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a b s t r a c t

We extend a recently developed DEA methodology for cost efficiency analysis towards profit efficiency
settings. This establishes a novel DEA toolkit for profit efficiency assessments in situations with multiple
inputs and multiple outputs. A distinguishing feature of our methodology is that it assumes output-
specific production technologies. In addition, the methodology accounts for the use of joint inputs, and
explicitly includes information on the allocation of inputs to individual outputs. We also establish a dual
relationship between our multi-output profit inefficiency measure and a technical inefficiency measure
that takes the form of a multi-output directional distance function. Finally, we demonstrate the empirical
usefulness of our methodology by an empirical application to a large service company.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Production processes that generate multiple outputs are typically
characterized by jointly used inputs, i.e. inputs that simultaneously
benefit different outputs. These joint inputs give rise to economies of
scope, which actually form a prime economic motivation for Decision
Making Units (DMUs) to produce more than one output. In the current
paper, we establish a methodology for multi-output profit efficiency
evaluation that explicitly accounts for jointly used inputs. In particular,
our methodology distinguishes between joint inputs and inputs that
are allocated to specific outputs.

DEA analysis of multi-output production: The method that we
develop fits within the popular Data Envelopment Analysis (DEA,
after [8]) approach to productive efficiency measurement. This
DEA approach is intrinsically nonparametric, which means that it
does not require a parametric/functional specification of the
(typically unknown) production technology. It “lets the data speak
for themselves” by solely using technological information that is
directly revealed by the observed production units. It then
reconstructs the production possibility sets by (only) assuming
standard production axioms (such as monotonicity and convex-
ity).1 A DMU's efficiency is measured as the distance of the

corresponding input-output combination to the efficient frontier
of this empirical production set. Typically, a DMU's efficiency can
be computed by simple linear programming. Its nonparametric
nature and its easy computation largely explain DEA's widespread
use as an analytical research instrument and decision-support
tool.

Recently, Cherchye et al. [10,9] introduced a novel DEA
methodology to analyze cost efficiency in multi-output settings.
The methodology assumes output-specific production technolo-
gies, accounts for joint inputs in the production process, and
incorporates specific information on how inputs are allocated to
individual outputs. As such they provide a formal modeling of the
economies of scope that characterize the multi-output produc-
tion process.2 These authors have also shown that their cost
efficiency measure evaluated at shadow prices is dually equiva-
lent to a specific multi-output version of the [21–30] measure of
(radial) input efficiency. This is an attractive feature, as DEA
practitioners often use this Debreu–Farrell measure for evaluat-
ing the technical efficiency of a DMU's input use (when assuming
a fixed output).
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At this point, we remark that the methodology of [10,9] is closely
related to several existing approaches in the DEA literature. Firstly,
there is a clear connection with network DEA (see [26,29]). The
literature on network DEA also makes use of what we define further
as output-specific inputs. However, to the best of our knowledge, it
abstracts from the possibility of jointly used inputs. These joint inputs
play an important role in our approach because they define the
interdependencies between the production processes associated with
different outputs and, as a result, they characterize the economies of
scope that underlie the observed production processes. Secondly,
Salerian and Chan [41] and Despic et al. [22] present two alternative
methods to model inputs that contribute to some outputs but not to
others. As such, these models can actually be interpreted as special
cases of our model with joint inputs, but without having output-
specific inputs.

Summarizing, these alternative approaches have in common
that they try to enhance the realism of the efficiency evaluation
exercise by integrating information on the internal production
structure. In a sense, we provide a unifying framework that
integrates these existing approaches. This framework should be
particularly attractive to empirical researchers who are familiar
with standard DEA techniques and interested in the analysis of
multi-output production characterized by joint inputs.

Profit efficiency analysis: The current paper extends this meth-
odology for multi-output efficiency assessments to profit effi-
ciency settings, which makes our paper fit in the extensive
literature that studies profit efficiency and its extensions in a
DEA context.3 In many practical settings, profit efficiency is
considered to be the best suited criterion for evaluating the
performance of productive activities. In addition, by its very
definition cost efficiency is a necessary condition for profit
efficiency. Profit efficiency evaluations are generally more strin-
gent than cost efficiency evaluations. As a result, they can signal
additional sources of inefficiency and, thus, potential performance
improvements. In this respect, as we will indicate, an appealing
feature of our multi-output approach is that it also allows us to
allocate a DMU's aggregate profit inefficiency to individual out-
puts. This helps to better identify specific output production
processes where substantial profit efficiency gains are possible,
which can usefully assist DMU managers to direct their perfor-
mance improvement actions in an effective way (i.e. primarily
towards outputs that are characterized by considerable
inefficiency).

In developing our profit efficiency methodology, we also start
from output-specific technologies and distinguish between joint
inputs and output-specific inputs in the process of multi-output
production. Next, we will show that our profit inefficiency mea-
sure under shadow prices has a dual representation as a direc-
tional distance function. We believe this is an interesting property,
as directional distance functions have become increasingly popu-
lar as a technical inefficiency measure that simultaneously
includes outputs produced and inputs used. Basically, this duality
result extends the one of [7] towards our specific multi-output
setting. A particular feature of our analysis here is that we
explicitly account for output-specific technologies with jointly
used inputs in establishing the duality relationship.

Outline: The rest of the paper is structured as follows. Section
2 introduces some necessary notation and terminology. Section 3
introduces our method for multi-output profit inefficiency mea-
surement. Section 4 establishes the dual representation of our
profit inefficiency measure as a directional distance function.
Section 5 shows the practical usefulness of our method through
an application to a large service company. Section 6 concludes.

2. Preliminaries

The distinction between inputs and outputs becomes less
relevant in profit efficiency analysis. Therefore, to simplify nota-
tion it will often be convenient to work with “netputs” in our
following exposition. As we will explain, netput vectors simulta-
neously capture inputs used (as negative components) and out-
puts produced (as positive components). We will define this
netput concept for our specific setting with joint and output-
specific inputs. In turn, this will allow us to introduce our notion of
output-specific technologies and, correspondingly, our particular
concept of multi-output profit.

