future track conditions were known, then
warning information would be known and this would be enough
to solve a deterministic problem (presented in Section 3.1) to find
the best maintenance plan. However, as future track conditions are
not known, warning information can only be predicted. The result
is an adaptive stochastic problem. This is the innovative con-
tribution of the STRMP.

In the ACEM-Rail project, warnings are characterized using data
provided by the Ferrovie del Gargano [13] operator on the San
Severo–Peschici railroad in Italy (see Section 4.1 for detailed
information on these data). The rolling horizon is 3 years
(36 months) and the planning horizon is 1 year. Each planning
horizon is made up of 12 time slots, whereby one time slot cor-
responds to one month. Therefore, without loss of generality, we
use the words month and time slot interchangeably.
astic Tactical Railway Maintenance Problem. Omega (2015), http:
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3. The Deterministic Tactical Railway Maintenance Problem

In this section we describe the DTRMP, which provides a new
maintenance plan based on the previous plan and on predicted
future track conditions.

3.1. The model

We define the following input data:

� T: Set of time slots.
� m: Total number of time slots.
� d≔jT j þ1: Dummy time slot hosting deferred warnings that

cannot be allocated to any time slot tAT .
� P: Set of glitches on the railway track.
� W: Set of warnings.
� WpDW: Set of warnings able to resolve a glitch pAP. It is clear

that ⋃pAPWp ¼W . Note that one warning might be able to
resolve a number of glitches at the same time. Such warnings
are called combined warnings.

� Wf DW: Set of fixed warnings. These warnings require track
possession and have to be booked 6 months ahead. We assume
that jT j46.

� Cðw; tÞ: Expected cost for allocating warning wAW to tAT .
� Cðw; dÞ≔Cðw; jT j þ1Þ: Penalty cost for allocating wAW to the

dummy time slot d, with Cðw; dÞ4Cðw; tÞ; 8 tAT .
� Rðw; tÞ: Expected resources requirement vector for warning wA

W when allocated to time slot tAT .
� c(t): Capacity of time slot tAT .
� Sðw; tÞ: Risk associated with warning wAW and time slot

tAT [ fdg.
� Smax: Maximum risk allowed.

Moreover, we define the decision binary variable xðw; tÞ as equal to
1 if warning wAW is allocated to time slot tAT [ fdg, and
0 otherwise.

An integer linear model for the DTRMP can then be formulated
as follows:

min
X

wAW

Xj T j þ1

t ¼ 1

Cðw; tÞ � xðw; tÞ ð1Þ

s:t: Sðw; tÞ � xðw; tÞrSmax; 8wAW ; 8 tAT [ fdg ð2Þ

X6

t ¼ 1

xðw; tÞ ¼ 0; 8wAWf ð3Þ

X

wAWp

Xj T j þ1

t ¼ 1

xðw; tÞ ¼ 1; 8pAP ð4Þ

Xj T j þ1

t ¼ 1

xðw; tÞr1; 8wAW ð5Þ

X

wAW

Rðw; tÞ � xðw; tÞrcðtÞ; 8 tAT ð6Þ

xðw; tÞAf0;1g; 8wAW ; 8 tAT [ fdg: ð7Þ
In this model, (1) minimizes the sum of the expected costs of the
allocated warnings and the penalty costs of the deferred warnings.
Constraints (2) are the risk constraints. Constraints (3) ensure that
all the fixed warnings are allocated starting from time slot 7, as
they require track possession, which must be booked 6 months
ahead. Constraints (4) state that exactly one warning able to
resolve a glitch must be allocated. Constraints (5) prevent
Please cite this article as: Baldi MM, et al. New heuristics for the Stoch
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allocation of a warning to more than one time slot. Constraint (6)
is the capacity constraint and (7) is the integrality constraint.

As stated in the Introduction, the DTRMP shows a number of
affinities with BPPs. All BPPs consist of a set of items characterized by
volume to be loaded into a set of bins. Bins are characterized by a
capacity, as in the original BPP [18], and by a cost, as in the variable
size BPP [14] and variable cost and size BPP [10]. Warnings in the
DTRMP correspond to BPP items. Similarly, time slots in the DTRMP
correspond to BPP bins. Moreover, all BPPs have capacity constraints
like (2) [20] and require the items to be loaded in a similar way to (4).
Finally, in the GBPP [2,4,3], the items are also characterized by profits
that depend on the bin into which the items are loaded [23]. A
similar behavior can be observed in the DTRMP, whereby warning
costs depend on the time slot to which they are allocated. These
strong analogies among BPPs and the DTRMP motivated us to exploit
model (1)–(7) in concert with a widely used BPP heuristic, namely
the FFD. Therefore, model (1)–(7) and the FFD heuristic are the
starting point for the development of our heuristics, which are
described in the next section.

