
Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎
Contents lists available at ScienceDirect
Omega
http://d
0305-04

☆This
n Corr
E-m

stefan.n

Pleas
//dx.
journal homepage: www.elsevier.com/locate/omega
A general modeling approach to online optimization with lookahead$

Fabian Dunke n, Stefan Nickel
Karlsruhe Institute of Technology, Institute of Operations Research, Karlsruhe, Germany
a r t i c l e i n f o

Article history:
Received 16 October 2014
Accepted 14 October 2015

Keywords:
Online optimization
Lookahead
Discrete event system
Algorithm analysis
x.doi.org/10.1016/j.omega.2015.10.009
83/& 2015 Elsevier Ltd. All rights reserved.

manuscript was processed by Associate Edito
esponding author.
ail addresses: fabian.dunke@kit.edu (F. Dunke
ickel@kit.edu (S. Nickel).

e cite this article as: Dunke F, Nickel
doi.org/10.1016/j.omega.2015.10.009i
a b s t r a c t

A vast number of real world problems are coined by an information release over time and the related
need for repetitive decision making over time. Optimization problems arising in this context are called
online since decisions have to be made although not all data is known. Due to technological advances,
algorithms may also resort to a limited preview (lookahead) on future events. We first embed the
paradigm of online optimization with lookahead into the theory of optimization and develop a concise
understanding of lookahead. We further find that the effect of lookahead can be decomposed into an
informational and a processual component. Based on analogies to discrete event systems, we then for-
mulate a generic modeling framework for online optimization with lookahead and derive a classification
scheme which facilitates a thorough categorization of different lookahead concepts. After an assessment
of performance measurement approaches with relevance to practical needs, we conduct a series of
computational experiments which illustrate how the general concept of lookahead applies to specific
instantiations and how a knowledge pool on lookahead effects in applications can be built up using the
general classification scheme.

& 2015 Elsevier Ltd. All rights reserved.
1. Introduction

Although there is an agreement on the importance of coping
with unexpected events in today's systems for production and
logistics [26,51], recent implementations of planning and sche-
duling systems still suffer from their deficiency in dealing with
uncertainty over time. In a rolling horizon, plans are determined
on the basis of forecasts by offline optimization methods [51].
However, since only decisions of the next period are implemented
before the problem gets resolved with updated data, this approach
exhibits large redundancies.

On the other hand, possibilities for collection of data about
near-future events are steadily increasing due to technological
developments [26] such as radio frequency identification (RFID),
global positioning systems (GPS) or geographical information
systems (GIS). Since planning systems in these environments are
subject to permanent information inflow, they are said to be
online. Optimization problems in this context are called online
optimization problems [24]. These problems are characterized by
the fact that decisions are required to be made repeatedly before
all data is available. In contrast to other methodologies for
r Ghate.

),

S. A general modeling appr
optimization under uncertainty, there are no forecasts or prob-
abilities of future events assumed in online optimization. However,
as a result of technological opportunities given above, we can now
cope with uncertainty differently. Through the installation of
lookahead devices, it is possible to acquire data about future
events at an earlier point in time. Hence, uncertainty is tackled
forcefully because parts of the previously uncertain future can
now be fixed to certainty through the utilization of lookahead.
Thus, the decision making process consists of repetitive decisions
where the input to each decision only consists of the small, but
certain part of the future known at that time. Though, as can be
seen from the different information gathering devices mentioned
above, it may be reasonable to be more precise with respect to the
actual degree of “onlineness” in a specific problem setting. The
need for a concise notion of lookahead is also reflected by the
manifold perceptions of lookahead depending on the application
[2–4,14,17,29,37,45,52,56]. For this reason, this paper coins the
notion of online optimization with lookahead on a formal basis.

The task of solving online optimization problems is a recurring
pattern in industrial applications (Fig. 1): each time the functional
logic of a dynamic system requires a decision, an online algorithm
is called to deliver it, i.e., partial answers based on currently
available data have to be given such that the overall solution will
be as good as possible.

Solution methodologies for the different optimization para-
digms strongly differ from each other. Consider the input sequence
oach to online optimization with lookahead. Omega (2015), http:

www.sciencedirect.com/science/journal/03050483
www.elsevier.com/locate/omega
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
mailto:fabian.dunke@kit.edu
mailto:stefan.nickel@kit.edu
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009

Fig. 1. Hierarchical relation between operations and control of a dynamic system
and online optimization with lookahead.

F. Dunke, S. Nickel / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎2
σ ¼ ðσ1;σ2;…Þ. In offline optimization, σ is known in advance and
a plan for how to process its elements can be computed directly.
In the sequential model of online optimization [30], only one input
element is known at a time and input elements must be processed
in release order, i.e., input element σi is processed based upon
knowledge of σ1;…;σi and previous decisions on σ1;…;σi�1. In
the time-stamp model [30], each input element is assigned an
arrival date such that input elements may accumulate naturally
and automatically form some lookahead set of unprocessed input
elements. In online optimization with request lookahead [2,52],
more than one unprocessed input element may be known at a
time and also an explicit formulation of processing restrictions is
required. One could insist on sequential processing (σi must be
processed before σiþ1) or allow for a processing in arbitrary order
(σiþ1 can be processed before σi). There are a plenty of variations
of how lookahead is understood and what it means for the pro-
cessing of single input elements. For this reason, this paper will
provide the tools for classifying the main features of a specific
online optimization problem with lookahead.

Literature focuses on a worst-case type analysis of algorithm
performance – called competitive analysis [13,40] – where an
online algorithm has to compete with an optimal offline algorithm.
Derivations of this measure are based on the individual taxonomy
in a specific problem and not on a general notation valid for all
problems. Likewise, the case with lookahead has been addressed
only rarely in specific problems from routing and transportation
[4–6,36,37,52], scheduling [18,44–47,54,57,58], organization of
data structures [2,3,14,41,53,55,56], data transfer [20,34], packing
[29,31], lot sizing [1], metrical task systems [9,42] or graph theory
[17,32,35]. To the best of our knowledge, there have been no
attempts to formalize different degrees of available information in
a general framework. A reason for the lack of general concepts lies
in the different possibilities to deal with temporal aspects [30].
When only the order of input element releases matters, time is
already modeled implicitly through the indices of σ1;σ2;… On the
other hand, when time durations play a role, time aspects have to
be modeled explicitly as part of the data belonging to σ1;σ2;…,
e.g., in the form of release times t1; t2;… This issue also accounts
for various perceptions of lookahead along with its implied pro-
cessing characteristics.

1.1. Lookahead and related concepts for uncertainty

The idea of online optimization with lookahead is based on
known deterministic information previews, and hence it can be
distinguished from other approaches for optimization under
incomplete information or uncertainty. In stochastic programming
[12], probability distributions for scenarios that take into account all
uncertain factors (often in form of parameters) are known and
solution quality is typically evaluated by average-case measures to
immunize the solution probabilistically to incomplete information.
In addition, stochastic programming is rather concerned with
sporadic than with frequent decision making. Scenarios are often
coined by the realization of parameter values which are considered
Please cite this article as: Dunke F, Nickel S. A general modeling appr
//dx.doi.org/10.1016/j.omega.2015.10.009i
to be some random variable. Online optimization differs from this
approach strongly since it is not focused on scenarios and/or
parameters, but rather on the realizations of input elements for
which no stochastic principles are known to hold. Dynamic pro-
gramming [8] assumes that an optimization problem exhibits the
property of optimal substructures (i.e., an optimal solution is
composed of optimal solutions to subproblems) and the property of
overlapping subproblems (i.e., the overall problem can be broken
down into several subproblems of the same type whose solutions
can be composed to obtain an overall solution). Clearly, both
properties are not fulfilled in general in the online versions of
combinatorial optimization problems. Moreover, many online pro-
blems involve time considerations such as input element release
times. Therefore, it is impossible to subdivide the overall problem
into several discrete stages. To apply the theory of dynamic pro-
gramming, we therefore need a fixed time horizon in order to
determine an optimal solution. In online optimization, the end of
the input sequence is not known and decisions are made in an
exclusively forward-moving rolling time horizon. The time horizon
T in dynamic programming is the number of periods for which the
planning shall be conducted, and between periods 1 and T all
possible realizations in the respective periods are considered.
Conceptually different, lookahead in online optimization only takes
into account the actual upcoming realizations (known due to some
lookahead device) and not all possible realizations. Finally, the goal
in dynamic programming is different than in online optimization: in
dynamic programming we are looking for an optimal strategy for
given horizon, state space, action space, state transition and reward
function which all are known in advance; in online optimization,
we usually already have a strategy in form of an algorithm and want
to check its behavior in the online setting. Nonetheless, it is possible
to emulate the behavior of an online algorithm by means of a
Markov chain (cf. also [22]). However, this approach is very
unhandy and leads to computational issues even for small problem
instances. We also note that the setup of a Markov decision process
[49] is different from online optimization: state transitions occur
probabilistically once a control action has been chosen, whereas in
our setting they occur deterministically based on an algorithm's
deterministic decision. Markov decision processes are used as a
modeling formalism to determine an optimal strategy, i.e., the
decisions of an optimal algorithm with respect to some expected
objective value, using dynamic programming. Stochastic assump-
tions concerning transition probabilities depending on the control
action are given a priori: pðs; a; s0Þ with s; s0AS and aAA is the
probability that the successor state of s is s0 if action a is chosen. In
contrast to this, our analysis merely intends to evaluate the quality
of a given algorithm in a setting of complete nescience of stochastic
information. In particular, it is not possible to find an optimal
algorithm because the end of the horizon is unknown. The field of
model predictive control [15] deals with finding the optimal control
of complex dynamic systems. This idea is similar to that of online
optimization with lookahead. However, the setting in model pre-
dictive control is relatively clear marked out by relations between
dependent and independent variables in a corresponding process
model. This is also why this technique is mainly used in the context
of process industries, but not in the field of combinatorial online
optimization. Robust optimization [11] does not rely on probability
distributions but on a given range of possible values for uncertain
factors. The goal is to construct a solution which is feasible for all
possible realizations and exhibits optimality in some robustness-
related sense. In online optimization with lookahead, there is no
need for forecasts and probabilities, and subproblems are compu-
tationally easy because of their limited size. From this discussionwe
see that the concept of “lookahead” is seen from quite a number of
different perspectives.
oach to online optimization with lookahead. Omega (2015), http:

http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009

F. Dunke, S. Nickel / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 3
In this paper, lookahead is understood in a deterministic
way, i.e., it can be taken for granted that the information in the
lookahead is always correct and never wrong. This is also the
perception of lookahead in the online optimization community
(cf. [2–4,14,17,29,37,45,52,56]) since it is presumed that there are
no probabilistic information given in many applications. As a
result, it could be even more harmful to introduce wrong
hypotheses about underlying probability distributions when they
are actually unknown. Quite the contrary, online optimization
traditionally refrains from introducing probabilistic models about
future events in order to hedge against all futures in equal mea-
sure. In this sense, lookahead in online optimization provides
algorithms with additional power in the form of certain informa-
tion about the future.

1.2. Problem statement

In industrial practice, we encounter many applications which
contain online optimization problems, e.g., in machine scheduling
[48] or vehicle routing [28]. On the other hand, no general fra-
mework or tool set for a comprehensive analysis of online opti-
mization algorithms in applications is available yet. Moreover,
there is not even a unique definition of lookahead. Hence, we first
need a common understanding of lookahead in order to under-
stand how an algorithm reacts upon additional data and how it
could hopefully be further improved. Following this approach will
make it possible to trace back lookahead effects observed in
practice to their primary origins and ascribe them a core reason.
Moreover, lookahead mechanisms and impacts occurring
throughout different domains can then be described, explained
and compared using a general notation.

The remainder of this paper is organized as follows: Section 2
presents a general definition of the concept of lookahead in opti-
mization and provides a detailed specification of the mechanisms
by which additional value in terms of improved algorithm per-
formance can be gained from additional information. In Section 3,
we formulate a general modeling framework which allows us to
model the solution process in an instance of an online optimiza-
tion problem. The resulting framework also leads to the intro-
duction of a classification scheme by which the key components of
a specific lookahead concept can be categorized quickly. After a
short assessment of performance measures in Section 4, the
computational experiments in Section 5 show how lookahead
works in different problem classes and how the results can be
used to build a pool of knowledge on lookahead effects.
2. Online optimization with lookahead

In order to establish a clear, but yet flexible definition for an
online optimization problem with lookahead, we first introduce
some basic concepts with respect to the process of information
release in an optimization problem and related processing possi-
bilities of an algorithm.

2.1. Definition of lookahead

According to Ausiello et al. [7], a (single-objective) optimization
problemΠ is a quadruple ðI; S; f ;optÞ where I is a set of instances, S
is a function returning the set of solutions S(i) for any iA I, f is a
function returning the objective value for any pair ði; sÞA I � SðiÞ,
and optAfmin;maxg is the optimization goal. However, this defi-
nition does not account for the sequentiality in the instance
revelation process that any online solution method has to obey,
and it disregards previous answers of the solution method. We
introduce the instance revelation rule as a mechanism to account
Please cite this article as: Dunke F, Nickel S. A general modeling appr
//dx.doi.org/10.1016/j.omega.2015.10.009i
for dynamic aspects in the revelation process of an instance.
Essentially, this comprises a description of when input elements
are released over time.

Definition 1 (Instance revelation rule). An instance revelation rule
is a rule that governs the temporal course of events in the release
of information on the problem instance.

The close link between dynamic input disclosure and a corre-
sponding instance revelation rule is respected in the following
definition which is an extension of the rather general definition for
an instance of an optimization problem given by Garey and
Johnson [25]. By including the instance revelation rule into the
definition of a problem instance we explicitly account for the
dynamic character of the online optimization paradigm.

Definition 2 (Instance of an optimization problem). An instance of
an optimization problem consists of a set of parameter values
including an input sequence σ ¼ ðσ1;σ2;…Þ and an instance reve-
lation rule r.