Netputs and multi-output technologies: We consider a produc-
tion technology that uses N inputs to produce M outputs, which
we represent by the vectors X¼ ðx1;…; xNÞ0ARN

þ and
Y¼ ðy1; :::;yMÞ0ARM

þ , respectively. Our method distinguishes
between joint and output-specific inputs.

� Output-specific inputs are allocated to individual outputs m, i.e.
they specifically benefit the production process of (only) the m-
th output. In our formal analysis, we will use αm

k A ½0;1� (withPM
m ¼ 1 α

m
k ¼ 1) to represent the fraction of the k-th output-

specific input quantity that is allocated to output m.
� Joint inputs are not allocated to specific outputs but are

simultaneously used in the production process of all the out-
puts. Clearly, these joint inputs generate interdependencies
between the production processes of different outputs.4

In the following we will assume that the allocation parameters
αm
k are observed. We believe that in many instances this is not a

strong assumption, since large firms nowadays often use cost
systems that explicitly allocate inputs/costs to outputs (e.g. Activ-
ity Based Costing (ABC)) to support various strategic and opera-
tional decisions. These cost systems can be used to define the αm

k

(see, for example, our own empirical application in Section 5).
Nevertheless, if this information is not available to the empirical
analyst, we can make use of alternative approaches that are not
based on observing this information, but try to reconstruct the
decomposition (over outputs) of the output-specific inputs in DEA
analysis itself.5 Cherchye et al. [10] provide a discussion on how to
integrate these techniques in the approach to multi-output effi-
ciency analysis that we present here. These authors' discussion
focused on a cost efficiency setting, but it readily extends to the
profit efficiency setting that we consider in the current paper.

We will represent the allocation of inputs to outputs by means
of a vector AmARN

þ for each output m, for which the entries are
defined as (with αm

k A ½0;1� and PM
m ¼ 1 α

m
k ¼ 1)

ðAmÞk ¼
1 if input k is joint and used to produce output m;

αm
k if input k is output� specific and used to produce output m;

0 if input kis not used to produce output m:

8><>:
Then, each vector Am defines the input vector Xm ¼ Am � X, which
thus contains the input quantities used in the production process
of output m.6

As indicated above, we can often simplify our notation by
working with netputs, which simultaneously stand for outputs

and inputs. Specifically, we use Z¼ Y
�X

� �
ARMþN to denote the

3 See, for example, [14,35,38,36,39,4] for recent contributions.

4 See [13] for the introduction of sub-joint inputs. These inputs play a similar
role as joint inputs, but only for a subset of (instead of all) outputs. It is
straightforward to include this third type of inputs in our methodology, but for
the ease of the exposition we abstract from this in the current paper.

5 See, for example, [17,16,3,37,44,24].
6 The symbol � stands for the Hadamard (or element-by-element) product.
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aggregate netput vector. In a similar vein, Zm ¼ ym

�Xm

� �
AR1þN

þ

represents the netput vector that is specific to output m.
Our multi-output analysis will involve a specific representation

of each output m's production technology. This technology defines
the output-specific production possibility set

Tm ¼ fZmAR1þN ∣Zmis technically feasibleg;
which contains all the combinations of output-specific and joint
inputs (in Xm) that can produce the output quantity ym.

Prices and profits: To define profit, we use Px ¼ ðp1x ;…; pNx Þ0ARN
þ

for input prices and Py ¼ ðp1y ;…; pMy ÞARM
þ for output prices. Corre-

spondingly, the netput price vector is given as P¼ Py
Px

h i
ARMþN

þ .
To incorporate our distinction between output-specific and

joint inputs, we make use of output-specific input prices
Pm
x ARN

þ . First, for output-specific inputs, these prices coincide
with the actual prices, i.e.

ðPm
x Þk ¼ ðPxÞk for k an output� specific input:

Next, following Cherchye et al. [10,9] we make use of output-
specific prices ðPm

x Þk for every joint input k. Essentially, these prices
ðPm

x Þk capture the fractions of the aggregate input price ðPxÞk that
are allocated to individual outputs m. Efficient production requires
the output-specific prices ðPm

x Þk to add up to the aggregate DMU-
level prices, i.e. they must satisfyXM
m ¼ 1

ðPm
x Þk ¼ ðPxÞk for k a joint input:

As explained in detail by Cherchye et al. [12], these output-
specific prices have a similar interpretation as Lindahl prices for
public goods. Specifically, Pareto efficient provision of public goods
equally requires these Lindahl prices to sum up to the aggregate
prices.

Taken together, the output-specific price vector Pm for each
output m is given as

Pm ¼
pmy
Pm
x

" #
:

Correspondingly, for every output m we can define the output-
specific profit

πm ¼ Pm0
Zm:

In turn, by summing these output-specific profit, we obtain the
aggregate profit7

π ¼
XM
m ¼ 1

πm ¼
XM
m ¼ 1

Pm0
Zm ¼ P0Z:

The last equality also shows that summing the profit levels
associated with individual netputs Zm yields, by construction, the
DMU's profit level defined in terms of the aggregate netput Z.
Given this, we will work with the sum profit

PM
m ¼ 1 P

m0
Zm in what

follows, without explicitly considering P0Z.

3. Multi-output profit efficiency

In practice, the true production technology is typically
unknown. Therefore, in empirical efficiency evaluations, we need
to reconstruct the production possibilities from a set of T observed
DMUs. In what follows, we assume a setting in which we observe,
for each DMU t, the netput vectors Z1

t ;…;ZM
t , which contain the

joint and output-specific inputs, as well as the resulting outputs.