3.2. The heuristics

In this section we present three efficient heuristics for
addressing the STRMP that consistently solve a DTRMP. The first
heuristic, the AFFD, is a variant of the heuristic used by Garey et al.
[15] for the original BPP. The second is a GREEDY RANDOMIZED ADAPTIVE

SEARCH PROCEDURE (GRASP), which exploits the AFFD heuristic as an
internal procedure. Finally, we present a GA algorithm that uses
the GRASP in the initialization procedure and the AFFD heuristic in
each subsequent iteration.

3.2.1. The AFFD heuristic
This heuristic is a generalization of the original FFD heuristic

introduced by Garey et al. [15] to address the BPP. In the original
FFD heuristic, items are sorted by decreasing volumes and each
sorted item is accommodated in the first bin able to contain it. An
item can be accommodated in a bin if the bin has enough residual
space, that is, when the sum of the volumes of the items already
accommodated in the bin plus the volume of the candidate item is
less than or equal to the capacity of the bin. In BPPs, the sum of the
volumes of the items accommodated in a bin is called the level of
the bin, usually denoted by β.

The AFFD heuristic extends the FFD heuristic to the DTRMP. It is
applied to a list UW of unallocated warnings, which, as stated in
Section 3.1, play the role of the items in the FFD heuristic. These
warnings are the unallocated warnings from the previous main-
tenance plan and new warnings predicted at the beginning of the
current plan. We compute the priority sw for each warning wAW .
Then the warnings are sorted by decreasing priorities and each sorted
warning is accommodated in the first time slot able to contain it. In
line with BPP studies, we use βðtÞ to identify the level of time slot t,
that is, the sum of the resources for warnings accommodated in time
slot t. Algorithm 1 reports the pseudo-code for our AFFD heuristic.

Algorithm 1. The AFFD heuristic.
1: UW: set of selected and unallocated warnings
astic
sort UW by decreasing priorities sw
for all tAT [ fdg do

for all wAUW do
if Rðw; tÞþβðtÞrcðtÞ then
# load warning w into time slot t
βðtÞ≔βðtÞþRðw; tÞ
UW≔UW⧹fwg

end if
end for

end for
Tactical Railway Maintenance Problem. Omega (2015), http:
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When the AFFD heuristic is used as a stand-alone heuristic, we

assign score sw to warning wAW according to its priority, which is
a measure of the urgency of the warning. A warning is more
urgent if the expected cost increases more intensively over time or
if the warning is at a higher degradation level or is risky. Therefore,
sorting the items by decreasing priorities corresponds to mana-
ging and placing the most urgent warnings first.

The AFFD heuristic is also exploited as a subheuristic of our GA.
In this case, priorities are replaced by scores that take another
meaning, as illustrated in Section 3.2.3.

3.2.2. The greedy randomized adaptive search procedure
In the AFFD heuristic described in Section 3.2.1 the warnings

are sorted by decreasing priorities. However, there are many ways
to sort the warnings, each leading — in principle — to a different
solution. Our Greedy Randomized Adaptive Search Procedure
(GRASP) uses the following principle: the AFFD heuristic is con-
sistently applied, but with a different ordering of the warnings
each time. At the end of the overall procedure, the best solution is
retained. This idea comes from the Greedy Adaptive Search Pro-
cedure (GASP) [21,11], designed to address different multi-
dimensional packing problems. Algorithm 2 reports the pseudo-
code for our GRASP.

Algorithm 2. The GRASP.

1: sorting initialization: produce sortings s1 and s2

2:
3:
4:
5:
6:
7:
8:
9:
10:

11:
12:
13:

Ple
//d
compute an initial solution initSol with the AFFD heuristic
bestSol≔initSol
for i≔1 to Imaxdo
α≔U½0; 1� do
for all wAUW do
swðαÞ≔�α � s1½w��ð1�αÞ � s2½w�

end for
sort warnings by increasing scores
compute the current solution currSol with the AFFD

heuristic and with the sorted warnings
if currSolobestSol then

bestSol≔currSol
end if

end for
Table 1
GRASP calibration.