From additional data, new possibilities for possible actions of
an algorithm may arise. Hence, we need a way to settle all
unclarities concerning the processing of the input elements which
may be implied by additional data. Hence, we associate a set of
rules with a problem.

Definition 3 (Rule set). A rule set of a problem is a set of
restrictions on the solution to an instance of the problem.

Now, we can associate each instance iA I with a specific
instance revelation rule that determines how the information of i
is made available and with a rule set that affects the form of the
set of feasible solutions S(i) for each iA I. We note that the rule set
P gives us a description of the conditions under which an algo-
rithm has to make its decisions during input element processing,
whereas the feasible set S will only be known after all input ele-
ments have been released. Of course, each element in S has to obey
the rules given in P. In order to prepare for the definition of loo-
kahead, we make the following notational conventions: when we
substitute instance revelation rule r by instance revelation rule r0,
then we write r-r0 and speak of an instance revelation rule
substitution. When we substitute rule set P by rule set P0, then we
write P-P0 and speak of a rule set substitution. Definition 4
suggests that lookahead consists of an informational component
(r-r0) and a processual component (P-P0). The subdivision of
lookahead into these two components will be helpful to under-
stand and explain the behavior of an algorithm in an online
optimization problem.

Definition 4 (Lookahead). A lookahead is a pair ðr-r0; P-P0Þ
consisting of an instance revelation rule substitution r-r0 and a
rule set substitution P-P0.

Accordingly, an online optimization problem with lookahead
ðI0; S0; f ;optÞ can be seen as the result of applying the two com-
ponents of lookahead to a reference online optimization problem
ðI; S; f ;optÞ. In the first step, information is made available earlier
which is achieved through the instance revelation rule substitu-
tion r-r0. In the second step, potential new processing possibi-
lities are established through the rule set substitution P-P0. The
first step modifies the instance set from I to I0. The second step
modifies the feasible set S to S0 because a changed rule set also
changes what we consider to be a feasible solution. Note that we
could also artificially bypass the second step (i.e., P-P). This
would give us an online optimization problem with lookahead
where all benefits of lookahead are exclusively due to the earlier
information release.
oach to online optimization with lookahead. Omega (2015), http:

http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009

F. Dunke, S. Nickel / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎4
2.2. Value of lookahead information

Due to the lack of a neutral performance benchmark in opti-
mization under incomplete information, we cannot derive any
statement about the value of lookahead without relating it to a
specific algorithm. Hence, we ask what can be achieved by an
algorithm upon provision of additional lookahead. The discussion
is restricted to minimization problems.

Definition 5 (Lookahead value). Let ΠP ¼ ðI; S; f ;minÞ and ΠP0 ¼ ðI0,
S0; f ;minÞ be optimization problems where i0A I0 results from
applying lookahead ðr-r0; P-P0Þ to iA I, and let sALGASðiÞ and
s
ALG

0 AS0ði0Þ be the solutions determined by algorithm ALG for
instance i in problem ΠP and by algorithm ALG

0 for instance i0 in
problem ΠP0 , respectively. The lookahead value of ðr-r0; P-P0Þ on
i with respect to ðALG;ALG

0Þ is

Δf r;r
0 ;P;P0

ALG;ALG
0 ðiÞ≔f ði; sALGÞ� f ði0; s

ALG
0 Þ: ð1Þ

The following decomposition of Δf r;r
0 ;P;P0

ALG;ALG
0 ðiÞ is artificial

because it relies on the members of the set ALG of admissible
algorithms for problems that have to operate under rule set P.

Definition 6 (Partial lookahead value due to r-r0). Let ΠP ¼ ðI; S,
f ;minÞ be an optimization problem, let ALG be an algorithm for
ΠP, and let ALG be a set of admissible algorithms for ΠP. Further,
let i″ be the instance which results from applying lookahead ðr-
r0; P-P0Þ to iA I, and let sALGASðiÞ and sALG″ASði″Þ be the solutions
determined by algorithm ALG for instance i and by algorithm
ALG″AALG for instance i″, respectively. The partial lookahead
value of ðr-r0; P-P0Þ due to instance revelation rule substitution
r-r0 on i with respect to ðALG;ALGÞ is

Δf r;r
0

ALG
ðiÞ≔f ði; sALGÞ� min

ALG″AALG
f ði″; sALG″Þ

n o
: ð2Þ

In this definition, ALG″ has to operate under P although the
lookahead also comprises a rule set substitution to P0. However, to
determine the partial lookahead value attributable to the instance
revelation rule substitution, we have to maintain processing under
P.

Definition 7 (Partial lookahead value due to P-P0). Let ΠP ¼ ðI, S;
f ;minÞ and ΠP0 ¼ ðI0; S0; f ;minÞ be optimization problems, let ALG

and ALG
0 be algorithms for ΠP and ΠP0 , respectively. Further, let i0

be the instance which results from applying instance revelation
rule substitution ðr-r0Þ to iA I, and let s

ALG
0 ASði0Þ be the solution

determined by algorithm ALG
0 for instance i0. The partial looka-

head value of ðr-r0; P-P0Þ due to rule set substitution P-P0 on i
with respect to ðALG;ALG

0Þ is

Δf P;P
0

ALG;ALG
0 ðiÞ≔Δf r;r

0 ;P;P0

ALG;ALG
0 ðiÞ�Δf r;r

0

ALG
ðiÞ: ð3Þ

By definition, the lookahead value is decomposed such that for
lookahead ðr-r0; P-P0Þ it holds that

Δf r;r
0 ;P;P0

ALG;ALG
0 ðiÞ ¼Δf r;r

0

ALG
ðiÞþΔf P;P

0

ALG;ALG
0 ðiÞ: ð4Þ

Note that the partial lookahead value due to rule set substitu-
tion implicitly presumes that additional information is made
known earlier. Hence, it corresponds to the part of the lookahead
value that could not be elicited just from the additional informa-
tion. The following examples show that – depending on the
application – both types of partial lookahead values can be
prevalent.
Please cite this article as: Dunke F, Nickel S. A general modeling appr
//dx.doi.org/10.1016/j.omega.2015.10.009i
Example 1 (Online bin packing with lookahead). The task in (one-
dimensional) bin packing is to pack a number of items σ1;σ2;…;σn

for nAN with sizes siAð0;1� for i¼ 1;…n into a minimum number
of unit-capacitated bins. We now only consider two item sizes
f0:4;0:6g and σ ¼ ðσ1;σ2;σ3;σ4Þ ¼ ð0:4;0:4;0:6;0:6Þ. For the pure
online version, we have instance revelation rule r and rule set P as
r≔σ1 is known at the beginning; σiþ1 is revealed after σi has been
assigned,
P≔fσi has to be assigned before σiþ1g:
For the lookahead version, we assume request lookahead of size 2,
i.e., we have instance revelation rule r0 and rule set P0 as r0≔σ1,σ2
are known at time 0; an item is revealed when another one has
been assigned,
P0≔{Any previously revealed item can be assigned when it has not
yet been assigned}.

Let instances i and i0 correspond to σ as revealed under r and r0,
respectively. We use algorithm BESTFIT (BF) in the pure online case
and algorithm BESTFITDECREASING (BFD) in the lookahead case. BF puts
the next item into the fullest bin available, whereas BFD first sorts
the known unassigned items by non-increasing sizes and assigns
the largest of them to the fullest bin available. Both algorithms
comply with rule sets P and P0, respectively. Moreover, we let
intermediary algorithm BESTFITMODIFIED (BFM) operate under P, i.e., it
puts the items into the bins in their order of appearance. However,
BFM bases its decision on all available information: when BFM is
supplied with information according to r0 it operates identically to
BF except for the case where an open bin at level 0.4 exists and
two items with sizes 0.4 and 0.6 have to be assigned in this order
(because of P). In this case, the item of size 0.4 is put in a new bin
and the item of size 0.6 is packed in a bin at level 0.4.

BF yields one bin at level 0.8 and two bins at level 0.6; BFD

yields two full bins. Hence, Δf r;r
0 ;P;P0

BF;Bfd ðiÞ ¼ 3�2¼ 1. BFM also yields
two bins. Moreover, f ði0; sÞZ2 for sASði0Þ. Thus, Δf r;r

0

BF
ðiÞ ¼ 3�2¼ 1

and Δf P;P
0

BF;BfdðiÞ ¼ 3�2�1¼ 0, i.e., the improvement is a result of
provision of information at an earlier point in time (instance
revelation rule substitution), allowing us to permute the items
(rule set substitution) has no value.

Example 2 (Online TSP with lookahead). Given a metric space M
with distance function d, the task in the traveling salesman pro-
blem (TSP) is to find a round trip (tour) for the locations (requests)
σ1;σ2;…;σn for nAN with points xiAM for i¼ 1;…n to be visited
such that some cost depending on the total travel distance is
minimized. We now only consider two locations f0;1g and
σ ¼ ðσ1;σ2;σ3;σ4;σ5Þ ¼ ð0;1;0;1;0Þ. The server starts in 0. For the
pure online version, we have instance revelation rule r and rule set
P as
r≔σ1 is known at the beginning;σiþ1 is revealed after σi has been
visited;
P≔{σi has to be visited before σiþ1}.

For the lookahead version, we assume request lookahead of
size 2, i.e., we have instance revelation rule r0 and rule set P0 as
r0≔σ1;σ2 are known initially; a request is revealed when another
one has been visited;
P0≔fAny previously revealed request canbevisited when it has not
yet been visitedg:

Let instances i and i0 correspond to σ as revealed under r and r0,
respectively. P0 makes locations visitable earlier, e.g., at time 0,
both σ1 and σ2 can be visited, while under P only σ1 can be visited.
Due to P, we must use algorithm FIRSTCOMEFIRSTSERVED (FCFS) in the
pure online setting; in the setting with lookahead, we use algo-
rithm NEARESTNEIGHBOR (NN). FCFS visits the requests in their order of
release, whereas NN stays in the current location when this loca-
tion is contained in the two unvisited known requests. Both
algorithms comply with rule sets P and P0, respectively. Moreover,
there is no alternative to FCFS under P, i.e., we must choose FCFS as
oach to online optimization with lookahead. Omega (2015), http:

http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009

F. Dunke, S. Nickel / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 5
an intermediary algorithm that is supplied with information
according to r0, but obviously cannot capitalize from it under
preservation of P.

FCFS yields a distance of 4; NN yields a distance of 2. Corre-
spondingly, Δf r;r

0 ;P;P0

Fcfs;Nn
ðiÞ ¼ 4�2¼ 2. Applying “intermediary” algo-

rithm FCFS trivially yields a distance of 4 in compliance with P.
Moreover f ði0; sÞ ¼ 4 for sASði0Þ. Thus, Δf r;r

0

Fcfs
ðiÞ ¼ 4�4¼ 0 and

Δf P;P
0

Fcfs;Nn
ðiÞ ¼ 4�2�0¼ 2, i.e., the improvement is a mere result of

the change of circumstances under which requests have to be
visited (rule set substitution), allowing us to permute the order of
the requests is responsible for the complete lookahead value.
Forwarded information (instance revelation rule substitution) has
no value when it is separated from the rule set substitution.

2.3. Relation to discrete event systems

So far, we only paid attention to the outcome of an algorithm
on a given problem instance but not to the solution process.
Interpreting the release of an input element as an event, we recast
the solution process in online optimization using discrete event
systems terminology.

Define a process as a transformation, transportation or storage
of an energetic, material or informational resource, then a system
is a fragment of the real world in which all processes relevant to
the user take place. Hence, a system is a reduction of the real
world to those entities which influence these processes and satisfy
the user's wish to duplicate them [16]. Typically, a system reacts to
a change in the input values with an associated change in the
output values. In this context, let an event be a spontaneous
occurrence triggered by an external entity or by fulfilling the
conditions of a switching rule which is capable of submitting
changes of the input to a system, then a discrete event system is a
system whose state trajectory only depends on the occurrence of
discrete events over time [16].

In online optimization, the release of input elements occurs at
discrete points in time and any online algorithm operates as part
of a reactive planning system. Hence, the solution process can be
modeled as a discrete event system. Table 1 summarizes corre-
sponding analogies. As a result of the similarities, online algo-
rithms and discrete event systems can be tackled with the same
modeling tools such as automata, Markov chains and discrete
event simulation. However, due to the focus on optimization and
lookahead, specializations and adjustments are needed to obtain a
general framework for online optimization with lookahead.
3. Modeling framework and classification scheme

This section focuses on the modeling of the solution process in
online optimization with lookahead by means of a general fra-
mework. Based upon the discrete event process model that
describes the interaction of the modeling elements over time, a
classification scheme is derived which facilitates a general cate-
gorization of different lookahead concepts.
Table 1
Analogies between online optimization and discrete event systems.

Online optimization Discrete event system

Input element Event
Input sequence Event sequence
Input element release Event occurrence
Releases occur at discrete times Events occur at discrete times
Algorithm reacts to input element release System reacts to event occurrence
Online algorithm State transition function
Objective value Entry in state encoding scheme

Please cite this article as: Dunke F, Nickel S. A general modeling appr
//dx.doi.org/10.1016/j.omega.2015.10.009i
3.1. Previous modeling approaches

A first attempt to model online optimization generically was
request answer games [10]. A sequence of requests is presented
online and each time a new request arrives, an answer has to be
given incurring some cost. Formally, a request answer game over
time horizon nAN is a triple ðR;A; CÞ where R is a set of requests,
A is a set of answers and C¼ fcn jnANg is a set of cost functions
with cn : Rn �An-R [f1g. A deterministic online algorithm
ALG¼ ðALG1;ALG2;…;ALGnÞ is a sequence of functions with
ALGi : Ri-A for i¼ 1;2;…;n. The output of an algorithm upon
request sequence r¼ ðr1; r2;…; rnÞARn is a sequence of answers
a¼ ða1; a2;…; anÞAAn with ai ¼ALGiðr1; r2;…; riÞ for i¼ 1;2;…;n.
The costs of ALG on r are cnðr; aÞ. The concept could not be
established as a modeling standard due to its lacking ability to
account for an algorithm's rationale.