In the current section, we will additionally assume that the
empirical analyst also observes the associated netput price vector
Pt ¼ Py;t

Px;t

h i
ARMþN

þ . At this point, two remarks are in order. First, the
assumption of observed prices is often restrictive in empirical
settings. In the next section, we will show how we can relax this
assumption by using shadow prices. Second, throughout we will
assume that we do not have any information about the output-
specific prices for the joint inputs, which typically holds true in
practical applications (including our own application in Section 5).
However, it is worth to indicate that, if extra information on
output-specific prices were available, it would actually be fairly
easy to integrate this information in our profit efficiency analysis.

Taken together, we assume that we observe a data set

S¼ fðZ1
t ;…;ZM

t ;PtÞ∣t ¼ 1;…; Tg:

Empirical efficiency criterion: Following a nonparametric
approach, we reconstruct the production possibilities while avoiding
(non-verifiable) parametric assumptions regarding the DMUs' tech-
nologies. In our profit efficiency analysis, we (only) use the following
minimalistic prior regarding the production possibility sets.

Axiom T1 (observability means feasibility): Observing the net-
puts Z1

t ;…;ZM
t implies for all m¼ 1;…;M that ZmATm.

This axiom has a very natural interpretation. Basically, it says
that what we observe is certainly feasible. Or, if we observe the

netput vector Zm
t ¼ ymt

�Xm
t

h i
, then we conclude that the input Xm

t can

effectively produce the output ymt .8

Adopting our above notation of the previous section, we let

Pm
t ¼

pmy;t
Pm
x;t

" #
represent the m-th output-specific prices for DMU t,

with the subvector Pm
x;t containing the prices for the output-

specific and joint inputs as characterized in Section 2. Then,
building on Axiom T1, we obtain our empirical condition for profit
efficient production behavior.

Definition 1 (Profit efficiency). Let S¼ fðZ1
t ;…;ZM

t ;PtÞ∣t ¼ 1;…; Tg
be a data set. Then, DMU t is profit efficient if there exist, for all

outputs m, output-specific price vectors Pm
t ¼ pmy;t

Pm
x;t

h i
AR1þN

þ , such

that

(i) ðPm
x;tÞk ¼ ðPx;tÞk for output-specific inputs k,

(ii)
PM

m ¼ 1 ðPm
x;tÞk ¼ ðPx;tÞk for joint inputs k,

(iii) Pm0
t Zm

t ZPm0
t Zm

s for all observations s¼ 1;…; T .

In words, this definition states that DMU t is profit efficient if,
for the input and output prices that apply to t (captured by Pm

t for
every output m), there does not exist another observed DMU s
(with netput vector Zm

s ) that attains a larger profit. As such, given
our multi-output setting, we have a separate profit efficiency
criterion for each different output m.

While we do observe the aggregate prices Pt , we typically do
not observe the output-specific prices Pm

t because of jointly used
inputs (i.e., for a joint input k, we do not observe the price fraction
ðPm

x;tÞk that is borne by m). Therefore, the criterion in Definition 1
(only) requires that there exists at least one possible specification
of these prices that makes the observed behavior of DMU t
consistent with profit efficiency. As soon as such a specification
exists, we conclude that profit efficient behavior cannot be

7 To obtain the last equality we use that
PM

m ¼ 1 P
m0
Zm

¼ PM
m ¼ 1ðpmy ymÞ�

PM
m ¼ 1 Pm0

x Xm� �¼ P0
yY�P0

xX¼ P0Z.

8 Essentially, this axiom excludes measurement errors. Importantly, however, it
is fairly easy to extend our methodology to account for measurement problems. For
compactness, we will not discuss this question here, but refer to [10] for a detailed
treatment.
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rejected given the information that is available (contained in the
data set S).

Measuring profit efficiency: In practice, if a DMU t does not meet
the profit efficiency criterion in Definition 1, we quantify the
degree of profit inefficiency as the extent to which actual profit
deviates from maximum profit. In what follows, we will introduce
a method to measure profit inefficiency in our multi-output
framework. In doing so, we will adapt the “directional” profit
efficiency framework of [7] to our particular setting.

As a first step, we define, for each output m, the profit function

πm
t ðPm

t Þ ¼ max
sA f1;…;Tg

Pm0
t Zm

s

� �
;

which gives the maximum attainable profit over the observed set S
for the prices Pm

t that apply to DMU t. Correspondingly, when
summing over all outputs m, we obtain the aggregate profit
function

πtðP1
t ;…;PM

t Þ ¼
XM
m ¼ 1

πm
t ðPm

t Þ:

In the sequel, we will focus on the profit inefficiency measure9

PECt ðP1
t ;…;PM

t Þ ¼
PM

m ¼ 1 π
m
t ðPm

t Þ�
PM

m ¼ 1 Pm0
t Zm

t

� �
PM

m ¼ 1 P
m0
t gZm

;

which we see as a natural translation of Chambers et al's “direc-
tional” profit inefficiency measure to our specific multi-output
setting. In this definition, each gZm represents the directional
distance vector for the output m.10 Equivalently, we can also

express it as gZm ¼
gym
gXm

" #
, with gym AR and gXm ARN defining the

output and input directions, respectively. In practice, these direc-
tional vectors are chosen by the empirical analyst prior to the
actual efficiency evaluation (see our own application in Section 5

for example specifications of gZm ). Clearly, PECt ðP1
t ;…;PM

t Þ ¼ 0

reveals profit efficiency, while higher values PECt indicate a greater
degree of profit inefficient behavior.

In general, the value of the measure PECt ðP1
t ;…;PM

t Þ will depend
on the output-specific input prices that are used to evaluate the
joint inputs (and contained in ðP1

t ;…;PM
t Þ). As indicated above,

these prices are typically not known by the empirical analyst. In
what follows, we will choose prices that minimize the value of the
profit inefficiency measure PECt for DMU t under evaluation, i.e. we
solve

PECt ¼ min
P1
t ;…;PM

t AR1þN
þ

PECt ðP1
t ;…;PM

t Þ;

where each output-specific price vector Pm
t is subject to the

conditions outlined in Definition 1. Intuitively, by minimizing the
profit inefficiency, we actually choose “most favorable” prices Pm

t
for DMU t under evaluation. In other words, we evaluate DMU t in
the best possible light, which gives this DMU the benefit of the
doubt in the absence of true price information. Attractively, this
falls in line with usual DEA efficiency analysis, which typically can
be given a similar benefit-of-the-doubt interpretation.11

We conclude that DMU t meets our empirical profit efficiency
criterion in Definition 1 if and only if PECt ¼ 0. In that case, there

effectively does exist a specification of the prices Pm
t that makes

the observed production behavior profit maximizing over the data
set S. By contrast, profit inefficiency occurs if PECt 40, with higher
values revealing a greater degree of profit inefficiency.