Max # of iterations 0 1 10 20 30 40 50 60 70
Gap 0.00 0.09 0.13 0.14 0.14 0.15 0.15 0.15 0.15
Max # of iterations 80 90 100 110 120 130 140 150
Gap 0.15 0.15 0.15 0.15 0.15 0.15 0.15 0.15
14:

Initialization: Given the set UW of warnings to be allocated, we
compute two different initial sortings (step 1 of Algorithm 3),
which are a trade-off between costs (included in the priorities)
and resource requirements:

1. Sort the warnings by decreasing priorities and then by
decreasing resources.

2. Sort the warnings by decreasing resources and then by
decreasing priorities.

Positions of the warnings in the two sortings are stored in vectors
s1 and s2. These vectors will be used to generate different sortings
in the main loop of the GRASP (steps 6–8). The initial solution
initSol is the AFFD heuristic (Section 3.2.1) with the warnings
sorted by decreasing priorities (step 2). The best solution is
initially set to the initial solution (step 3).

Main loop: The main loop consists of Imax iterations (step 4). For
each iteration a new solution is computed by generating a differ-
ent sorting of the warnings (steps 5–9) and then applying the
AFFD heuristic to the resulting list UW of the sorted warnings (step
10). This is accomplished by assigning a score to each warning. For
warning wAW , its scores sw is computed as

swðαÞ ¼ �ðα � s1½w�þð1�αÞ � s2½w�Þ; ð8Þ
ase cite this article as: Baldi MM, et al. New heuristics for the Stoch
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where s1½w� and s2½w� are the positions of warning wAW in
sortings s1 and s2, respectively, computed in the initialization
phase, and αA ½0;1� is a coefficient randomly extracted from a
uniform distribution in each iteration (step 5). Warnings are sorted
by increasing scores (step 9).

One important issue in GRASP design is the maximum number
of iterations Imax. It is clear that the higher the number of itera-
tions, the better is the final solution because more solutions are
produced. However, generation of a higher number of solutions
increases the computational time. Thus, a compromise between
solution quality and computation effort is needed. We generated
100 test instances consisting of 36 plans with approximately 500
warnings per plan. For each plan, we executed the GRASP for a
maximum number of iterations ranging from 1 up to 150. Table 1
lists the percentage gap for the GRASP improvement over the
AFFD heuristic. This gap is computed as

100�AFFD�GRASP
AFFD

:

It is evident from Table 1 that the gap becomes constant after 40
iterations. Therefore, we set the maximum number of iterations
Imax to 40 when the GRASP is used as a stand-alone heuristic. We
increase Imax when the GRASP is exploited in the GA initialization
procedure because we want an initial population of 100 chromo-
somes (see Section 3.2.3 for further details).

3.2.3. The genetic algorithm
A GA works on a population S of chromosomes. Each chromo-

some consists of a string of genes that represents the codification
of a solution. Therefore, the set of chromosomes is also the set of
current solutions. In Section 3.2.2 we presented the GRASP and
showed how different sortings lead to different solutions. There-
fore, sortings can be used as a codification of solutions. Moreover,
if each warning is labeled with a unique number, the genes
become the labels for the sorted warnings and the corresponding
chromosome consists of the sequence of labels. The quality of a
chromosome is indicated by its fitness, which is related to the
objective function for the corresponding solution. We computed
the fitness of each chromosome relative to the entire population.
Given chromosome iAS with objective function OFi, its fitness is
computed as f i ¼OFi=

P
kASOFk. Another feature of a chromosome

is its age, which corresponds to the number of iterations for which
the chromosome has been in the population set.

GAs are also characterized by genetic operators, which work on
one or two chromosomes (the parents), produce new chromo-
somes (the children or offspring) and provide new and possibly
improved solutions. The genetic operators we use in our GA are
order crossover, mutation, inversion, and translation.

� Order crossover: In order crossover two parent chromosomes
generate two child chromosomes. The strings of the genes of
the two parents are aligned and two different positions in the
strings are randomly selected. These positions delimit the so-
called crossing (or matching) section. Each child has the same
genes in the crossing section as the corresponding parent. The
remaining positions in the string of genes are filled according to
the genes of the other parent, starting from the right of the
astic Tactical Railway Maintenance Problem. Omega (2015), http:
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crossing section and avoiding duplicates. This operator is mainly
used during the intensification phase.