Another proposition for a generic model origins from the
priority programme “Online Optimization of Large Scale Systems”
of the German Research Foundation [30] where the sequential
model and the time stamp model are introduced. In both models,
σ ¼ ðσ1;σ2;…Þ is revealed over time and an algorithm has to serve
each of the input elements. In the sequential model, σiþ1 is pre-
sented only when σi has just been served. In the time stamp
model, σi comes along with a release time τi which is independent
of an algorithm's previous actions. The release time represents the
earliest time where σi may be served. Hence, opposite to the
sequential model, the order of service is not fixed initially. Under
the time stamp model, decisions have a tentative character as long
as they have not been executed and may be revoked until then. For
both models, no extension to lookahead was suggested.

3.2. Modeling framework components

Since previous models of online optimization lack an integra-
tion of lookahead and a representation of the sequential solution
process, we build a general modeling framework for online opti-
mization with lookahead based on the following building blocks:

� The basic modeling elements provide an abstract view on the
infrastructure of information flows needed to model the solu-
tion process.

� The lookahead type specifies the instance revelation rule that
an algorithm under lookahead has to obey in contrast to the
reference online case.

� The processing characteristics specify the processing rules that
an algorithm under lookahead has to obey in its decision
making on how to serve the input elements.

� The algorithm execution mode defines the time instants at
which algorithm evaluation is scheduled over the course of the
solution process.

3.2.1. Basic modeling elements
We first identify the constituting elements which are needed in

each model of online optimization with lookahead. To this end, we
consider the problem as part of a dynamic system which consists
of the collection of all real world entities needed to describe the
problem.

Input element and input sequence: A piece of information is
given by an input element from the set of all possible input ele-
ments Σ1 (which is the set of all input sequences of length 1). The
input appears in form of an input sequence σ ¼ ðσ1;σ2;…Þ with
σiAΣ1 for i¼ 1;2;… The elements of σ are revealed successively
according to the lookahead mechanism. Each input element awaits
some processing during the solution process. Formally, an input
element σi is a data record containing all information needed by an
algorithm to decide on the processing of σi:
oach to online optimization with lookahead. Omega (2015), http:

http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009

F. Dunke, S. Nickel / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎6
� Release time τi≔τðσiÞ in the reference online case; release time
τ0i≔τ

0ðσiÞ in the lookahead case with τ0irτi.� Processing time interval ½T i; T i�≔½T ðσiÞ; T ðσiÞ� in the reference
online case; processing time interval ½T 0

i; T
0
i�≔½T 0ðσiÞ; T

0ðσiÞ� in
the lookahead case.

� Input element information ri≔rðσiÞ.

½T i; T i� and ½T 0
i; T

0
i� give the times at which σi is allowed to be

(physically) processed in the absence and presence of lookahead,
respectively. ri carries the essential information of σi which is
needed for decision making (e.g., the size of an item in bin packing,
location of a request in the TSP, job processing times in scheduling,
or input element execution times).

Example 3 (Input element data). Consider a manual order picking
system with three (initially unknown) picking requests σ1;σ2;σ3 and
a shift from 09:00 until 18:00. In the pure online setting, we may have
release times τ1¼09:00, τ2¼09:05, τ3¼09:08. Hence, processing time
intervals are ½T 1; T 1� ¼ ½09 : 00;18 : 00�, ½T 2; T 2� ¼ ½09 : 05;18 : 00�,
½T 3; T 3� ¼ ½09 : 08;18 : 00�. By applying time lookahead of five min-
utes, we will get τ01 ¼ 09 : 00, τ02 ¼ 09 : 00, τ03 ¼ 09 : 03 and
½T 0

1; T
0
1� ¼ ½09 : 00;18 : 00�, ½T 0

2; T
0
2� ¼ ½09 : 00;18 : 00�, ½T 0

3; T
0
3� ¼ ½09 :

03;18 : 00�. Since in this example there are no time window specifi-
cations or service level constraints for the picking requests, the loo-
kahead automatically leads to changes in the processing time intervals.
Additionally, ri for i¼ 1;2;3 carries the warehouse location of the
picking requests.

We associate two time-dependent variables with σi:

� Processing status piðtÞ≔pðσi; tÞAfunprocessed; processing;
finishedg.

� Action aiðtÞ≔aðσi; tÞ.

pi(t) gives the state of σi at time t and rules membership to the
sets of still unprocessed, currently processing or already finished
input elements. ai(t) contains all information concerning how σi is,
was, or is planned to be processed. ai(t) is determined by an
algorithm; if no action has been determined yet at time t, we set
aiðtÞ ¼Null. When aiðtÞaNull, then ai(t) contains at least the
elements ta;starti and ta;finishi denoting the times when processing of
σi is (planned to be) started and finished, respectively. Decisions
may be revoked until time ta;starti . The set of all possible actions for
an input element is denoted by A. We note that each input ele-
ment experiences two steps: first, its information is announced.
Second, this information is exploited by an algorithm to determine
how the input element will be processed. Processing then takes
place within ½ta;starti ; ta;finishi Þ without any further ado when time t
¼ ta;starti is reached and action aiðta;starti Þ still prescribes action
starting time ta;starti .

Lookahead set: At each time t, the processing statuses of the
known input elements establish a partition into the sets Ut, Pt and
Ft of unprocessed, currently processing and finished input ele-
ments, respectively. In the reference online case, we have

Ut≔fσi jτirt; piðtÞ ¼ unprocessedg; ð5Þ

Pt≔fσi jτirt; piðtÞ ¼ processingg; ð6Þ

Ft≔fσi jτirt; piðtÞ ¼ finishedg: ð7Þ

In the lookahead case, τi is replaced with τ0i. The following
equivalences rule membership of σi to these sets:

piðtÞ ¼ unprocessed3aiðtÞ ¼Null3ta;starti 4t; ð8Þ

piðtÞ ¼ processing3ta;starti rtota;finishi ; ð9Þ
Please cite this article as: Dunke F, Nickel S. A general modeling appr
//dx.doi.org/10.1016/j.omega.2015.10.009i
piðtÞ ¼ finished3 ta;finishi rt: ð10Þ

The lookahead set Lt at time t contains those input elements
which have been revealed, but still require some processing, i.e.,
Lt≔Ut [Pt . Thus, Lt depends on previous decisions and actions
caused by an algorithm. An input element can stay in Lt arbitrarily
long and suffer starvation if its processing is continuously rejected
in favor of another input element. From a computational point of
view, it suffices in most cases only to keep track of the input ele-
ments in Lt, i.e., whenever an algorithm makes its decisions
independent of any element in Ft, then there is also no potential
benefit of explicitly storing Ft.

State space: For a better representation of the dependencies
between an algorithm's decision and the current state, we decom-
pose each state s from the set of all states S into three components
s¼ ðsin; ssys; sobjÞ with input state sin, system state ssys and objective
state sobj. All information concerning the input of the problem at
time t is collected in sint ¼ ðUt ; Pt ; FtÞ; the set of all input states is
denoted by Sin. Because sint contains σi with τirt or τ0irt, it also
contains all action variables ai(t) for these σi. To describe external
circumstances, the system state ssyst at time t contains all informa-
tion on the system configuration (e.g., bin configurations in bin
packing or the current server position in the TSP) at time t; the set
of all system states is denoted by Ssys. In an optimization context,
we use valued states to keep track of the current objective value
during the solution process. At time t, we extract all information
relevant to the future development of the objective value (e.g., the
plain current objective value) in sobjt ; the set of all objective states is
denoted by Sobj. The set of all states is S ¼ Sin � Ssys � Sobj; con-
cerning the solution process, we are interested in the state trajec-
tory evolution ðstÞtZ0 with stAS for tZ0.

Event space: Because an algorithm has to respond to arriving
input elements, we classify the input element arrival as an event.
Likewise, finished processing may change the objective state such
that the processing end of an input element also represents an
event. In total, all state transitions which influence the solution
process are triggered by an event. We subsume all possible events
in the event set E. Events occur instantaneously at discrete times.
In our framework, events are the only source of uncertainty for an
algorithm. The sequential and the time stamp model only know
two event types referring either to finished processing or to first
notification of an input element; both types coincide in the
sequential model because a new element only becomes available
when a known one finishes processing.

Algorithm: Input element processing is controlled by the deci-
sions of an algorithm ALG, causing changeovers of input elements
between Ut, Pt and Ft. Since the overall solution is composed of a
sequence of partial solutions, ALG successively produces partial
solutions by determining the values of input element action vari-
ables. Let nt≔jUt [Pt j ¼ j Lt j be the number of unfinished input
elements, then ALG is a family of functions ALG≔ðALGtÞtZ0

where

ALGt : S � E-Ant ð11Þ
is a function determining for each of the nt known and yet
unfinished input elements an action from the action space A based
on current state sAS and occurring event eAE. Hence, our defi-
nition of an algorithm generalizes that of the request answer
games in terms of the dependency on the current state and the
multidimensionality of the codomain. ALGt is evaluated at each
time t where an event occurs.

State transition: The state transition function

f : S � E-S ð12Þ
determines for a given state sAS and an occurring event eAE the
successor state s0AS. It only needs to be evaluated at the discrete
oach to online optimization with lookahead. Omega (2015), http:

http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009

F. Dunke, S. Nickel / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 7
times where an event occurs because for all other times the state
trajectory is assumed to advance deterministically such that it can
be precomputed.

3.2.2. Lookahead type
The lookahead type specifies the mechanism under which

membership of input elements to lookahead set Lt is governed.
According to the taxonomy from Section 2.1, it corresponds to the
instance revelation rule. Which lookahead type is employed
depends on the application and on technical possibilities. We give
some frequently used lookahead types, harmonize them with our
notation and introduce property lookahead as a generalization of
the vast majority of lookahead types. A similar classification has
been given in [52].

Request lookahead: Request lookahead of size kAN [52] is
defined to have access to a fixed number k of unprocessed or
currently processing input elements (or to all if there are less than
k of them). The first of these input elements is also known in the
pure online case, but the remaining k�1 input elements (or all if
there are less than k of them) are known due to the lookahead
capability. Request lookahead construes the lookahead set
dependent on the processing statuses of the input elements and
not in an independent process of release. We obtain the release
times recursively from

τi≔
0; if i¼ 1;
minfta;finishj jσjALτi� 1 g; if i¼ 2;3;…

(
ð13Þ

in the case without lookahead and

τ0i≔
0; if i¼ 1;…; k;

minfta;finishj jσjALτ0i� 1
g; if i¼ kþ1; kþ2;…

(
ð14Þ

in the case with lookahead. Request lookahead mainly origins
from applications where time is not modeled explicitly. Request
lookahead is realistic for applications which adhere to capacities
(storage devices, inventory spaces), whereas it is unrealistic for
applications which deal with immaterial requests (emergency
calls, customer demands).

Under request lookahead, input elements are revealed on a
rolling basis. However, one can also think of situations where
information is released in batches (blocks): a new batch is only
given when all elements of the previous one have finished pro-
cessing. This gives rise to a batched version of this lookahead
variant. In batched request lookahead of size k, input elements are
always revealed in blocks of k elements if there are more than k
elements left, otherwise the remaining input elements are
revealed. In this case, we have

τ0i≔
0; if i¼ 1;…; k;

maxfta;finishj jσjALτ0
ck
g; if i¼ ckþ1; ckþ2;…; ckþk with cAN:

(

ð15Þ
Time lookahead: Time lookahead of length DAR40 [52]

essentially makes input element σi known D time units earlier
than in the pure online case. Release times τi in the pure online
case are assumed independent of algorithm processing and we
obtain that

τ0i≔maxfτi�D;0g: ð16Þ
Time lookahead is an artificial offset of the moment at which an
input element is notified by D time units. A drawback is that
arbitrarily many input elements may reside in the lookahead set
such that the workload may collapse in the long run.

Collective property lookahead: Collective property lookahead
has been introduced as a general concept in [52] although in bin
packing [29] and paging [2] it had been instantiated before. Let
c�propj be a time variant property of a subset σr jðtÞ of the
Please cite this article as: Dunke F, Nickel S. A general modeling appr
//dx.doi.org/10.1016/j.omega.2015.10.009i
elements in input sequence σ where σr jðtÞ≔fσi j iAf1;2;…; jg;
piðtÞafinishedg. Write c�propjðtÞ≔c�propjðσr j; tÞ if σr jðtÞ fulfills
c�propj at time t and :c�propjðtÞ otherwise. In addition, we
assume for σi;σj;σkALt that :c�propkðtÞ for all k4 j whenever :
c�propjðtÞ and that c�propiðtÞ for all io j whenever c�propjðtÞ.
Collective property lookahead is defined to have access at time t to
a largest possible subsequence σr jðtÞ of unfinished input elements
such that they collectively fulfill c�propj at time t. The first time t
where c�propiðtÞ is fulfilled is set to be the preponed release time
of σi. Thus, in the lookahead case, we have

τ0i≔minft j c�propiðtÞg: ð17Þ
The instance revelation rule of the pure online case has to ensure
that τ0irτi. Collective property lookahead is used when input
elements collectively influence which part of the input sequence is
seen, e.g., due to their combined size or weight. A typical example
for a collective property lookahead arises due to limited surveil-
lance capabilities in material flow systems. For instance, the col-
lective property can then be formulated as “The sum of the lengths
of the forthcoming conveying units (e.g., boxes of different sizes)
on the conveyor belt is no longer than D metres”.