As a final remark, we note that the measure PECt can be
computed by means of linear programming. The associated pro-
gram has a structure that is formally analogous to the one of (LP-1)
that we present below.12 Given this direct similarity, and for the
sake of compactness, we do not report it here.

4. Shadow prices and duality

In the previous section, we have assumed that the empirical
analyst knows the netput price vector Pt for every DMU t. In
practical applications, however, reliable price information is often
not available. In such a case, we can conduct efficiency analysis
with endogenously defined shadow prices. In what follows, we
will apply this shadow pricing idea to the multi-output profit
efficiency framework set out above. Next, we will show that the
resulting profit inefficiency measure (under shadow prices) has a
dually equivalent representation as a multi-output directional
distance function, which establishes a multi-output version of
the original duality result in [7].

Shadow prices: If we do not observe the true prices that apply to
each DMU t, the relevant data set becomes

bS ¼ fðZ1
t ;…;ZM

t Þ∣t ¼ 1;…; Tg:

When only bS (instead of S) is given, we are forced to use a
weakened version of the efficiency criterion in Definition 1.
Specifically, we can (only) check whether there exists at least
one feasible “shadow” price specification that supports profit
efficiency of the evaluated DMU t.

Definition 2 (Shadow profit efficiency). Let bS ¼ fðZ1
t ;…;ZM

t Þ∣t ¼
1;…; Tg be a data set. Then, DMU t is shadow profit efficient if
there exist, for each output m, non-zero output-specific shadow

price vectors bPm
t ¼ bpm

y;tbPm

x;t

" #
AR1þN

þ such that bPm0

t Zm
t Z bPm0

t Zm
s for all

observations s¼ 1;…; T .

In this case, we can choose the shadow price vector bPm
t freely

(except from the non-zero and non-negativity constraints). Impli-
citly, the shadow prices ðbPm

x;tÞk for the joint inputs k define the
(aggregate) DMU prices ðbPx;tÞk ¼

PM
m ¼ 1 ðbPx;tÞk. Next, we note that

shadow prices for the output-specific inputs can be different for
different outputs, i.e. for output-specific inputs k we can have
ðbPm

x;tÞka ðbPm0

x;tÞk when mam0.13

Following our reasoning of the previous section, we can
evaluate our shadow profit efficiency criterion by the following
efficiency measure, which endogenizes the (shadow) price

9 We assume that the denominator (
PM

m ¼ 1 P
m0
t gZm ) is positive. For the shadow

profit inefficiency measure cPEC

t that we introduce below, this is guaranteed by the
normalization constraint

PM
m ¼ 1

bPm0

t gZm ¼ 1.
10 In DEA applications, the directional vectors are often DMU-specific, i.e. we

have gZm ¼ gZm
t
. It is common in the literature to drop the subscript t for

compactness.
11 See, for example, [15] for a detailed discussion of the benefit-of-the-doubt

interpretation of common DEA models.

12 The only difference between the linear program for PECt and the program

(LP-1) for cPEC

t involves the inclusion of the price information contained in the data
set S (whereas (LP-1) applies to shadow pricing). This price information is easily
included in the form of linear constraints, which obviously does not interfere with
the linear programming nature of (LP-1).

13 In principle, of course, one can impose the constraint that ðbPm

x;t Þk ¼ ðbPm0

x;t Þk for
some output-specific input k (and mam0), which obtains a stronger efficiency
criterion. We refer to [11] for an exploration of such a stronger criterion in a multi-
output cost efficiency setting that is formally close to the profit efficiency setting
that we consider here.
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selection in the efficiency evaluation process:

cPEC

t ¼ minbP1

t ;…;bPM

t AR1þN
þ

PM
m ¼ 1 π

m
t ðbPm

t Þ�
PM

m ¼ 1
bPm0

t Zm
t

� 	
PM

m ¼ 1
bPm0

t gZm

:

Similar to before, cPEC

t selects the most favorable netput price
vectors bPm

t to evaluate DMU t's shadow profit efficiency, which
effectively applies the benefit-the-doubt pricing in the absence of
full price information. It is easy to verify that DMU t satisfies the
shadow profit efficiency criterion in Definition 2 if and only ifcPEC

t ¼ 0, which reveals that there exists at least one possible
specification of the shadow price vectors bPm

t under which DMU t
is profit maximizing over the data set bS .

To operationalize the measure cPEC

t , we need to normalize the
denominator. In what follows, we will use

XM
m ¼ 1

bPm0

t gZm ¼ 1:

Then, we can formulate our (shadow) profit inefficiency mea-

sure cPEC

t as solving the linear program (LP-1)

cPEC

t ¼ minbπ1t ;…;bπMt ARbP1t ;…;bPMt AR1þN
þ

XM
m ¼ 1

bπm
t �

XM
m ¼ 1

bPm0

t Zm
t

� 	

s:t:

8mAf1;…;Mg : bπm
t Z bPm0

t Zm
s for all sAf1;…; Tg;XM

m ¼ 1

bPm0

t gZm ¼ 1;

where each bπm
t represents πm

t ðbPm
t Þ, i.e. the maximum attainable

profit (over the data set bS) in the production of output m given the

output-specific prices bPm
t that apply to the evaluated DMU t.