� Mutation: This operator mutates one chromosome by swapping
the genes in two randomly selected positions. Mutation is
mainly used during the diversification phase.

� Inversion: This operator mutates one chromosome by inverting
the genes within a randomly selected crossing section. Inver-
sion is mainly used during the diversification phase.

� Translation: This operator mutates one chromosome by ran-
domly selecting one position p and cyclically translated all
genes to the right by length p. The reason for this choice comes
from packing theory. In packing solutions, residual spaces in the
most profitable bins are often filled with less profitable items.
Applying this principle to the DTRMP, if we are given a chro-
mosome with urgent warnings to the left requiring more
resources and less urgent warnings to the right requiring less
resources, translation by p can be beneficial in finding better
solutions. This operator is mainly used during the
diversification phase.

In our GA the solution associated with a new chromosome is
evaluated using the AFFD heuristic, with warnings sorted in the
order of the genes of the chromosome. The main steps of our GA
are reported in Algorithm 3.

The initial population is created using the GRASP presented in
Section 3.2.2 (step 1). In each iteration of the GRASP, a chromo-
some is created, evaluated with the AFFD heuristic, and added to
the population set S.

In each iteration, the age of the chromosomes in the population
set is increased (step 4). Moreover, a subset sub S of chromosomes
is randomly drawn from the population set (step 5).

A series of genetic operators is randomly applied to the chro-
mosomes in the extracted subset sub S (step 6) using roulette-
wheel extraction [1]. This is the so-called reproduction phase of the
genetic algorithm. In this phase the new chromosomes are eval-
uated through the AFFD procedure and added to the population
set S. If an improving solution is found, then the best solution is
updated. The size of the population set must be constant. Thus,
some of the oldest chromosomes must be killed to accommodate
the new chromosomes generated in the reproduction phase (step
7). According to the most recent techniques [24,25,5], we adopt an
elitist approach in which the best chromosomes are preserved by
extinction. This means in our case that the 30 chromosomes with
the smallest fitness values are replaced by the best chromosomes
generated in the reproduction phase.

Diversification (steps 8–10) is an operation that occurs after
MAXNONIMPROVING consecutive non-improving evaluations. This
procedure avoids situations in which the GA gets stuck in a local
minimum. Diversification consists of increasing the probability of
the mutation and the translation genetic operators, which diver-
sify the genes of future chromosomes. The algorithm ends when
the maximum number of evaluations MAXGENERATIONS is reached
(steps 11–13).

Algorithm 3. The GA.
1:
2:
3:
4:
5:
6:
7:
8:

9:

Table 2
GA calibration: percentage gaps.

MAXGENERATIONS MAXNONIMPROVING

100 500 800 1000 1500

1000 0.2628 0.252 0.2511 0.2426 0.2426
2500 0.188 0.1815 0.1774 0.1833 0.1677
5000 0.1448 0.1402 0.1249 0.1563 0.1514
10,000 0.1275 0.1085 0.1069 0.1227 0.1246

Ple
//d
compute the initial population S through the GRASP
STOP≔false
while STOP¼ false do
increase the age of chromosomes in the population
draw a subset subS of chromosomes from the population S
perform the reproduction procedure on subset subS
kill a subset of chromosomes
if the number of non-improving solutions Z

MAXNONIMPROVING then
perform the diversification procedure
ase cite this article as: Baldi MM, et al. New heuristics for the Stochastic
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end if
if the number of generations ZMAXGENERATIONS then

STOP≔true
end if

end while
14:

We used an adaptive approach to find appropriate values for
the aforementioned parameters. We started with a high number of
MAXGENERATIONS and MAXNONIMPROVING and varied the prob-
ability of each genetic operator in the roulette-wheel extraction
and the number of chromosomes drawn for reproduction.
According to practical experience, we set the population size to
100 [25]. The best value for the number of chromosomes drawn
was 30. Each of the 30 chromosomes drawn undergoes order
crossover with the remaining 29 chromosomes. Moreover, each
drawn chromosome undergoes one of the following genetic
operators: with probability 0.5 for inversion, 0.25 for mutation,
and 0.25 for translation. The probability for mutation and trans-
lation is low because these operators tend to diversify the popu-
lation. For this reason, in the diversification phase (which occurs
after MAXNONIMPROVING non-improving generations) the prob-
ability is 0.2 for inversion, 0.4 for mutation, and 0.4 for translation.
The diversification procedure continues until a new improving
solution is found. Then the probabilities are again set to 0.5 for
inversion, 0.25 for mutation, and 0.25 for translation.