Property lookahead: We introduce this type of lookahead as a
generalization of all lookahead types that can be described expli-
citly. Let propi be a time variant property of each input element σi.
Write propiðtÞ≔propiðσi; tÞ if σi fulfills propi at time t and :propiðtÞ
otherwise. The first time t where propi(t) is fulfilled is set to be the
preponed release time of σi. Thus, in the lookahead case, we have

τ0i≔minft jpropiðtÞg: ð18Þ
The instance revelation rule of the pure online setting has to
ensure that τ0irτi. Property lookahead is used whenever there is
some device that allows us to recognize input elements which
fulfill the property. A typical example for a property lookahead in
vehicle dispatching arises due to limited information about vehicle
arrivals. For instance, the property can then be formulated as “The
vehicle is currently located within a distance of at most D kilo-
metres from the dispatching control station”.

Observe that in all lookahead types except for time and prop-
erty lookahead, the release time of an input element σi depends on
the processing or property status of at least one input element that
had been released before σi. Thus, the input data record of σi is
generated on-the-fly during algorithm processing. In fact, it is a
key characteristic of online optimization that not all data is known
in advance but rather generated and made accessible over time.

3.2.3. Processing mode and order
According to Section 2.1, input element processing is subject to

the rules specified in (processing) rule sets P and P0 in the absence
and presence of lookahead, respectively. Unfortunately, in the lit-
erature it is never specified how P and P0 exactly look like but
tacitly assumed according to the context. For example, let us
consider online scheduling with lookahead. While the problem
settings in [18,44,46] feature job arrival dates and lead to the
possibility of having a processing order different than the arrival
order, the problem settings in [45,57] exhibit some kind of job list
and the jobs will finally also be processed according to the list
order. Clearly, it would be advantageous for the understanding of
the problem setting if these rules could be specified explicitly in
advance. We provide a verbal classification of the essential dif-
ference between P and P0. By definition, the decisions of an algo-
rithm on processing start and end times have to obey

T irta;starti rta;finishi rT i ð19Þ
in the pure online case; in the lookahead case, T i and T i have to be
replaced by T 0

i and T
0
i, respectively. Under lookahead, we have to

deal with the questions whether we have to adhere to the order in
oach to online optimization with lookahead. Omega (2015), http:

http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009

F. Dunke, S. Nickel / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎8
the input element sequence also in processing (processing order)
and whether more than one input element can be processed at a
time (processing mode). We explain combinations of the four
possible processing modes of single processing, parallel processing,
limited parallel processing, and property processing with the two
possible processing orders of in-order processing and random-order
processing.

Single in-order processing: In single in-order processing, we
have to obey the order of input element releases also when pro-
cessing the input elements and we have to process them one after
another. For decisions on σi it has to hold that

ta;finishi rta;startiþ1 : ð20Þ

Single random-order processing: In single random-order pro-
cessing, we are allowed to choose any available unfinished input
element for being processed next at any time, but have to respect
that only one input element can be processed at a time. For
decisions on σi and σj with ia j it has to hold that

½ta;starti ; ta;finishi Þ \ ½ta;startj ; ta;finishj Þ ¼∅: ð21Þ

Parallel in-order processing: In parallel in-order processing, we
have to obey the order of input element releases also when pro-
cessing the input elements, but we may process more than one
input element at a time. For decisions on σi it has to hold that

ta;starti rta;startiþ1 : ð22Þ

Parallel random-order processing: In parallel random-order
processing, we are allowed to choose any available unfinished
input element for being processed next at any time and we may
process more than one input element at a time. There are no
temporal restrictions on processing times which have to hold for
decisions on the input elements.

Limited parallel in-order processing: Limited parallel in-order
processing is similar to parallel in-order processing, but addi-
tionally imposes that at most m input elements can be processed
at a time. For decisions on input element σi it has to hold that

ta;starti rta;startiþ1 ð23Þ

and additionally for tZ0 that

j fσj j tA ½ta;startj ; ta;finishj Þgjrm: ð24Þ

Limited parallel random-order processing: Limited parallel
random-order processing is similar to parallel random-order
processing, but additionally imposes that at most m input ele-
ments can be processed at a time, i.e., for decisions it has to hold
for tZ0 that

j fσj j tA ½ta;startj ; ta;finishj Þgjrm: ð25Þ

Property processing: In property processing, input elements
eligible to be processed at time t are marked. Let proci be a time-
dependent property of each input element σi; write prociðtÞ≔proci
ðσi; tÞ if σi fulfills proci at time t and :prociðtÞ otherwise. Processing
start times are coordinated such that proci(t) is fulfilled when
ta;starti ¼ t is chosen. For decisions on σi it has to hold that

ta;starti AftZ0jprociðtÞg: ð26Þ

For instance, a priority list for input element processing may be
implemented by using the property “The input element has the
highest priority among all input elements in the lookahead set”
which is based on the specification of a value for an input ele-
ment's priority in the input element information. Also all previous
processing modes and orders can be emulated by property pro-
cessing using an adequate specification of proci.
Please cite this article as: Dunke F, Nickel S. A general modeling appr
//dx.doi.org/10.1016/j.omega.2015.10.009i
3.2.4. Processing accessibility
We address the question of when input elements are ready to

be processed once they have been disclosed. Exact specifications of
instance revelation rules r and r0 as well as of rule sets P and P0

according to Section 2.1 would resolve this issue. However, these
specifications are rarely given explicitly in publications. To this
end, consider online routing problems. In the problems described
in [4,6,37], we find that a decision maker has to wait until the
regular release date of a request first before it may be served,
whereas in the problem variants given in [52], we learn that one is
allowed to serve a request immediately once it is known. We
provide a verbal classification of the processing permissions aris-
ing by lookahead. The processing accessibility tells us whether
there can only be an informational benefit of lookahead, or also an
additional processual benefit.

Immediate accessibility: Processing σi is possible directly upon
receiving it, i.e., we have T i≔τi in the pure online case and T 0

i≔τ
0
i in

the lookahead case.
Regular accessibility: Processing σi is possible only when the

regular earliest processing time is reached, i.e., we have T 0
i≔T i:

Delayed accessibility: Processing σi is not possible directly upon
notification, but may be before the regular earliest processing
time, i.e., we have T i4τi in the pure online case and T 0

i4τ0i in the
lookahead case. An example is to impose a fixed offset toff between
information release and earliest possible processing, i.e., T i ¼ τiþ
toff and T 0

i ¼ τ0iþtoff .
Although the lower bounds T i and T 0

i of the processing time
intervals from Section 3.2.1 already specify exactly when an input
element is available to be processed, we mention the processing
accessibility explicitly in order to build a classification scheme (cf.
Section 3.4) which will allow us to quickly identify a problem's key
characteristics.

3.2.5. Algorithm execution mode
The algorithm execution mode controls at which time instants

an algorithm is executed in order to determine the values of the
action variables of known input elements. Recall that algorithm
execution is concerned with making decisions about what to do
with the input elements at which time and not with action
execution; action execution runs automatically, but algorithm
execution needs initiation. When exact algorithms are applied to
instances of NP-hard subproblems, we have to ensure that real-
time requirements are not violated.

Cyclic execution: Algorithm execution is carried out cyclically,
i.e., at all times

texeci ¼ i � tcycle ð27Þ
for i¼ 0;1;2;… where tcycle is the cycle time. It is possible that an
arbitrary number of new input elements accumulates during
algorithm executions or that no new input element arrives at all.
Execution may still be worthwhile because actions different from
NULL may be determined for known input elements which have not
yet been assigned an action.

Full buffer execution: Algorithm execution is performed every
time that the number of elements in the lookahead set Lt reaches a
prescribed limit cAN, i.e., at all times in

texecZ0 j Ltexec j ¼ c; j Ltexec �ϵ joc
�� �� ð28Þ

with sufficiently small ϵ40. At the end of the input sequence, it
has to be assured that none of the input elements σi exhibits
aiðtÞ ¼Null.

Discrete event execution: Algorithm execution is triggered by
events occurring at discrete times. From a technical point of view,
an event detecting device must be installed. Release of a new input
element and finished processing of an input element are typical
events in basic online optimization. In more complex settings,
oach to online optimization with lookahead. Omega (2015), http:

http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009

Fig. 2. Change of problem instances and problem through application of
lookahead.

Fig. 3. State trajectory with associated state transition function and algorithm
evaluations in the process model for online optimization with lookahead.

F. Dunke, S. Nickel / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 9
additional events (breakdowns, failures) can also be considered as
events. Denote by ðtei ÞiAN the sequence of time instants at which
events are notified, then algorithm execution takes place at times

texeci ¼ tei þϵ ð29Þ
for iAN with sufficiently small ϵ40. Practically all types of algo-
rithm execution modes can be traced back to discrete event
execution by appropriate definition of the set of events (Fig. 2).

3.3. Discrete event process model

Instantiations of the basic modeling elements are combined in
a process model which describes the interaction of the modeling
elements over time as a result of the specific forms of lookahead
type, implied processing characteristics and prescribed algorithm
execution mode. The system is assumed to operate on an event-
driven basis. Starting with initial state s0AS, Fig. 3 schematically
illustrates how the state trajectory ðs0; s1; s2;…Þ evolves as a result
of events arriving in event sequence ðe0; e1; e2;…Þ and related
computations of algorithm ALG: upon arrival of an event eAE, the
system proceeds from its current state sAS to successor state s0A
S by evaluating the state transition function f ðs; eÞ. However,
computing the successor state at time t as f ðs; eÞ implicitly requires
a preceding evaluation of ALGtðs; eÞAAnt where nt is the number
of known unfinished input elements because the successor state
also contains a specification of the action variables for yet unfin-
ished input elements. Upon reaching the successor state, the sys-
tem awaits the arrival of a new event causing the system to
undergo the same sequence of steps again.

The computational effort of an algorithm caused by a state
transition typically depends on the type of the encountered event
e: the arrival of a new input element suggests to solve a snapshot
optimization problem in order to determine the action variable for
the new input element and to redetermine action variables for still
unfinished input elements; finished processing of an input ele-
ment will not cause an algorithm to spend excessive
Please cite this article as: Dunke F, Nickel S. A general modeling appr
//dx.doi.org/10.1016/j.omega.2015.10.009i
computational resources since all remaining actions are expected
to remain the same as they have been computed previously on the
same informational basis.

Information about the evolution of the objective value which is
incurred by processing the elements of the input sequence can be
tracked by monitoring the objective state component sobj of state
s¼ ðsin; ssys; sobjÞ. Typically, when an event corresponds to a fin-
ished processing of an input element, a change in the objective
value can be observed as a result of the associated state transition,
whereas when an event corresponds to a new input element
release, no immediate change in the objective value will occur
since processing of this input element is still pending.

3.4. Classification scheme

Similar to the classification scheme for scheduling, we provide
a classification scheme for the modeling in online optimization
with lookahead that takes into account their characteristics with
respect to lookahead ðr-r0; P-P0Þ. We propose a four-position
scheme αjβjγ jδ in order to quickly indicate the qualitative char-
acteristics of a problem under lookahead as compared to the
(reference) problem without lookahead:

Lookahead type α: req for request lookahead, req-b for request
lookahead in batches, time for time lookahead, col for collective
property lookahead, prop for property lookahead.

Processing mode and order β: sngl=ord for single in-order pro-
cessing, sngl=rnd for single random-order processing, prl=ord for
parallel in-order processing, prl=rnd for parallel random-order
processing, prl-ltd=ord for parallel limited in-order processing,
prl-ltd=rnd for parallel limited random-order processing, pp for
property processing.

Processing accessibility γ: im for immediate accessibility, reg for
regular accessibility, dly for delayed accessibility.

Algorithm execution mode δ: cyc for cyclic algorithm execution,
full for full buffer algorithm execution, discr for discrete event
algorithm execution.

With respect to the definition of optimization problems and
lookahead in Section 2.1, α indicates the instance revelation rule
substitution from r to r0; β and γ are established by rule set P0

which constitutes the conditions for input element processing
such that compliance with the feasible set under lookahead is
ensured; δ is part of the solution routine and not of the problem.
In the literature, lookahead is mainly defined with respect to the
topic of a paper and an explicit specification of processing char-
acteristics is tacitly assumed.

Table 2 classifies lookahead concepts as found in papers on
online optimization with lookahead. In accordance with the
deterministic perception of lookahead prevalent in online opti-
mization (cf. Section 1.1), it was possible to cover all notions of
lookahead concepts that were found in papers on online optimi-
zation problems that have been extended by lookahead. Inten-
tionally, the scheme does not capture information about future
events which is given in a non-deterministic, probabilistic or
scenario-based form (e.g., in stochastic programming, dynamic
programming, model predictive control, or interval analysis).
4. Performance measurement in online optimization

We subsequently discuss how algorithms should be evaluated
in order to comply with needs of practitioners which have to select
the most suitable algorithm for their application and have to
specify the amount of lookahead that should be facilitated
technologically.

The academic standard for the performance of online algo-
rithms is competitive analysis [13] where algorithm ALG is put into
oach to online optimization with lookahead. Omega (2015), http:

http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009

Table 2
Classification of concepts in papers on online optimization with lookahead.