As a final note, apart from the “aggregate” profit inefficiency

measure cPEC

t , we can also define profit inefficiency measures cPEC;m

t

that are specific to individual outputs m. In particular, let bπmn

t andbPmn

t solve the above linear problem. Then, we can use

cPEC;m

t ¼ bπmn

t � bPmn0
t Zm

tbPmn0
t gZm

Clearly, for cPEC

t ¼ 0 we will have cPEC;m

t ¼ 0 for all m. However, ifcPEC

t 40, the measures cPEC;m

t allow us to allocate DMU t's profit
inefficiency to specific outputs. We will illustrate this feature in
our empirical application in Section 5.

Dual representation: Interestingly, our shadow profit ineffi-
ciency measure has a dual representation as a multi-output
version of the directional distance function introduced by Cham-
bers et al. [7]. We believe this is an appealing property as
directional distance functions are frequently used in DEA technical
efficiency evaluations that simultaneously account for inputs used
and outputs produced.

This directional distance function representation appears from
the dual version of our linear program (LP-1). Specifically, let λsm

represent the dual variables for the first constraint (for each
output m and DMU s) and β the dual variable for the second
constraint of that program. Then, the dual can be written as (LP-2)

cPEC

t ¼ max
λ1s ;…;λMs ;βARþ

β

8mAf1;…;Mg :
XT
s ¼ 1

λms Z
m
s ZZm

t þβgZm ;

8mAf1;…;Mg :
XT
s ¼ 1

λms ¼ 1:

To interpret cPEC

t as a multi-output version of the directional
function, we first note that in the case of a single output m,
Chambers et al's original version of the general directional
distance function is defined as

D
!ðZm

t ;gZm Þ ¼max βj Zm
t þβgZm

� �
ATm
 �

:

As a natural extension towards our framework with output-
specific technologies, we can define the multi-output version of
this distance function as

D
!ðZ1

t ;…;ZM
t ; gZ1 ;…;gZM Þ ¼max βj 8mAf1;…;Mg : Zm

t þβgZm
� �

ATm
 �
:

Then, it is easy to see that we obtain

cPEC

t ¼ D
!ðZ1

t ;…;ZM
t ;gZ1 ;…;gZM Þ;

if we define the production possibility set of output m as

Tm ¼ fZm∣Zmr
XT
s ¼ 1

λms Z
m
s ;

XT
s ¼ 1

λms ¼ 1; λms Z0g;

i.e. the convex monotone hull of the observed netput vectors Zm
s .

Actually, this convex monotone hull of observed netput vectors is often
used as an (empirical) production possibility set in practical DEA
analysis. Banker et al. [2] first proposed this technology specification
in the DEA literature.14 A distinguishing feature of our framework is
that it uses this specification to construct a production possibility set
for each different output m. This follows naturally from our particular
set-up, which explicitly considers output-specific production technol-
ogies (while accounting for interdependencies through joint inputs).

Summarizing, we conclude that our shadow profit inefficiency
measure can also be represented as a multi-output technical ineffi-
ciency measure. In particular, it can be characterized as a multi-output
directional distance function defined for output-specific technologies
that are convex and monotone. A specific feature of this characteriza-
tion is that it accounts for joint input use in the process of multi-
output production.

Example. To illustrate the directional distance function represen-
tation of our shadow profit inefficiency measure, we make use of a
fictitious example with three DMUs A, B and C that produce two
outputs y1 and y2 by using one input x. The fact that we consider

Table 1
Data and input allocation. for the three DMUs.

DMU y1 y2 x α1x α2x

DMU A 3 5 5 2 3
DMU B 5 1 5 4 1
DMU C 4 2 13 8 5

14 Banker et al. [2] show that we obtain the convex monotone hull as a DEA-
type technology approximation if we add the technology assumptions convexity
and monotonicity to our Axiom 1. In words, monotonicity implies that the outputs
and inputs are freely (or strongly) disposable; i.e. producing less outputs cannot
lead to use more inputs and using more inputs never reduces the outputs. It also
implies that marginal rates of substitution/transformation (between inputs, out-
puts, and inputs and outputs) are nowhere negative or, in other words, there is no
congestion. Next, convexity says that convex combinations of feasible netput
vectors are themselves also technically feasible. This implies that marginal rates
of substitution/transformation (between inputs, output and inputs and outputs) are
nowhere increasing. The fact that the dual representation of our shadow profit
inefficiency measure implies a production set that is convex and monotone follows
from the result that these technology properties are essentially “irrelevant” for
profit efficiency analysis (i.e. imposing the properties will not interfere with the
profit efficiency results). See, for example, [43] for a detailed discussion of this
last point.
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only a single input makes it possible to graphically represent the
efficiency analysis. We assume that input x is output-specific and
we denote the allocation to output 1 by α1x and to output 2 by
α2x.15 Table 1 presents the relevant output and input numbers.

As explained above, our shadow profit inefficiency measure can be
represented as a multi-output directional distance function defined
with respect to output-specific production sets that are constructed as
convex monotone hulls of the netput vectors given in Table 1. These
possibility sets are given in Fig. 1, which also represents the three
DMUs under evaluation. For both outputs, the production frontiers are
fully defined by DMUs A and B. For output 1, DMU B is efficient because
there are no other DMUs producing more output, and DMU A is
efficient because it uses less input than the other two DMUs. A similar
reasoning holds for output 2. In this case, DMU A produces the most
output and DMU B uses the least input.

DMU C is clearly not on any frontier, which implies that it is
inefficient. As explained above, measuring the degree of inefficiency
requires the specification of a direction vector. For the current example,
we consider the same three specifications of direction vectors as in our
following empirical application, i.e. gZm ¼ ð0;XmÞ, gZm ¼ ðym;0Þ and

gZm ¼ ðym;XmÞ. We denote the associated efficiency measures as cPEC;I
,cPEC;O

and cPEC;E
. As we will explain in more detail in Section 5, these

efficiency measures correspond to quantifying profit inefficiency in
terms proportional input reduction (for gZm ¼ ð0;XmÞ), proportional
output expansion (for gZm ¼ ðym;0Þ) and simultaneous input reduction
and output expansion (for gZm ¼ ðym;XmÞ), respectively.