Once we fixed the population size and the number of chro-
mosomes drawn, we varied MAXGENERATIONS in the range f
1000; 2500; 5000; 10;000g and MAXNONIMPROVING in the
range f100; 500; 800; 1000; 1500g. For each combination of
these two parameters we executed the GA over 10 instances with
36 plans and approximately 500 warnings per plan. We computed
the percentage gap with respect to CPLEX as

100�GA�CPLEX
CPLEX

:

Table 2 reports these gaps and Table 3 lists the corresponding
computational times. From Table 2 it is evident that the best
choice is 10,000 for MAXGENERATIONS and 800 for MAXNONIM-
PROVING. Table 3 shows that this accuracy involves the highest
computational time of approximately 40 s, which, however, is
acceptable and still low.
4. Computational results

This section describes the computational tests carried out. We
generated 40 instances consisting of 36 monthly plans based on
data provided by Ferrovie del Gargano [13]. Section 4.1 presents
detailed information on the generation process, while Section 4.2
compares our heuristics with the optima computed by the CPLEX
12.5 optimizer [17].
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Table 3
GA calibration: computation time (in seconds).

MAXGENERATIONS MAXNONIMPROVING

100 500 800 1000 1500

1000 4.6 4.5308 4.542 4.6687 4.5748
2500 10.3449 10.3403 10.3355 10.3398 10.3371
5000 20.1509 20.145 20.2122 20.1692 20.1839
10,000 40.3635 40.3777 40.3258 40.3454 40.3749

Table 4
Warning features.

Code Character Name Amount Cost

ACEM_RC Pack Rail resurfacing 1 1.63
ACEM_GRA Pack Mechanic rail grinding 1 0.64
ACEM_GR Pack Manual rail grinding 1 0.38
ACEM_BT Pack Tamper by tamping machine 1 1.41
ACEM_BL Pack Tamper by manual methods 1 108.54
ACEM_BC Pack Ballast cleaning 1 10.52
ACEM_SBR Pack Subballast replacing 1 34.89
ACEM_RP_RP_J Pack Rail replacement in rail with

joint (without acstrhom)
1 1721.93

ACSTRHOM Pack Stress homogenization per
rail

1 2.81

ACEM_BR Pack Ballast replacing 1 43.36
ACEM_BP Pack Ballast restoration curb

profile
1 20.95

ACEM_GD Pack Gauge deviation manual field
work

1 7.33

ACEM_LD Pack Longitudinal defects manual
field work

1 49.22

ACEM_HD Pack Horizontal defects manual
field work

1 47.79

ACEM_FP Pack Rail fishplating 1 324.07
ACEM_SF Pack Sleepers flanged holes

sanitizing
1 11.42

ACEM_SRC Pack Concrete sleepers
replacement

1 191.93

ACEM_FRT Pack Tight fastening 1 8.42
ACEM_FRL Pack Large fastening replacement 1 18.92
ACEM_SBL Pack Subballast local replacing 1 2806.60
ACEM_DDC Pack Drainage ditches cleaning 1 0.12
ACEM_SGV Pack Chemical spray to avoid

vegetation
1 0.16
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4.1. Instance generation

Instances were generated based on data provided by Ferrovie
del Gargano [13]. There are 22 types of warning, each consisting of
a set of tasks, as reported in Table 4. For each warning and task, the
columns in Table 4 denote (1) the acronym, (2) the nature of the
operation, (3) the name, (4) the amount, and (5) the unit cost at
the initial (lowest) degradation level.

Table 5 shows the occurrence probabilities (column 2) and the
degradation levels (column 3) for all warning types (column 1). An
increase in degradation level implies more resources to resolve
warnings (column 4), possible resolution of extra warnings (col-
umn 5), and an increase in risk (column 6). Column 7 reports how
the degradation levels, resource requirements, and risks change
with time.