Reference α β γ δ

Routing and transportation
Allulli et al. [4,5] time sngl/rnd reg discr
Ausiello et al. [6] time sngl/rnd reg discr
Jaillet and Lu [36] (advanced information) prop sngl/rnd reg discr
Jaillet and Wagner [37] (advanced information) prop sngl/rnd reg discr
Tinkl [52] (lookahead (LA) by order) req sngl/rnd im cyc
Scheduling
Coleman [18] req sngl/rnd reg discr
Li et al.[44] time prl/rnd reg discr
Mandelbaum and Shabtay [45] (adaptive LA) req prl-ltd/

ord
reg cyc

Mandelbaum and Shabtay [45] (non-adaptive
LA)

req-b prl-ltd/
ord

reg cyc

Mao and Kincaid [46] req sngl/rnd reg discr
Motwani et al. [47] (finite LA) req sngl/ord im cyc
Yang et al. [54] (head-of-the-line) req sngl/rnd im cyc
Zheng et al. [57] time sngl/ord reg discr
Zheng et al. [58] time sngl/rnd reg discr
Data structures
Albers [2,3] (weak LA) req sngl/ord reg cyc
Albers [3] (strong LA) col sngl/ord reg cyc
Breslauer [14] (natural LA) col sngl/ord reg cyc
Kiniwa et al. [41] req sngl/rnd im cyc
Torng [53] req sngl/ord reg cyc
Yeh et al. [55] req-b sngl/rnd im cyc
Young [56] (resource-bounded LA) col sngl/ord reg cyc
Data transfer
Dooly et al. [20] (oracle) req sngl/ord reg cyc
Imrek and Nemeth´ [34] time sngl/ord reg discr
Packing
Grove [29] col sngl/rnd im cyc
Gutin et al. [31] req-b sngl/rnd im cyc
Lot sizing
Ahlroth et al. [1] time prl/ord im cyc
Metrical task systems
Ben-David and Borodin [9] req prl-ltd/

ord
reg cyc

Koutsoupias and Papadimitriou [42] req sngl/ord reg cyc
Graph theory
Chung et al. [17] (window index) col sngl/ord reg cyc
Halldorssón and Szegedy [32] req sngl/ord reg cyc
Halldorssón and Szegedy [32] (buffer) req-b sngl/ord reg cyc
Irani [35] req sngl/ord reg cyc

1 The indicator function 1AðxÞ is 1 if xAA and 0 otherwise.

F. Dunke, S. Nickel / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎10
competition with an optimal offline algorithm OPT which knows σ
in advance. ALG is called c-competitive if there is an aAR such
that

ALG½σ�rc �Opt½σ�þa ð30Þ
for all input sequences σ. The competitive ratio cr of ALG is the
greatest lower bound over all c such that ALG is c-competitive.
There are many disadvantages of the competitive ratio [21,24]
with respect to practical purposes: results are overly pessimistic
because pathologic instances are decisive, competing with OPT is
practically irrelevant, overall algorithm behavior is neglected, and
competitive analysis is impossible in practical applications. To
overcome these shortcomings, we introduce a two-sided perfor-
mance measurement approach which summarizes global algo-
rithm behavior (over all instances) and also considers local quality
(instancewise comparison). The two-sided concept is discussed in
detail in [22].

Definition 8 (Objective value/performance ratio). Let Π ¼ ðI; S; f ; optÞ
be an optimization problem, let iA I be an instance of Π, and let
ALG1, ALG2 be two algorithms for Π choosing solutions sALG1 ðiÞ;
sALG2 ðiÞASðiÞ on i, respectively.

(a) vALG1 ðiÞ≔f ði; sALG1 ðiÞÞ is called objective value of ALG1 with
respect to i.
Please cite this article as: Dunke F, Nickel S. A general modeling appr
//dx.doi.org/10.1016/j.omega.2015.10.009i
(b) rALG1 ;ALG2 ðiÞ≔
f ði;sALG1

ðiÞÞ
f ði;sALG2 ðiÞÞ

is called performance ratio of ALG1

relative to ALG2 with respect to i.

Traditionally, there are no probabilities for instances in online
optimization. Hence, the best way of dealing with the absence of
any probabilistic information is to assume the maximum entropy
distribution over the set of all possible instances because it mini-
mizes the amount of a-priori knowledge contained in the dis-
tribution [38,39]. From the definition of the entropy and the
constraint that all probabilities add up to 1, we conclude by
Lagrangian relaxation that the uniform distribution over I is the
maximum entropy distribution among all distributions with sup-
port I. For finite I, we obtain counting results saying how many of
all instances yield a certain objective value or performance ratio
[33]. The counting distribution function1 displays these frequency
information over I:

Definition 9 (Counting distribution functions). Let Π ¼ ðI; S; f ;optÞ
be an optimization problem, let iA I be an instance of Π, let ALG1,
ALG2 be two algorithms for Π choosing solutions sALG1 ðiÞ; sALG2 ðiÞ
ASðiÞ on i, respectively, and let I be a discrete set.

(a) The counting distribution function of the objective value of
ALG1 over I is given by FALG1 : R-½0;1� with

FALG1 ðvÞ≔
P

iA I1ð�1;v�ðvALG1 ðiÞÞ
j I j : ð31Þ

(b) The counting distribution function of the performance ratio of
ALG1 relative to ALG2 over I is given by FALG1 ;ALG2 : R-½0;1�
with

FALG1 ;ALG2 ðrÞ≔
P

iA I1ð�1;r�ðrALG1 ;ALG2 ðiÞÞ
j Ij : ð32Þ

Since we are interested in comparing algorithms with looka-
head relative to algorithms without lookahead, we can select in
Definition 9 for ALG1 some algorithm with lookahead and for
ALG2 some algorithm without lookahead.

Fig. 4 shows that two algorithms are compared by examining
the relative positions of their counting distribution function plots
to each other in the case of the objective value (left side of Fig. 4),
and by partitioning the set of all instances into those which favor
ALG1ðro1Þ, those which favor ALG2ðr41Þ and those which are
indifferent ðr¼ 1Þ in the case of the performance ratio (right side
of Fig. 4).

The counting distribution of the performance ratio implicitly
includes competitive analysis because the largest occurring per-
formance ratio coincides with the competitive ratio. In this sense,
analyzing the counting distribution function of the performance
ratio is an extension of competitive analysis. Hence, whenever
worst-case system performance is critical, it is recommendable to
have a detailed look on the worst performance ratios in order to
hedge against worst-case scenarios as intended by competitive
analysis. We conclude that counting distribution functions shall be
considered as a supplementary performance measurement
method giving additional information about ranges, frequencies
and variability, and not as an exclusive alternative to competitive
analysis.

In particular, we now have an approach which summarizes the
global behavior of an algorithm over all instances, but also does
not lose sight of local quality with respect to particular instances.
This is especially worthwhile in analyzing control strategies for
oach to online optimization with lookahead. Omega (2015), http:

http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009

Fig. 4. Counting distribution functions of objective value of Alg1 and Alg2 (left) and of performance ratio of Alg1 relative to Alg2 (right).

F. Dunke, S. Nickel / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 11
operative applications where one is interested in the behavior of
daily operations rather than in worst-case scenarios. By computing
statistical key figures (such as confidence intervals, variance,
quantiles, cf. Online Appendix A) after conducting numerical
experiments, we can also obtain valuable information about sys-
tem behavior in general. Additionally, competitive analysis is often
no longer practicable once the problem settings get slightly more
complicated. But definitely we also need to have a suitable per-
formance measurement method in these cases.

Furthermore, the approach has the advantage that algorithms
with arbitrary lookahead levels can be compared directly such that
there is no dependence on the performance of an optimal offline
algorithm OPT. This fact makes the approach considerably versatile
with respect to practical questions arising through the installation
of lookahead devices. Hence, we often find ourselves in settings
with small lookahead where problem sizes can be bounded by
practical considerations. In fact, in applications we are often much
more interested in the question “What can be gained through
additional lookahead?” rather than in the question “What is lost
through not having the offline situation?” because we are far away
from the offline situation anyway. Nonetheless, the decision maker
is free to select the information regimes of ALG1 and ALG2 as
required by the research question. This also means that in the case
of full information, one has to deal with the burden of computa-
tional complexity when performance shall be analyzed with
respect to exact algorithms; for heuristic algorithms as a bench-
mark this issue is not a problem.
5. Computational results and information pool

Based on the taxonomy for online optimization with lookahead,
the general modeling framework and the performance measure-
ment approach, we present the results of a series of numerical
experiments on standard online optimization problems. In detail,
we will now report on the results for the bin packing and the
traveling salesman problem in Sections 5.1 and 5.2. Two types of
analysis are applied in order to ensure a comprehensive view on
algorithm behavior under different information regimes: average
results portray the overall behavior of algorithms under different
amounts of lookahead; distributional results submit a more pre-
cise picture by including frequency information on observed
objective values and performance ratios. A statistical summary of
the computational results is also given in the Online Appendix A.
Results for the ski rental, paging and scheduling problem cannot
be discussed due to restricted space. For further details and
additional analysis in all problems, see the discussion in [22].
However, in Section 5.3, we will summarize the overall findings of
our computational experiments in an information pool which may
help in future applications to preestimate the potential of
lookahead.
Please cite this article as: Dunke F, Nickel S. A general modeling appr
//dx.doi.org/10.1016/j.omega.2015.10.009i
Computational experiments were performed on a computer
with AMD Phenom II X6 1100 T 3.31 GHz processor and 16 GB
RAM under Microsoft Windows 7 (64-bit). Algorithms were
implemented in Cþþ; IP and MIP formulations were solved using
IBM ILOG CPLEX 12.5 with a time limit of 120 s. All results are
collected in an information pool which gives an overview for
observable lookahead effects in different applications. Whenever a
problem arises in practice, we may look into the information pool
in order to preestimate from the involved elementary problems
how large a lookahead effect is to be expected.

5.1. Online bin packing with lookahead

A fundamental packing problem is (one-dimensional) bin
packing [40] where the task is to pack the items σ1;σ2;…;σn for
nAN with sizes siAð0;1� for i¼ 1;…n into a minimum number of
unit-capacitated bins. In the numerical analysis, we consider two
rule sets: item permutations may be allowed when items are
physically small such that sorting is possible, or item permutations
may be forbidden when items are too large to be rearranged.

For nAN, the set of all input sequences of length n is given by
Σn ¼ ðσ1;σ2;…;σnÞjσi≔siA ð0;1�; i¼ 1;…;n

� �
and comprises all

item sequences of length n where σi is identified with the size of
the ith item. In the online version, only σi with i¼ 1;…;n is known
when σi has to be packed. When σi with i¼ 1;…;n has to be
packed in the online version with lookahead of size lAN under
order preservation, also l�1 successive items σiþ1;…;σiþ l�1 are
known if iþ l�1rn, otherwise σi and additional n� i successive
items σiþ1;…;σn are known. When known items may be packed
in arbitrary order, then at the ith packing time, the l unpacked
items from σ1;σ2;…;σiþ l�1 with i¼ 1;…;n are known if
iþ l�1rn, otherwise the n� iþ1 unpacked items from σ1;σ2;…;

σn are known. In the offline version, all items are known at the
beginning. The instance revelation rule r in the online case and r0

in the lookahead case is

r≔Initially;σ1 is known; a new item is revealed when a known
one is packed;

r0≔Initially;σ1;…;σl are known; a new item is revealed when a
known one is packed:

The rule set P in the online case is trivial, in the lookahead case we
have to distinguish between allowed permutations ðP0

1Þ and for-
bidden permutations ðP0

2Þ, i.e.,
P≔fPack the known itemg;
P0
1≔fPack one of the known itemsg;

P0
2≔fPack the known item which has been released earliestg:

According to the modeling framework, the lookahead setting is req
j sngl=rndj imjdiscr (or equivalently reqj sngl=rndj imj cyc). The
input information of an input element is given by si. In the online
case, we have τi ¼ i and Ti ¼ iþϵ; in the lookahead case, we have
oach to online optimization with lookahead. Omega (2015), http:

http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009

F. Dunke, S. Nickel / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎12
τi ¼maxf1; i� lg and T 0
i ¼maxf1; i� lgþϵ, T

0
i ¼1 with sufficiently

small ϵ40. In the event set, we take into account the events of a
new item arrival and finished assignment of an item; both event
types coincide as long as there are still unreleased requests. The
action space corresponds to f1;2;…;ng, and an action amounts to
choosing the index of the bin into which the next item should be
put. A state holds information on the current lookahead set and
configuration of previously opened bins. For a formal representa-
tion, see [22].

A decision by an algorithm is required for every item that has to
be packed and consists of selecting the bin in which this item
should be put. Because a bin once opened is never closed again,
each of the following algorithms can be used irrespective of
whether item permutations are allowed or not: in case of for-
bidden permutations the items must be packed in their order of
release, but it is still possible to employ the algorithms which
determine an item to bin assignment based on a packing order
differing from the release order. This is due to the fact that we can
first fictively reserve the space in the bins for the items as pre-
scribed by the assignment, but then in the packing process we just
adhere to the item release order.

Before we specify the bin packing algorithms operating under
lookahead, we first recall the following two classical bin packing
algorithms for the pure online case without lookahead:

FIRSTFIT (FF): If there is at least one open bin that can accom-
modate the item to be packed, put the item in the bin that was
opened first among these bins; otherwise open a new bin and put
the item in the new bin [19].

BESTFIT (BF): If there is at least one open bin that can accom-
modate the item to be packed, put the item in the fullest among
Fig. 5. Sets, parameters and variables in the IP fo

Please cite this article as: Dunke F, Nickel S. A general modeling appr
//dx.doi.org/10.1016/j.omega.2015.10.009i
these bins; otherwise open a new bin and put the item in the new
bin [19].

These two algorithms can now easily be generalized to their
lookahead versions. For l¼1 we obtain the pure online versions,
for l¼n the algorithms coincide with corresponding offline
algorithms.

FirstFitlðFflÞ: Sort the items in the lookahead by non-
increasing size and fictively pack them with FF. If the item to be
packed is put in a new bin, open a new bin and put the item in the
new bin; otherwise put the item in the bin from the fictive
assignment [19].

BestFitlðBFlÞ: Sort the items in the lookahead by non-
increasing size and fictively pack them with BF. If the item to be
packed is put in a new bin, open a new bin and put the item in the
new bin; otherwise put the item in the bin from the fictive
assignment [19].

OptimallðOptlÞ: In Fig. 5, specify N according to the number of
seen items, No according to the number of already used bins,
s according to the sizes of the seen items, and f according to the
current fill levels of the already used bins. Solve the resulting IP
formulation in Fig. 6. If the item to be packed is put in a new bin,
open a new bin and put the item in the new bin; otherwise put the
item in the bin from the obtained assignment.