The efficiency results for the three measures are presented in

Table 2. Let us consider inmore detail the results for themeasure cPEC;I
,

which quantifies the degree of inefficiency in terms of proportional
input reduction. DMUs A and B both have an inefficiency score equal
to zero, since they are situated on the production frontiers for both
outputs. To calculate the inefficiency score of DMU C, we first need to
consider both outputs individually. From the left panel of Fig. 1 we
learn that, for output 1, a convex combination of DMUs A and B (with

λ1A ¼ λ1B ¼ 1=2) defines a potential input reduction of 62.5% (from 8 to
3 input units). Similarly, from the right panel of Fig. 1, we find that a

convex combination of DMUs A and B (with λ2A ¼ 0:25 and λ2B ¼ 0:75)
reveals a potential input reduction of 70% (from 5 to 1.5 input units).
Using our above definition, the multi-output distance function equals
minf62:5%;70%g ¼ 62:5%, which corresponds to the maximum equi-
proportionate input reduction when simultaneously accounting for
the production possibility constraints that apply to the two individual
outputs.16

A directly analogous interpretation holds for the other two

directions of measurement, i.e. cPEC;O
(output expansion) and cPEC;E

(simultaneous input and output improvement). For compactness,
we will not discuss this in detail. One notable observation from
Table 2 is that the particular choice of direction vector impacts the
efficiency results. This will also hold for our empirical application
in Section 5.

5. Empirical application
We illustrate the empirical usefulness of our (shadow) profit

efficiency method by an application to the input and output data that
were also analyzed by Cherchye et al. [10] in their original study. These
authors focused on multi-output cost efficiency. As such, we comple-
ment this first study by assessing the profit efficiency of the same
DMUs. In the following, we will first discuss the specificities of our
data. Subsequently, we present the findings of our empirical analysis.

Fig. 1. Production process – 2 outputs/1 allocated input.

Table 2
Efficiency scores for the three DMUs.

DMU cPEC;E cPEC;I cPEC;O

DMU A 0 0 0
DMU B 0 0 0
DMU C 0.250 0.625 0.250

15 To facilitate our discussion, we here consider a situation with a single,
output-specific input. However, analogous examples with joint inputs are easy to
construct.

16 As an additional note, we can verify that, for the same data set, the DEA
model of Banker et al. [2] obtains a maximum input reduction for DMU C equal to
61.5% (from 13 to 5 units of the aggregate input x), which is below the reduction of
62.5% that we identify through our methodology. Just like our DEA model, the
original model of Banker, Charnes and Cooper also uses a convex monotone hull
representation of the production technology. However, a basic difference is that it
does not consider output-specific production possibility sets. This illustrates that
our use of output-specific possibility sets enhances the “dicriminatory power” (i.e.
potential to detect inefficient production behavior) of the DEA evaluation. See also
[9] for a similar argument in a cost efficiency setting.
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After showing our results for the DMUs' aggregate profit inefficiency,
we also consider output-specific profit inefficiencies.

The data: Our data set contains input and output information
for 290 offices (DMUs) of a large European service company. Each
DMU uses 7 inputs, i.e. three types of labor (x1, x2 and x3), three
types of transport (x4, x5 and x6) and other overhead cost (x7), for
the production of 7 outputs. Thus, we have N¼7 and M¼7. All
7 inputs are expenditures, so prices times quantities. In a sense,
this effectively accounts for input quality differences across DMUs.
Specifically, higher quality inputs typically have higher prices,
which in turn lead to higher expenditure levels (for given
quantities). See, for example, [5,6,32,39] on the relevance of taking
input quality into account in DEA assessments.

The service company uses an “activity-based costing system”,
which allows us to allocate the first 6 inputs to the 7 individual
outputs. That is, adopting the terminology of Section 2, the three types
of labor and transport are output-specific. The other overhead cost is
modeled as a joint input, which simultaneously benefits the produc-
tion of all 7 outputs. We refer to [10] for more detailed information on
the input and output data that we use.17

Because we have no data on input and output prices, we conduct a
shadow profit efficiency analysis by using the methodology that we
presented in Section 4. That is, we evaluate each DMU's profit
efficiency by using “most favorable” input and output prices. In
particular, we consider two exercises. Our first exercise does not
impose any restriction on the possible prices (except from non-
negativity). Obviously, this computes profit efficiency of DMUs in the
best possible light. However, since no guidance is given in the shadow
price selection process, it may well use shadow prices that are very far
from the prices really faced by the offices under evaluation. Therefore,
our second exercise makes use of price restrictions that better
guarantee “realistic” shadow prices. These restrictions have been
defined in consultation with the management of the service company,
and were also used by Cherchye et al. [10] in their original study.

Multi-output profit efficiency: To compute the shadow profit

inefficiency measure cPEC
, we first need to specify the directional

vector gZm for each output m. To demonstrate the versatility of our
approach, we will consider three different directional vectors.
These three directional vectors are the most popular ones in
applied DEA analysis and, as we will explain below, imply alter-
native interpretations of the observed degree of profit ineffi-
ciency.18 The first two directional vectors are:

� gZm ¼ ðym;0Þ for each output m, which measures profit ineffi-
ciency in terms of proportional output increase, and

� gZm ¼ ð0;XmÞ for each output m, which measures profit ineffi-
ciency in terms of proportional input reduction.

An attractive feature of these directional vectors is that they imply
shadow profit inefficiency measures that have a dual representa-
tion in terms of the input and output oriented [21–30] technical
efficiency measures, respectively.19

The third specification of the directional vector is:

� gZm ¼ ðym;XmÞ for each output m, which measures profit ineffi-
ciency in terms of equiproportional output increase and input
reduction.

We opt for using this additional specification because it simulta-
neously considers output and input improvements in the DMUs'
efficiency assessment. Basically, in its dual form, the resulting profit
inefficiency measure combines the Debreu–Farrell input and output
efficiency measures in a single metric.