Since we did not obtain real data from monthly track mea-
surements, warnings were randomly generated for each plan of
each instance considering the occurrence probabilities in
Table 5. We varied the number of warnings generated from 500
to 5000.
Please cite this article as: Baldi MM, et al. New heuristics for the Stoch
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4.2. Results

Computational tests were performed in Java 8 and executed on
a workstation with 4 GB of RAM and a 3.40-GHz processor. We
considered instances with a different number of warnings n ran-
ging from 500 to 5000. In particular, we created 10 instances for
each value of nAf500; 1000; 2500; 5000g, for a total of 40
instances. These values reflect the number of warnings for single,
regional, and national tracks [12]. Each instance consists of 36
plans. Therefore, each heuristic runs over 40� 36¼ 1440 plans.
Our heuristics were validated by comparing their performance
with that of the CPLEX 12.5 solver [17]. We set a time limit of 5 h
for CPLEX.

Table 6 shows the average percentage gap for the three heur-
istics with respect to the CPLEX solver for all values of n. Data are
reported as the mean gap in overall cost for 10 instances over 36
plans. It is evident that all the proposed heuristics provide good-
quality results, with an overall mean gap o1%. The most effective
heuristic is the GA, with an overall gap of 0.36%.

Table 7 lists the number of optima found by each heuristic.
Again, the most effective heuristic is the GA, which finds 1142
optima over 1440 plans.

From Tables 6 and 7 we can conclude that the GA is the most
effective heuristic, while the AFFD heuristic is the least effective
one, with an overall gap of 0.90% and 289 optima over 1440 plans.

Tables 8 and 9 list the computational times for all the proposed
methods. In particular, Table 8 shows the average computational
time for each value of n, while Table 9 reports the maximum
computational time.

It is evident that CPLEX can be used when the number of
warnings is 500 because the mean time is competitive compared
to that of the AFFD heuristic and the GRASP. However, as the
number of warnings n increases, CPLEX use becomes prohibitive
because the computational time limit of 5 h is reached, while the
computational time for the GA is o2 min. The CPLEX computa-
tional time would clearly increase if the time limit were removed.

Tables 8 and 9 show that the GA is the most effective heuristic,
but is also the slowest one, with mean and maximum computa-
tional times of approximately 44 s and 88 s respectively. The AFFD
heuristic is the fastest algorithm, but the overall gap for the solu-
tions provided is 0.9%.

From Tables 6–9 we can conclude that our heuristics offer a
great degree of flexibility according to the goal of decision-makers.
For immediate solutions, the AFFD heuristic should be imple-
mented, but this choice leads to lower quality of solutions. For
better solutions, the GA is recommended, but the average com-
putational time increases to 44 s. From Tables 6–8 it is evident that
the GRASP is a compromise between the AFFD heuristic and the
GA. It yields an intermediate gap of 0.74% and 331 optima, and still
offers fast computation.
5. Conclusions

We described extensive work on the Stochastic Tactical Railway
Maintenance Problem (STRMP), a novel problem for maintenance
planning at a tactical level. The main innovations of the STRMP
with respect to previous problems in the literature are the intro-
duction of uncertainty for future track conditions and the possi-
bility of creating and managing an adaptive maintenance plan
rather than a fixed one. Exploiting analogies between the STRMP
and a number of bin packing problems, we proposed a model for
the deterministic subproblem and three efficient heuristics that
effectively address the STRMP. The ADAPTED FIRST FIT DECREAS-
ING heuristic, the GREEDY RANDOMIZED ADAPTIVE SEARCH
PROCEDURE, and the GENETIC ALGORITHM offer decision-makers
astic Tactical Railway Maintenance Problem. Omega (2015), http:
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Table 5
Development of the maintenance warnings.