Optimal
0
lðOpt

0
lÞ: In Fig. 5, specify N according to the number of

seen items, No according to the number of already used bins, s
according to the sizes of the seen items, and f according to the
current fill levels of the already used bins. Solve the IP formulation
in Fig. 6 after extending it with expressions from Fig. 7 as follows:
Replace Objective Function (33) by (38) and include Constraints
(39)–(43). If the item to be packed is put in a new bin, open a new
rmulation of the bin packing problems [23].

oach to online optimization with lookahead. Omega (2015), http:

http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009

Fig. 6. IP formulation of the bin packing problem.

Fig. 7. Objective function and additional constraints for the modified IP formulation of the bin packing problem (see also [23]).

Fig. 8. Average costs for different lookahead sizes and n¼ 25 in the classical bin
packing problem when item permutations are allowed (top) and when item per-
mutations are forbidden (bottom).

F. Dunke, S. Nickel / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 13
bin and put the item in the new bin; otherwise put the item in the
bin from the obtained assignment.

While Optl only considers the number of bins in the objective,
Opt

0
l secondarily searches for an item to bin assignment with bins

as full or empty as possible, but not with medium fill levels.
Thereby, the initial position for successive steps is improved
because in case of large item sizes, empty bins are more valuable.
Using a surrogate objective function in order to improve the initial
position for future steps is due to Esen [23].

In addition to these algorithms, we also consider their batched
versions in order to check whether continuous information release
is necessary or whether information release in blocks (so-called
batches) of items suffices to obtain satisfactory results. If algo-
rithms operate under batched lookahead, we indicate them with
an added suffix B in the algorithm name, e.g., BF10;B means that
the BestFit10 algorithm is applied once for each batch of 10 items,
and only after all of the 10 items have been put into a bin a new
batch of 10 items is released.

We now present the computational results for the algorithm
families Ffl, BFl, Optl, Opt

0
l and their respective batched versions

under variable size l of the lookahead set. We select the settings of
n¼25 and n¼100 items per sequence; each setting features
m¼1000 independently drawn item sequences. We discuss results
for n¼25 and refer to [22] for n¼100. For n¼25, all lookahead
sizes lAf1;5;10;15;20;25g are tested in order to quantify the
value of additional lookahead.

Average results: Average algorithm behavior under variable
lookahead size l is displayed on the left side of Fig. 8 for the case of
allowed item permutations. The effect of lookahead is considered
nonsignificant irrespective of the selected algorithm family which
can be seen by the negligible dimension of the reduction in
Please cite this article as: Dunke F, Nickel S. A general modeling appr
//dx.doi.org/10.1016/j.omega.2015.10.009i
average costs for increasing lookahead size l. This effect can be
explained by the fact that a large number of conditions concerning
the combination of item sizes have to be met in order to lead to a
oach to online optimization with lookahead. Omega (2015), http:

http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009

F. Dunke, S. Nickel / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎14
saving of one bin. In typical item sequences such conditions are
unlikely to occur. Between the pure online and offline situations
only 0.53 (BF1 vs. BF25) to 0.72 (Opt

0
1 vs. Opt

0
25) bins could be

saved on average which is an improvement of 3.6–4.7%, respec-
tively. Average algorithm behavior in the case of forbidden item
permutations on the right side of Fig. 8 is nearly identical; e.g.,
Opt25 needed an average of 14.12 bins in case of allowed item
permutations and now it needs 14.2 bins in case of forbidden item
permutations which is a relative deterioration of less than 1%.
Recall also that in Example 1 there was no value of permuting
items at all for the case of two item sizes. Hence, we will restrict
ourselves to the case of allowed item permutations from now on.

We also find that simple algorithms like BFl and Ffl outper-
form the exact reoptimization methods Optl and Opt

0
l for looka-

head sizes lo15. BFl produces the best overall results in this
information regime. Optl and Opt

0
l beat the rule-based algorithms

only for lZ15 by a slight margin. Hence, we infer that exact
reoptimization is not needed when too many future items are
unseen. The stability granted by BFl and Ffl for small to medium
lookahead sizes which is achieved by packing large items first
proves advantageous over the “local” optimality of exact solutions
to snapshot problems; these solutions are fragile once the situa-
tion changes due to newly announced lookahead items. Optimality
of partial solutions becomes important only if their benefit cannot
be undone by future decisions on upcoming items. Algorithms
collectively show a decreasing marginal benefit from lookahead,
i.e., the first lookahead units are most valuable and sufficient to
drive item to bin assignments towards an optimal solution.

To take full advantage of lookahead, it is recommended to use
regular lookahead rather than the batched type: for instance, BF10

shows an improvement of 3.5% compared to the online case, while
its batched version counterpart BF10;B only accounts for a 2.1%
improvement. Exclusive benefit from lookahead cannot be guar-
anteed. However, instances with a deterioration are encountered
rarely.

A summary of statistical key figures for the number of used
bins can be found in Table A6 (allowed item permutations) and
Table A7 (forbidden item permutations) of Online Appendix A.

Distributional results: The distributional results with respect to
the objective value and the performance ratio are shown exem-
plarily for algorithm classes BFl and Optl in Fig. 9. Since Ffl
Fig. 9. Empirical counting distribution functions of costs (left) and performance ratios rel
allowed.

Please cite this article as: Dunke F, Nickel S. A general modeling appr
//dx.doi.org/10.1016/j.omega.2015.10.009i
behaves similar to BFl and Optl behaves similar to Opt
0
l, we omit

their figures. The plots are affirmative to the minor positive effect
of lookahead. On the left side of Fig. 9, this can be seen from the
relative closeness of the plots of two successive lookahead levels
to each other. This tells us that with increasing lookahead size l,
only a small proportion of all item sequences leads to a bin saving.
Thus, only a slight left shift of the distribution functions is
observed for increasing l. For medium to large lookahead, differ-
ences in the counting distribution functions of the costs are even
hardly perceivable. For instance, the counting distribution func-
tions of BF10, BF15, BF20 and BF25 all seem to coincide in their
visual representations.

On the right side of Fig. 9, we compare the algorithms with
lookahead relative to their pure online versions (l¼1). We observe
that the largest part of the item sequences lead to performance
ratios within ½0:9;1�, irrespective of the lookahead level. Hence,
there is no great potential for improving the outcome of online
algorithms by additional lookahead to more than 10% on single
instances with respect to the performance ratio. However, we find
that there are at least some few item sequences where lookahead
can yield an improvement of up to 10% which was not yet clear
from the average results. The potential value of the first lookahead
units especially becomes obvious when we consider the curves for
lookahead size l¼5 on the right side of the figure. For BF5/BF1,
around 35% of the input sequences lead to a performance ratio
smaller than 1; for Opt5/Opt1, this percentage is around 20%.
However, from the fact that the curve for Opt5/Opt1 in the lower
right diagram of Fig. 9 has some mass on performance ratios larger
than 1, we also conclude that there are some few item sequences
where additional lookahead may even cause a (slight) deteriora-
tion in the number of bins used.

In total, the satisfactory behavior of the online algorithms can
be explained by two reasons: first, since any bin is left open for-
ever, a bin utilization of each bin close to 100% (except for the last
bin if it was opened towards the end of the packing process and if
the remaining items were not large enough to fill that last bin) is
probable in the long run also in the online setting and the impli-
cations of bad decisions are either unnoticeable or rather small.
Second, it is known that already the competitive ratio of BF and FF
is 17

10 and that of BFn and Ffn is 11
9 [40,50]. Concluding, we recall

that throughout all experiments except for the pure offline case
ative to the online case (right) for n¼ 25 in bin packing when item permutations are

oach to online optimization with lookahead. Omega (2015), http:

http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009

F. Dunke, S. Nickel / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 15
there was no surplus at all of using exact reoptimization methods
(Optl, Opt

0
l) rather than the rule-based heuristics (Ffl, BFl). Thus,

we recommend to use BFl in the first place for lookahead sizes
lr15. For l415, BFl also produces high quality packings which
are beaten only very slightly (by less than 0.1%) by Optl and Opt

0
l

for lookahead sizes that bring the problem close to the offline
situation.

A summary of statistical key figures for the performance ratios
relative to the online case can be found in Table A4 (allowed item
permutations) and Table A5 (forbidden item permutations) of
Online Appendix A.

5.2. Online traveling salesman problem with lookahead

The traveling salesman problem (TSP) seeks to find a round trip
(also called tour) for a given set of locations to be visited (also
called requests) such that some cost depending on the total travel
distance is minimized [43]. For σ ¼ ðσ1;σ2;…Þ, let a request σi with
iAN correspond to a point xi in a space M with metric
d : M�M-R. The TSP then consists of visiting the points of all
requests with a server in a tour of minimum length starting and
ending in some distinguished origin oAM.

For nAN, the set of all input sequences of length n is given by
Σn ¼ ðσ1;σ2;…;σnÞjσi≔xiAM; i¼ 1;…;n

� �
and comprises all

request sequences of length n where σi is identified with point
xiAM to be visited. In the online version, only σi with i¼ 1;…;n is
known when σi has to be visited. In the online version with loo-
kahead of size l, when for the ith time it has to be decided which
location to be visited, the l unvisited locations from σ1;σ2;…;

σiþ l�1 with i¼ 1;…;n are known if iþ l�1rn, otherwise the n�
iþ1 unvisited locations from σ1;σ2;…;σn are known. In the offline
version, all locations are known at the beginning. The instance
revelation rule r in the online case and r0 in the lookahead case is
r≔Initially;σ1 is known ; a new request is revealed when the
known one is visited;
r0≔Initially;σ1;…;σl are known; a new request is revealed when a
known one is visited:

The rule set P in the online case is trivial and does not give any
degrees of freedom to the decision maker, in the lookahead case
(P0) we consider a rule set substitution, i.e.,

P≔fVisit the known requestg;
P0≔fVisit one of the known requestsg:
According to the modeling framework, the lookahead setting is req
j sngl=rndj imjdiscr (or equivalently reqj sngl=rndj imj cyc). The
input information of an input element is given by xi. In the online
case, we have τi ¼ i and Ti ¼ iþϵ; in the lookahead case, we have
τi ¼maxf1; i� lg and T 0

i ¼maxf1; i� lgþϵ, T
0
i ¼1 with sufficiently

small ϵ40. Hence, the server is assumed to travel at infinite
speed. In the event set, we take into account the events of a new
request arrival and finished service of a request; both event types
coincide as long as there are still unreleased requests. The action
space corresponds to f1;2;…; lg, and an action amounts to choos-
ing the index of the request to be visited next in an indexed
representation of the lookahead set. A state holds information on
the current lookahead set, server position, and the distance tra-
veled thus far. For a formal representation, see [22].

A decision by an algorithm is required when the server starts
initially or a request is reached; it consists of selecting the request
to be visited next from the set of known requests. Any online
algorithm without lookahead is trivial since it only sees the cur-
rent request and has to visit it. In this sense, all algorithms collapse
into a first come first served strategy for l¼1; for l¼n offline
algorithms are obtained.

NearestNeighborlðNnlÞ: From the requests in the lookahead,
choose a request closest to the server's current location next [43].
Please cite this article as: Dunke F, Nickel S. A general modeling appr
//dx.doi.org/10.1016/j.omega.2015.10.009i
InsertionlðInslÞ: Construct a Hamiltonian path H visiting each of
the requests in the lookahead starting in the current server location
and ending in o as follows: at the beginning, H consists of the
invariant starting and ending point only. Insert a request whose
distance to the starting point is largest possible into H. Successively
insert remaining requests by choosing in each iteration a request
whose smallest distance to a request in H is largest and insert it at a
best possible position in terms of a smallest tour length increase.
Finally, choose the first request from H following the starting point
next [43].

2Optl: Construct a Hamiltonian path H visiting each of the
requests in the lookahead starting in the current server location
and ending in o as follows: obtain H initially by Nnl or Insl. Until
no further improvement is possible, choose two requests from H,
reverse the order of requests between them to obtain H0, and if H0

is shorter than H, then set H≔H0. Finally, choose the first request
from H following the starting point next [43].

3Optl: Construct a Hamiltonian path H visiting each of the requests
in the lookahead starting in the current server location and ending in o
as follows: obtain H initially by Nnl or Insl. Until no further
improvement is possible, choose three edges from H such that neither
of them is incident to the starting or ending point and reorganize H by
forming three new edges using the requests incident to the three
edges, choosing an order for the three new edges and adjusting the
request order between the edges such that a feasible Hamiltonian path
H0 is obtained if possible at all, and if H0 is feasible and shorter than H,
then set H≔H0. Finally, choose the first request from H following the
starting point next [43].

SimulatedAnnealinglðSalÞ: Construct a Hamiltonian path H
visiting each of the requests in the lookahead starting in the cur-
rent server location and ending in o as follows: obtain H initially
by Nnl or Insl. Select initial temperature T0AR (e.g., T0 ¼ 100),
minimum temperature TminAR with TminoT0 (e.g., Tmin ¼ 5),
maximum number of iterations LmaxAN with unchanged tem-
perature (e.g., Lmax ¼ 100) and set T≔T0, L≔0. Until ToTmin, if
L¼ Lmax, then set T≔0:9 � T and L≔1 else set L≔Lþ1, next choose
two requests from H and reverse the order of requests between
them to obtain H0, and if H0 is shorter than H, then set H≔H0 else
set H≔H0 with probability expð�Δ

T Þ where Δ is the difference
between the length of H0 and the length of H. Finally, choose the
first request following the starting point from the shortest
Hamiltonian path obtained throughout the procedure next [43].

TabuSearchlðTslÞ: Construct a Hamiltonian path H visiting each
of the lookahead points starting in the current server location and
ending in o as follows: obtain H initially by Nnl or Insl. Select tabu
time TAN (e.g., T¼5), maximum number Dmax of diversifications
(e.g., Dmax ¼ 50), number of swaps s per diversification (e.g., the
largest integer number that is smaller or equal to 30% of the total
number of requests included in the Hamiltonian path) and set
D≔0. Until DZDmax, carry out the following steps:

1. Choose two requests from H and swap them to obtain H0.
2. If H0 is shorter than H and the swapped request pair is not

included in the tabu list, set H≔H0 and add the swapped request
pair to the tabu list with remaining tabu time T; else if H0 is
shorter than the best Hamiltonian path obtained so far and the
swapped request pair is tabu, set H≔H0 (aspiration).