Table 3 summarizes the results of our first profit efficiency analysis,
in which we do not impose any restrictions on the possible shadow

prices (except from non-negativity). cPEC;E
refers to profit inefficiency

with equiproportionate output increase and input reduction, cPEC;I
to

profit inefficiency with input reduction only, and cPEC;O
to profit

inefficiency with output increase only. We provide summary statistics
on the distribution of the inefficiency measures, as well as information
on the number of efficient DMUs (in absolute and relative terms).20

Interestingly, we observe quite some variation in profit inefficiency
across the DMUs in our sample, for all three directional vectors under

consideration. For the measure cPEC;E
the mean profit inefficiency

amounts to 15.9%. On average, the offices should equiproportionally
reduce inputs and expand outputs by 15.9% to attain shadow profit

efficiency. Next, for the measure cPEC;I
, we find a mean inefficiency of

27.7%. Thus, if output is kept fixed, we need an average input reduction

of 27.7% to achieve efficiency. Finally, the mean value of cPEC;O
equals

31.1%, which signals that profit efficiency requires an average output
expansion of 31.1% when inputs are fixed at their given level.

We also observe that the numbers of efficient DMUs are not the
same for our three specifications of the directional vectors. This may
seem surprising at first sight, since our three efficiency measures are
based on the same (shadow) profit efficiency criterion. The different
results in Table 3 pertain to the different directional vectors underlyingcPEC;E

, cPEC;I
and cPEC;O

. In particular, it is well-known in the DEA
literature that different directions of efficiency measurement can yield
alternative (in)efficiency classifications. For example, it is well possible
that a DMU may not be able to increase its outputs without affecting

its inputs (i.e. efficient in terms of cPEC;O
), while it can decrease its

inputs for the given outputs (i.e. inefficient in terms of cPEC;I
). See, for

instance, [45,33] for related discussions.21

The profit efficiency scores reported in Table 3 do not impose
any restriction on possible shadow prices. As indicated above, this
implies that the profit efficiency results are based on (shadow)
prices that may be very far from the prices really faced by the
DMUs. We anticipate this concern in our second efficiency mea-
surement exercise, which uses price restrictions provided by the
management of the service company under evaluation.

17 Cherchye et al. [10] also explain that confidentiality and strict non-disclosure
agreements prohibit us from providing more details on the nature and operations
of the service company under study.

18 Our three directional vectors are DMU specific, which implies that we cannot
aggregate the efficiency scores to a regional or firm level; see [27] for more
discussion. This is in line with the objective of the management of the service
company under study, who wanted to benchmark the individual DMUs. As should
be clear from our discussion above, alternative choices, such as a common
directional vector for all DMUs, are also feasible.

19 In particular, gZm ¼ ðym ;0Þ obtains (a multi-output version of) the Debreu–
Farrell output measure (DFO) minus one as the outcome of our program (LP-2), i.e.cPEC ¼DFO�1 (where DFOZ1 and DFO¼1 indicates efficiency). Similarly,
gZm ¼ ð0;XmÞ obtains one minus (a multi-output version of) the Debreu–Farrell
input measure (DFI) as the outcome of (LP-2), i.e. cPEC ¼ 1�DFI (where DFIr1 and

(footnote continued)
DFI¼1 indicates efficiency). See, for example, [7,25] for a detailed discussion on the
relations between directional distance functions and Debreu–Farrell efficiency
measures (including dual representations). Using our results in Section 4, we can
extend these authors’ arguments to our particular multi-output setting.

20 It can be verified that, for a given DMU, the value of cPEC;E
can never exceed

the values of cPEC;O
and cPEC;I

, by the very construction of these measures. This
definitional property also appears from the results in Table 3.

21 This also relates to the so-called “slack problem” that received considerable
attention in the DEA literature. In terms of the shadow price representation of DEA
measures which we adhere to here, this slack problem corresponds (dually) to the
possibility of zero shadow prices, which prevails in the case without price
restrictions (as for the efficiency results in Table 3).
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As an introductory note to our results for this second exercise, we
remark that it may actually be that no DMU is found to be profit
efficient at the aggregate level. As discussed in Section 4 (at the end of
the paragraph “Shadow prices”), the overall profit inefficiency mea-

sure cPEC
can be seen as the aggregate of output-specific profit

inefficiency measures cPEC;m
. From this perspective, aggregate profit

efficiency (i.e. cPEC¼0) requires profit efficiency for each individual

output m (i.e. cPEC;m ¼ 0 for allm), with the output-specific efficiencies
evaluated for output-specific production possibility sets. Thus, if no
individual DMU is profit efficient for all outputs simultaneously, then
we effectively obtain that no DMU is overall profit efficient. This will
turn out to be the case for our profit efficiency analysis with price
restrictions.22

Table 4 provides a first summary of our profit efficiency results
computed under price restrictions. We consider the same three
directional vectors as before. By construction, the inefficiency scores

in this table reveal greater (shadow) profit inefficiency than the ones
in Table 3, because we limit the feasible ranges of shadow prices. But,
in general, the efficiency patterns we observe are roughly similar to
the ones in Table 3. However, one notable and important difference is
that we no longer have any DMU that is labeled efficient at the
aggregate level. As explained above, this indicates that there are no
DMUs that simultaneously produce all 7 outputs efficiently when
restricting the possible shadow prices.

Output-specific multi-output profit efficiency: As indicated in
Section 4, we can allocate a DMU's aggregate profit inefficiency
to individual outputs by computing output-specific profit ineffi-
ciencies. We believe that this provides useful management input
as it helps to better identify specific output production processes
where substantial profit efficiency gains are possible. By using this
information, DMU managers can direct their performance
improvement actions in a more effective way.

We will illustrate this practice for the (aggregate) profit

inefficiency measure cPEC;E
with price restrictions (see also

Table 4). Table 5 summarizes our results.23 In that table, eachcPEC;m
gives the profit inefficiency specific to output m

ðm¼ 1;…;7Þ. These measures have the same interpretation as

the aggregate measure cPEC;E
, but now the equiproportionate input

reduction and output expansion specifically applies to the m-th
output production process.