Code Probability Degradation level Units (U) Extra tasks Risk Entry month

ACEM_RC 0.043 1 300–400 0 0–6
2 375–500 1 3–12
3 750–1000 2 6–24
4 750–1000 3 18–100

ACEM_GRA 0.016 1 50–100 0 0–6
2 63–125 1 3–12
3 125–250 2 6–24
4 0–0 U/9 ACEM_RP_RP_J 3 18–100

ACEM_GR 0.016 1 50–100 0 0–6
2 63–125 1 3–12
3 125–250 2 6–24
4 0–0 U/9 ACEM_RP_RP_J 3 18–100

ACEM_BT 0.064 1 1800–2000 0 0–12
2 3600–4000 1 6–18
3 5400–6000 2 10–36
4 5400–6000 3 24–100

ACEM_BL 0.064 1 5–5 0 0–12
2 10–10 1 6–18
3 15–15 2 10–36
4 15–15 3 24–100

ACEM_BC 0.02 1 1450–1616 0 0–6
2 1450–1616 U ACEM_BT 1 4–24
3 1450–1616 U ACEM_BT 2 20–40
4 1450–1616 U ACEM_BT 3 36–100

ACEM_SBR 0.008 1 200–300 0 0–6
2 200–300 U ACEM_BT 1 4–24
3 200–300 U ACEM_BT 2 20–40
4 200–300 U ACEM_BT 3 36–100

ACEM_RP_RP_J 0.003 1 1–1 0 0–1
2 1–1 1 0–2
3 1–1 2 1–3
4 1–1 3 3–100

ACSTRHOM 0.16 1 100–900 0 0–6
2 100–900 1 6–12
3 100–900 U ACEM_HD 2 12–24
4 100–900 U ACEM_HD 3 18–100

ACEM_BR 0.016 1 60–100 0 0–12
2 60–100 U ACEM_BT 1 8–18
3 60–100 U ACEM_SBR 2 16–30
4 60–100 U ACEM_SBR 3 24–100

ACEM_BP 0.032 1 60–100 0 0–6
2 60–100 U ACEM_HD 1 6–15
3 60–100 U ACEM_BR 2 15–30
4 60–100 U ACEM_BR 3 24–100

ACEM_GD 0.008 1 10–20 0 0–2
2 10–20 U ACEM_HD 1 2–4
3 10–20 U ACEM_HD 2 4–6
4 10–20 U ACEM_HD 3 6–12

ACEM_LD 0.016 1 10–50 0 0–2
2 10–50 1 2–4
3 10–50 2 4–6
4 10–50 U/9 ACEM_RP_RP_J 3 6–12

ACEM_HD 0.016 1 10–50 0 0–2
2 10–50 1 2–4
3 10–50 2 4–6
4 10–50 U/9 ACEM_RP_RP_J 3 6–12

ACEM_FP 0.008 1 1–4 0 0–3
2 1–4 3 3–100

ACEM_SF 0.008 1 15–50 0 0–5
2 15–50 2 4–7
3 15–50 3 6–100

ACEM_SRC 0.006 1 1–5 0 0–3
2 1–5 1 ACEM_RP_RP_J 3 3–100

ACEM_FRT 0.16 1 20–100 0 0–5
2 20–100 2 4–7
3 20–100 3 6–100

ACEM_FRL 0.008 1 10–25 0 0–5
2 10–25 2 4–7
3 10–25 0.4 U ACEM_SRC 3 6–100

ACEM_SBL 0.008 1 1–1 0 0–20
2 1–1 2 18–28
3 1–1 3 24–100

ACEM_DDC 0.16 1 100–300 0 0–24
2 100–300 U ACEM_BC 2 18–36
3 100–300 U ACEM_BC 3 36–100
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Table 5 (continued )

Code Probability Degradation level Units (U) Extra tasks Risk Entry month

ACEM_SGV 0.16 1 5000–10,000 U ACEM_BC 0 0–18
2 5000–10,000 U ACEM_BC 2 18–36
3 5000–10,000 3 36–100

Table 6
Percentage gaps of the proposed heuristics.

Method n Overall gap

500 1000 2500 5000

AFFD 0.85 1.06 0.79 0.90 0.90
GRASP 0.70 0.89 0.65 0.73 0.74
GA 0.13 0.46 0.35 0.48 0.36

Table 7
Number of optima of the proposed heuristics.

Method n # Optima over 1440

500 1000 2500 5000

AFFD 166 69 42 21 298
GRASP 171 75 54 31 331
GA 301 280 275 286 1142

Table 8
Average computation time of the proposed heuristics (in seconds).

Method n Overall average time

500 1000 2500 5000

CPLEX 0.23 56.03 103.66 444.69 151.15
AFFD 0.00 0.00 0.00 0.00 0.00
GRASP 0.19 0.20 0.21 0.22 0.21
GA 40.66 44.24 46.12 46.37 44.35

Table 9
Maximum computation time of the proposed heuristics (in seconds).

Method n

500 1000 2500 5000

CPLEX 10 18,032 18,252 18,478
AFFD 0.02 0.02 0.02 0.02
GRASP 0.27 0.34 0.41 0.64
GA 47.81 61.59 70.98 87.72
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a high degree of flexibility according to the computational time
available and the quality of solution required. Extensive compu-
tational results demonstrate the efficiency and effectiveness of
these heuristics for the STRMP.
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