3. For all tabu list entries except the new one, decrease the
remaining tabu time by one iteration; return to step 1 until all
pairs of points have been examined.

4. Perform a random swap in H0 for s times (diversification), set
H≔H0, D≔Dþ1.

Finally, choose the first request following the starting point from
the shortest Hamiltonian path obtained throughout the procedure
next [27].
oach to online optimization with lookahead. Omega (2015), http:

http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009

Fig. 10. Sets, parameters and variables in the MIP formulation of the Hamiltonian path problem with fixed start and end.

Fig. 11. MIP formulation of the Hamiltonian path problem with fixed start and end.

F. Dunke, S. Nickel / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎16
OptimallðOptlÞ: In Fig. 10, specify N according to the number of
seen requests, c according to the distances of the seen requests
between each other, cstart according to the distances of the
requests to the current server position, and cend according to the
distances of the requests to the origin. Solve the MIP formulation
in Fig. 11. Choose the first request following the starting point in
the obtained solution next.

In the MIP formulation in Fig. 11, we decide to get rid of the
subtour elimination constraints by establishing precedence rela-
tions in Constraint 49 between requests based on decision vari-
ables for time instants at which requests are served.

In addition to these algorithms, we also consider their batched
versions in order to check whether continuous information release
is necessary or whether information release in blocks (so-called
batches) of items suffices to obtain satisfactory results. If algo-
rithms operate under batched lookahead, we indicate them with
an added suffix B in the algorithm name, e.g., Nn10;B means that
Please cite this article as: Dunke F, Nickel S. A general modeling appr
//dx.doi.org/10.1016/j.omega.2015.10.009i
the NearestNeighbor10 algorithm is applied once for each batch of
10 requests, and only after all of the 10 requests have been visited
a new batch of 10 items is released.

We now present the computational results for the algorithm
families Nnl, Insl, 2Optl, 3Optl, Sal, Tsl, Optl and their respective
batched versions under variable size l of the lookahead set. We
select the settings of n¼25 and n¼100 requests per sequence;
each setting features m¼1000 independently drawn request
sequences. Requests are located in the planar unit square M¼ ½0;
1� � ½0;1� �R2 and distance is measured by the Euclidean metric.
We discuss results for n¼25 and refer to [22] for n¼100. For
n¼25, all lookahead sizes lAf1;5;10;…;25g are tested in order to
quantify the value of additional lookahead.

Average results: In contrast to bin packing, the objective value is
immediately and heavily affected by the input element processing
order and there should be a clear effect of visiting requests in an
order different from their release order (rule set substitution).
oach to online optimization with lookahead. Omega (2015), http:

http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009

F. Dunke, S. Nickel / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 17
Fig. 12 confirms the huge benefit of lookahead. Comparing the
online with the offline case, reductions of 60.5% (for Insl;B) up to
67.8% (for Optl) are achieved depending on the used algorithm.
The marginal benefit of an additional lookahead unit is strictly
decreasing for all algorithms. In this sense, provisioning a pure
online algorithm with lookahead sets of small size lr5 already
leads to considerable improvement, whereas for large enough loo-
kahead size lZ20 only small additional improvement is possible.
For instance, already for a lookahead size of l¼5 the overall tour
lengths are reduced to between 57.5% (for Nnl) and 74.1% (for
Optl;B) of the online tour length. Finally, from the clear separation of
the curves marked with dots (e.g., Nnl) and their respective coun-
terparts marked with rectangles (e.g., Nnl;B) we observe improved
behavior under regular request lookahead compared to batched
lookahead as a result of the potential for tour length reduction that
each additional request in the lookahead brings along.

Overall, lookahead positively affects all algorithms in the same
order of magnitude. However, on a detailed look it is also seen that
for small lookahead sizes ðlr5Þ the simple algorithm Nnl fares
best; sophisticated algorithms such as 3Optl, Tsl and Optl exhibit
superior performance only for medium to large lookahead, i.e., for
ðlZ10Þ. We conclude that a surplus of refined algorithms can only
be realized when the overseen time horizon is as large as to guar-
antee no severe deviations from once computed plans upon new
request arrivals. Overall, we also attribute this effect to a reduced
probability for zigzagging under Nnl, albeit returning to previously
seen regions cannot be excluded entirely because of future requests.
Fig. 12. Average costs for different lookahead sizes and n¼ 25 in the TSP.

Fig. 13. Empirical counting distribution functions of costs (left) and perfo

Please cite this article as: Dunke F, Nickel S. A general modeling appr
//dx.doi.org/10.1016/j.omega.2015.10.009i
However, based on further experiments that we conducted we
conjecture that the results of an exact reoptimization approach such
as Optl strongly depend on how the snapshot problem is modeled.
In this sense, searching for the “right” snapshot problem is a chal-
lenging avenue of future research. Comparing the sophisticated
methods among each other, we find that Optl is recommendable
only in the full lookahead situation (l¼25), i.e., in the offline pro-
blem. For lr20 the locally optimal snapshot solutions of Optl seem
to be unrobust with respect to the integration of new requests. For
lookahead sizes 10r lr20, it is therefore advisable not to use Optl,
but 2Optl, 3Optl or Tsl which are all comparably good in this
information regime.

A summary of statistical key figures for the overall tour lengths
can be found in Table A8 of Online Appendix A.

Distributional results: Empirical counting distribution functions
of objective values and performance ratios are shown exemplary
for algorithm classes Nnl and 3Optl in Fig. 13. For successive loo-
kahead levels of small to medium size, the plots of the distribution
functions for the total tour length on the left side of Fig. 13 appear
clearly segregated from each other. For instance, the curves for
lookahead size l¼5 are already so far away from the curves for
lookahead size l¼1 that the longest tour for l¼5 is barely longer
than the shortest tour for l¼1. The decrease in the absolute value
of tour lengths under lookahead is as substantial as to cause the
supports of the density functions related to the given plots not to
overlap for l¼1 and l¼10. From the decreasing gap between
curves of successive lookahead levels for increasing lookahead
level, we get a clear confirmation of the decreasing marginal
benefit of additional lookahead units that has already been con-
jectured from the average results. Moreover, the advantage (dis-
advantage) of Nnl as a representative of the simple rule-based
heuristics over 3Optl as a representative of the sophisticated
heuristics for lr10ðlZ20Þ becomes apparent by considering the
horizontal positions of the curves. For instance, the curve for
lookahead level l¼1 lies farther left for Nn1 than for 3Opt1;
contrarily, the curve for l¼25 lies farther right for Nn25 than for
3Opt25.

The empirical counting distribution functions of the perfor-
mance ratios relative to the online versions of the algorithms on
the right side of Fig. 13 point towards the huge impact of the first
lookahead units and the decreasing marginal benefit of additional
lookahead units. Moreover, this illustration allows us to display
rmance ratios relative to the online case (right) for n¼ 25 in the TSP.

oach to online optimization with lookahead. Omega (2015), http:

http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009

F. Dunke, S. Nickel / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎18
the tour length savings graphically in a fine-grained way. For
instance, for lookahead size l¼5, we immediately see that tour
length reductions in the area of 30–40% are probable to occur.
Finally, we note that no instance exists for which the provision of
lookahead leads to a deterioration in the resulting tour length
when compared to the pure online case. Hence, lookahead proves
exclusively beneficial.

Observe that for large lookahead sizes lZ20 all counting dis-
tribution functions in Fig. 13 are relatively steep in a characteristic
interval which illustrates the homogenous positive effect of addi-
tional information on all kinds of request sequences.

Overall, we could identify huge benefits of lookahead in this
version of the TSP as a result of the allowance to visit requests in
any order. Given this freedom, selecting the right request to be
visited next by the right algorithm is substantially rewarded by
decreased tour lengths.

A summary of statistical key figures for the performance ratios
relative to the online case can be found in Table A9 of Online
Appendix A.

5.3. Information pool

Table 3 subsumes the findings of all numerical experiments
(including also ski rental, paging and scheduling, cf. [22]) on a
granular level in an information pool on observable lookahead
effects in different settings.

The column for the total lookahead effect ðΔf r;r
0 ;P;P0

ALG;ALG
0 Þ admits

an overall positive effect of lookahead, but also a strong depen-
dency of its magnitude on the problem setting itself. The columns
for the partial lookahead effects due to instance revelation rule
substitution ðΔf r;r

0

ALG
Þ and due to rule set substitution ðΔf P;P

0

ALG;ALG
0 Þ

additionally illustrate the decomposition of the lookahead effect
into an informational and a processual component.

In the TSP and in scheduling with allowed immediate proces-
sing, additional lookahead directly paid off upon changing the
processing order of input elements because of the direct impact on
the objective value. Specifically, the large improvement in the TSP
is quantifiable by large tour length reductions of up to 68%
(comparing the offline case relative to the pure online case) and all
benefits are exclusively attributable to the change in the rule set.
In the scheduling experiments, the allowance for immediate pro-
cessing under lookahead accounts for large savings of up to 75%
and nearly all benefits are a result of the change in the rule set.
Improvement in negligible order (smaller than 0.1%) is achieved
due to the change in the instance revelation rule.

In bin packing, the observed effect was much smaller as a result
of the indirect impact of item assignments on the objective value:
an item occupies the same bin capacity no matter in which bin it
Table 3
Qualitative summary of the experimental results from [22].

Problem Type Attribute Rule

Ski rental Request lookahead – –

Paging Request lookahead Equal probabilities –

Access graph –

Page frequencies –

Bin packing Request lookahead Classical Permutations
No permutations

Bounded- space Permutations
No permutations

TSP Request lookahead – –

Scheduling Time lookahead Single machine Immediate processing
No immediate processi

Parallel machines Immediate processing
No immediate processi

a Instances with deteriorated objective value in the paging problem were only obse

Please cite this article as: Dunke F, Nickel S. A general modeling appr
//dx.doi.org/10.1016/j.omega.2015.10.009i
lies and at which time it is packed. Moreover, we found that
improvements in packing could only be attained by a clever
arrangement of the small objects. Unfortunately, constellations
where such improvements can be made are encountered rarely in
typical sequences. In total, we observed small savings in the
number of required bins of up to 5% comparing the offline case
relative to the pure online case. Mainly, this effect consists of the
improvement that could be made through the improvement in the
instance revelation rule. Taking into account the rule set sub-
stitution from “item permutations forbidden” to “item permuta-
tions allowed”, we additionally find in bounded-space bin packing
that negligible improvement (smaller than 1%) can be attributed to
the processual component.

Lookahead in the paging and ski rental problem was also found
to have a major positive impact because of the risk-free exploita-
tion of information based on a larger part of the time horizon that
is overseen. Here, the additional knowledge allows an algorithm to
make a decision that guarantees no future drawbacks. In detail, we
observed cost reductions of up to 38% (comparing the offline case
relative to the pure online case) in paging with equal probabilities
for requested pages, up to 10% when page sequences are generated
according to an access graph, and up to 34% in the case of pre-
scribed page frequencies. A large effect of up to 20% cost savings
was also observed in the ski rental problem.

The columns Δf r;r
0

ALG
and Δf P;P

0

ALG;ALG
0 show that in ski rental,

paging and bin packing merely additional information was
responsible for improvements, whereas in the TSP and in sche-
duling the change of the rule set lead to major improvement.
Hence, the ultimate cause for observed lookahead effects also
strongly differs between applications.

Column ALG
n tells us whether there was an algorithm that

could be considered the champion over all lookahead levels.
Although this happened rarely, we often observed that heuristics
did especially well for small lookahead, whereas exact reoptimi-
zation approaches excel heuristics slightly for large lookahead
near the offline version.

Column OPT indicates whether exact reoptimization lead to
significant improvements: Only minor improvements were
observed such that exact reoptimization is no must-have.
Although in some problems these methods led to a slight perfor-
mance enhancement especially for large lookahead, they also
offered nearly no benefit for small lookahead when compared to
good heuristic reoptimization strategies: optimality of a partial
solution often does not migrate to the overall solution because
substructures in partial solutions with a positive influence on the
objective value are likely to be relinquished during the future
solution process.
Δf r;r
0 ;P;P0

Alg;Alg
0 Δf r;r

0

Alg
Δf P;P

0

Alg;Alg
0 Alg

a OPT Deterioration

Large Large Zero Yes – No
Large Large Zero No – No/yesa

Medium Medium Zero Yes – No/Yesa

Large Large Zero Yes – No/Yesa

Small Small Zero No No Yes
Small Small Zero No No Yes
Small Small Negligible Yes No Yes
Small Small Negligible No No Yes
Large Zero Large No No Yes
Large Negligible Large

ng Negligible Negligible Zero Yes
Large Negligible Large

ng Negligible Negligible Zero

rved for batching algorithms.

oach to online optimization with lookahead. Omega (2015), http:

http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009

F. Dunke, S. Nickel / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎ 19
There was no homogeneous picture about whether additional
lookahead can also lead to objective value deterioration or not
(column Deterioration): in some problems there were rare
instances with degraded algorithm performance since lookahead
was leading them towards a wrong direction as discovered later in
the processing of the input sequence.

Altogether, computational results are affirmative to the exact
analysis in [22] concerning the magnitude of the lookahead impact
as well as its primarily responsible factors. Our approach of algo-
rithm assessment in the context of a potential provision of loo-
kahead encompassed two stages: in the first stage, an average-
case analysis allowed us to find the most promising algorithm
candidates for a given lookahead level in terms of expected algo-
rithm behavior. In the second stage, distributional analysis leads to
a fine-grained assessment of each candidate's individual risk
profile with respect to attainable objective values and perfor-
mance ratios.
6. Conclusion

Although tremendous research effort has been spent on online
optimization over the past two decades, it is still widely believed
that the state of the art is yet far from reaching maturity [30]. In
particular, there is no agreed groundwork of methods and tools for
comprehensive algorithm analysis in online optimization, not to
mention in online optimization with lookahead. This paper aimed
at contributing towards the elimination of this deficiency.