Table 5 reveals substantial heterogeneity across the 7 outputs.24 For
example, we find that the production processes of outputs 1 and
2 appear to be most efficient, in terms of both the average inefficiency
(only 16.7% and 9.6%) and the number of efficient DMUs (28.28% and
31.03%). By contrast, the offices are, on average, less efficient in the
production of outputs 3, 4, 6 and 7 and the biggest number of
inefficient DMUs is found for output 5. It is useful to relate these
observations to the production shares of the 7 outputs that are given
in Table 6. Interestingly, output 1 has by far the greatest average share,
whereas the production share of output 2 is virtually zero.

Apart from revealing interesting efficiency patterns at the level of
the full sample of DMUs (see Table 5), our output-efficiency scores also
provide useful information for individual DMUs. We illustrate this by
means of Table 7, which shows the inefficiency results for two selected
DMUs. In parenthesis, we also report the weights of the output-
specific profit efficiency scores to the aggregate profit efficiency score.
These weights sum to one by construction.

DMU 40 is close to efficient in terms of our aggregate efficiency
score, whereas DMU 161 exhibits considerable inefficiency in terms of
its aggregate score. The output-specific efficiency scores give a more

Table 3
Multi-output profit efficiencies without price restrictions.

Statistics cPEC;E cPEC;I cPEC;O

Min 0 0 0
Mean 0.159 0.277 0.370
Median 0.149 0.286 0.311
Max 0.647 1 1
St. dev. 0.132 0.198 0.326

# Efficient 33 27 33
% Efficient 11.38 9.31 11.38

Table 4
Multi-output profit efficiencies with price restrictions.

Statistics cPEC;E cPEC;I cPEC;O

Min 0 0 0
Mean 0.175 0.322 0.460
Median 0.167 0.322 0.452
Max 0.647 1 1
St. dev. 0.136 0.195 0.362

# Efficient 0 0 0
% Efficient 0 0 0

Table 5
Output-specific profit efficiencies.

Statistics cPEC;E cPEC;1 cPEC;2 cPEC;3 cPEC;4 cPEC;5 cPEC;6 cPEC;7

Min 0 0 0 0 0 0 0 0
Mean 0.175 0.126 0.953 0.615 0.543 0.392 0.514 0.442
Median 0.167 0.096 1 0.689 0.638 0.390 0.622 0.489
Max 0.647 0.792 1 1 1 0.929 0.990 0.995
St. dev. 0.136 0.131 0.191 0.337 0.270 0.282 0.266 0.249

# Efficient 0 82 7 27 23 45 27 28
% Efficient 0 28.28 30.43 9.31 7.93 15.52 9.31 9.66

Table 6
Share of the total production per output (sample
average).

Outputs Share of the total production (%)

Output 1 90.78
Output 2 0
Output 3 6.84
Output 4 0.32
Output 5 0.04
Output 6 0.91
Output 7 1.09

Total 100

22 As a related remark, if no price restrictions (except from non-negativity) are
imposed (as in our first exercise, with results in Table 3), it can well be that the
aggregate efficiency score is fully determined by a single output. In this case, all
other outputs get an implicit weight of zero in the calculation of the overall profit
efficiency. By implication, if there are no price restrictions, we always have at least
one DMU that is profit efficient at the aggregate level (as there is at least one DMU
that is profit efficient for each single output). We can exclude that a single output
fully defines a DMU's aggregate efficiency score by imposing restrictions that
exclude zero shadow prices (as in our second exercise, with results in Table 4).

23 The results for the measures cPEC;I
and cPEC;O

are reported in Tables 8 and 9.
The interpretation of these tables is directly analogous to the one of Table 5.

24 To compute the percentages of efficient DMUs that are reported in Table 5,
we only take into account DMUs that produce non-zero output quantities, i.e. all
290 DMUs for all the outputs except from output 2 (22 DMUs) and output 3
(285 DMUs).
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balanced picture of the efficiency performance of these two DMUs. For
example, we find that the high efficiency of DMU 40 is particularly due
to its efficient production of the outputs 1, 5 and 7. However, there is
substantial potential to realize efficiency gains in the production of the
outputs 2, 4 and 6 (and also, but to a far lesser extent, in the
production of output 3). As for DMU 161, we find that the high level
of aggregate inefficiency is caused by inefficient production of all the
outputs. But, again, we observe substantial heterogeneity across out-
puts (with output-specific inefficiencies ranging from 29.3% to 100%).

We believe these two examples clearly show the usefulness of
our output-specific efficiency measures to direct the attention of
DMU managers towards individual outputs that are characterized
by profit inefficiency. Importantly, this holds not only for DMUs
with low efficiency (like DMU 161) but also for DMUs of which the
aggregate performance is close to efficient (like DMU 40).

6. Conclusion

We presented a novel DEA toolkit for profit efficiency analysis in
the context of multi-output production. A distinguishing feature of our
methodology is that it assumes output-specific production technolo-
gies. In addition, the methodology accounts for the use of joint inputs,
and explicitly includes information on the allocation of inputs to
specific outputs.

We have specified a multi-output profit inefficiency measure when
prices are observed, as well as a shadow profit inefficiency measure
that can be used if prices are unknown. Our framework also allows us
to define output-specific profit inefficiency measures, which allocate a
DMU's aggregate profit inefficiency to individual outputs. Finally, we
established a dual relationship between our multi-output profit

inefficiency measure and a technical inefficiency measure that takes
the form of a multi-output directional distance function.

We illustrated our methodology by an empirical application to
a large European service company. This demonstrated the practical
usefulness of our measure for (shadow) profit inefficiency at the
aggregate DMU level. Next, we showed that our output-specific
profit inefficiency measures provide useful management input.
They can identify individual outputs that are characterized by
substantial inefficiency, so that performance improvement actions
can be directed primarily towards these outputs.
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