We first elaborated a clear definition of lookahead in optimi-
zation: lookahead is a mechanism of information release that
specifies the difference in the process of information disclosure as
compared to a reference optimization problem (instance revela-
tion rule substitution) and that might impose a set of constraints
differing from the set of constraints in the reference online opti-
mization problem upon the processing of the input elements (rule
set substitution).

The general framework serves as a common basis for a domain-
independent understanding of the mechanisms and implications
of lookahead. A particular emphasis is put on lookahead-related
issues such as processing mode, order and accessibility. Hence,
devising algorithms for online optimization with lookahead is no
longer a problem-specific task independent of a general optimi-
zation paradigm, but closely intertwined with the abstract concept
of lookahead from Section 2 as well as the framework and clas-
sification scheme from Section 3. Solution concepts can now be
described in an abstract way using a unified taxonomy.

We emphasize that the terms “online optimization” and “loo-
kahead” are defined in existing literature only in problem-specific
contexts of certain publications which prohibits a structurally
oriented view on the effects of lookahead. Using the approach
outlined in this paper, we were able to attribute a reason to loo-
kahead effects observed in problems and to transfer that knowl-
edge also to other settings (Section 5).

Future research emerges from limitations of the presented
approaches and from related topics: we were only concerned with
the value of lookahead but not with related costs. Realizing loo-
kahead requires costly technical devices (e.g., RFID, GPS or GIS
technology) which facilitate information transmission at an earlier
point in time. Installation and operation of such machinery indu-
ces a fair amount of costs, and it needs to be checked by economic
models whether the benefits exceed the costs of lookahead devi-
ces. Another future research branch involves analysis methods for
discrete event systems such as (timed) automata, (timed) Markov
chains or discrete event simulation and should answer the ques-
tion of how they can be applied within the framework of online
optimization with different types of lookahead, e.g., with time
Please cite this article as: Dunke F, Nickel S. A general modeling appr
//dx.doi.org/10.1016/j.omega.2015.10.009i
lookahead. Finally, a new research branch could arise from com-
bining and intermixing online optimization with other approaches
to regimes of incomplete information like stochastic program-
ming, robust programming or forecast-based optimization.
Appendix A. Supplementary data

Supplementary data associated with this paper can be found in
the online version at http://dx.doi.org/10.1016/j.omega.2015.10.
009.
References

[1] Ahlroth L, Schumacher A, Haanpää H. On the power of lookahead in online lot-
sizing. Operations Research Letters 2010;38(6):522–526.

[2] Albers S. On the influence of lookahead in competitive paging algorithms.
Algorithmica 1997;18(3):283–305.

[3] Albers S. A competitive analysis of the list update problem with lookahead.
Theoretical Computer Science 1998;197(1–2):95–109.

[4] Allulli L, Ausiello G, Bonifaci V, Laura L. On the power of lookahead in on-line
server routing problems. Theoretical Computer Science 2008;408(2–3):116–128.

[5] Allulli L, Ausiello G, Laura L. On the power of look ahead in on-line vehicle
routing problems. In: Wang L, editor. Computing and combinatorics. Berlin,
Heidelberg: Springer; 2005. p. 728–736.

[6] Ausiello G, Allulli L, Bonifaci V, Laura L. On-line algorithms, realtime, the virtue
of laziness, and the power of clairvoyance. In: Cai J, Cooper S, Li A, editors.
Theory and applications of models of computation. Berlin, Heidelberg:
Springer; 2006. p. 1–20.

[7] Ausiello G, Crescenzi P, Kann V, Marchetti-Spaccalema A, Gambosi G, Spac-
camela A. Complexity and approximation: combinatorial optimization pro-
blems and their approximability properties. 2nd ed.. Berlin, Heidelberg:
Springer; 2003.

[8] Bellman R. Dynamic programming. Princeton NJ: Princeton University Press;
1957.

[9] Ben-David S, Borodin A. A new measure for the study of on-line algorithms.
Algorithmica 1994;11(1):73–91.

[10] Ben-David S, Borodin A, Karp R, Tardos G, Wigderson A. On the power of
randomization in on-line algorithms. Algorithmica 1994;11(1):2–14.

[11] Bertsimas D, Brown D, Caramanis C. Theory and applications of robust opti-
mization. SIAM Review 2011;53(3):464–501.

[12] Birge JR, Louveaux FV. Introduction to stochastic programming. 2nd ed.. New
York: Springer; 2011.

[13] Borodin A, El-Yaniv R. Online computation and competitive analysis. Cam-
bridge: Cambridge University Press; 1998.

[14] Breslauer D. On competitive on-line paging with lookahead. Theoretical
Computer Science 1998;209(1-2):365–375.

[15] Camacho EF, Bordons C. Model predictive control. 2nd ed.. London: Springer;
2007.

[16] Cassandras C, Lafortune S. Introduction to discrete event systems. 2nd ed..
New York: Springer; 2008.

[17] Chung F, Graham R, Saks M. A dynamic location problem for graphs. Combi-
natorica 1989;9(2):111–131.

[18] Coleman B. Quality vs. performance in lookahead scheduling. In: Proceedings of
the 9th international joint conference on information science, 2006. p. 324–7.

[19] Csirik J, Woeginger G. On-line packing and covering problems. In: Fiat A,
Woeginger G, editors. Online algorithms: the state of the art. Berlin, Heidel-
berg: Springer; 1998. p. 147–177.

[20] Dooly D, Goldman S, Scott S. On-line analysis of the TCP acknowledgment
delay problem. Journal of the ACM 2001;48(2):243–273.

[21] Dorrigiv R. Alternative measures for the analysis of online algorithms [Ph.D.
thesis], University of Waterloo, 2010.

[22] Dunke F. Online optimization with lookahead [Ph.D. thesis], Karlsruhe Insti-
tute of Technology, 2014.

[23] Esen M. Design, implementation and analysis of online bin packing problems
[Master's thesis], Technische Universität Kaiserslautern, 2000.

[24] Fiat A, Woeginger G. editors. Online algorithms: the state of the art, Springer,
1998.

[25] Garey M, Johnson D. Computers and intractability: a guide to the theory of NP-
Completeness. New York: Freeman; 1979.

[26] Ghiani G, Laporte G, Musmanno R. Introduction to logistics systems planning
and control. Hoboken, NJ: Wiley; 2004.

[27] Glover F. Tabu search—Part I. ORSA Journal on Computing 1989;1(3):190–206.
[28] Golden B, Raghavan S, Sharda R, Vo S, Wasil E, editors. The vehicle routing

problem: latest advances and new challenges. Boston, MA: Springer; 2008.
[29] Grove E. Online bin packing with lookahead, in: Proceedings of the 6th Annual

ACM-SIAM Symposium on Discrete Algorithms, 1995. p. 430–6.
[30] Grötschel M, Krumke S, Rambau J, Winter T, Zimmermann U. Combinatorial

online optimization in real time. In: Grötschel M, Krumke S, Rambau J, editors.
oach to online optimization with lookahead. Omega (2015), http:

http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref1
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref1
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref2
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref2
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref3
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref3
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref4
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref4
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref01
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref01
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref01
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref02
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref02
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref02
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref02
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref03
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref03
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref03
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref03
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref04
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref04
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref9
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref9
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref10
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref10
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref11
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref11
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref05
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref05
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref06
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref06
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref14
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref14
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref07
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref07
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref8
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref8
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref17
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref17
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref09
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref09
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref09
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref20
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref20
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref010
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref010
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref011
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref011
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref27
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref012
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref012
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref013
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref013
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009

F. Dunke, S. Nickel / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎20
Online optimization of large scale systems. Berlin, Heidelberg: Springer; 2001.
p. 679–704.

[31] Gutin G, Jensen T, Yeo A. Batched bin packing. Discrete Optimization 2005;
2(1):71–82.

[32] Halldórsson M, Szegedy M. Lower bounds for on-line graph coloring. Theo-
retical Computer Science 1994;130(1):163–174.

[33] Hiller B. Online optimization: probabilistic analysis and algorithm engineering
[Ph.D. thesis], Technische Universität, Berlin, 2009.

[34] Imreh C, Németh T. On time lookahead algorithms for the online data
acknowledgement problem. In: Kucera L, Kucera A, editors. Mathematical
foundations of computer science 2007. Berlin, Heidelberg: Springer; 2007.
p. 288–297.

[35] Irani S. Coloring inductive graphs on-line. Algorithmica 1994;11(1):53–72.
[36] Jaillet P, Lu X. Online traveling salesman problems with service flexibility.

Networks 2011;58(2):137–146.
[37] Jaillet P, Wagner M. Online routing problems: value of advanced information

as improved competitive ratios. Transportation Science 2006;40(2):200–210.
[38] Jaynes E. Information theory and statistical mechanics. Physical Review

1957;106(4):620–630.
[39] Jaynes E. Information theory and statistical mechanics II. Physical Review

1957;108(2):171–190.
[40] Johnson D. Near-optimal bin packing algorithms [Ph.D. thesis], Massachusetts

Institute of Technology, 1973.
[41] Kiniwa J, Hamada T, Mizoguchi D. Lookahead scheduling requests for multisize

page caching. IEEE Transactions on Computers 2001;50(9):972–983.
[42] Koutsoupias E, Papadimitriou C. Beyond competitive analysis. SIAM Journal of

Computing 2000;30(1):300–317.
[43] Lawler E, Lenstra J, Rinnooy Kan A, Shmoys D, editors. The traveling salesman

problem: a guided tour of combinatorial optimization. Chichester: Wiley;
1985.

[44] Li W, Yuan J, Cao J, Bu H. Online scheduling of unit length jobs on a batching
machine to maximize the number of early jobs with lookahead. Theoretical
Computer Science 2009;410(47–49):5182–5187.
Please cite this article as: Dunke F, Nickel S. A general modeling appr
//dx.doi.org/10.1016/j.omega.2015.10.009i
[45] Mandelbaum M, Shabtay D. Scheduling unit length jobs on parallel machines
with lookahead information. Journal of Scheduling 2011;14(4):335–350.

[46] Mao W, Kincaid R. A look-ahead heuristic for scheduling jobs with release
dates on a single machine. Computers and Operations Research 1994;
21(10):1041–1050.

[47] Motwani R, Saraswat V, Torng E. Online scheduling with lookahead: multipass
assembly lines. INFORMS Journal on Computing 1998;10(3):331–340.

[48] Pinedo M. Scheduling: theory, algorithms, and systems. 4th ed.. Boston, MA:
Springer; 2012.

[49] Puterman M. Markov decision processes: discrete stochastic dynamic pro-
gramming. Hoboken, NJ: Wiley; 2005.

[50] Shor P. The average-case analysis of some on-line algorithms for bin packing.
Combinatorica 1986;6(2):179–200.

[51] Stadtler H, Kilger C, editors. Supply chain management and advanced plan-
ning: concepts, models, software, and case studies. 4th ed.. Berlin, Heidelberg:
Springer; 2008.

[52] Tinkl M. Online-optimierung der rundreise auf der kreislinie mit informa-
tionsvorlauf [Ph.D. thesis], Universität Augsburg, 2011.

[53] Torng E. A unified analysis of paging and caching. Algorithmica 1998;
20(2):175–200.

[54] Yang D, Nair G, Sivaramakrishnan B, Jayakumar H. Round robin with look
ahead: a new scheduling algorithm for bluetooth, In: Proceedings of the 2002
international conference on parallel processing workshops, 2002. p. 45–50.

[55] Yeh T, Kuo C, Lei C, Yen H. Competitive analysis of on-line disk scheduling. In:
Asano T, Igarashi Y, Nagamochi H, Miyano S, Suri S. editors. Algorithms and
computation, Springer, 1996, p. 356–65.

[56] Young N. Competitive paging and dual-guided on-line weighted caching and
matching algorithms [Ph.D. thesis], Princeton University, 1991.

[57] Zheng F, Cheng Y, Liu M, Xu Y. Online interval scheduling on a single machine
with finite lookahead. Computers and Operations Research 2013;40(1):180–191.

[58] Zheng F, Xu Y, Zhang E. How much can lookahead help in online single
machine scheduling. Information Processing Letters 2008;106(2):70–74.
oach to online optimization with lookahead. Omega (2015), http:

http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref013
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref013
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref31
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref31
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref32
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref32
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref014
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref014
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref014
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref014
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref35
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref36
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref36
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref37
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref37
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref38
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref38
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref39
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref39
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref41
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref41
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref42
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref42
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref015
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref015
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref015
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref44
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref44
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref44
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref45
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref45
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref46
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref46
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref46
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref47
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref47
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref016
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref016
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref017
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref017
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref50
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref50
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref018
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref018
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref018
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref53
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref53
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref57
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref57
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref58
http://refhub.elsevier.com/S0305-0483(15)00213-3/sbref58
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009
http://dx.doi.org/10.1016/j.omega.2015.10.009

	A general modeling approach to online optimization with lookahead
	Introduction
	Lookahead and related concepts for uncertainty
	Problem statement

	Online optimization with lookahead
	Definition of lookahead
	Value of lookahead information
	Relation to discrete event systems

	Modeling framework and classification scheme
	Previous modeling approaches
	Modeling framework components
	Basic modeling elements
	Lookahead type
	Processing mode and order
	Processing accessibility
	Algorithm execution mode

	Discrete event process model
	Classification scheme

	Performance measurement in online optimization
	Computational results and information pool
	Online bin packing with lookahead
	Online traveling salesman problem with lookahead
	Information pool

	Conclusion
	Supplementary data
	References

