
Time substitution and network effects with an application
to nanobiotechnology policy for US universities

Hirofumi Fukuyama a, William L. Weber b, Yin Xia c

a Faculty of Commerce, Fukuoka University, Fukuoka 814-0180, Japan
b Department of Economics and Finance, Southeast Missouri State University, Cape Girardeau, MO 63701, USA
c University of Missouri, Columbia, MO, USA

a r t i c l e i n f o

Article history:
Received 16 April 2014
Accepted 24 April 2015

Keywords:
Network production
Time substitution
Nanobiotechnology
Knowledge outputs

a b s t r a c t

We present a dynamic network model of the knowledge production process for nanobiotechnology
research at 25 US universities during 1990–2005. Universities produce knowledge outputs in nanobio-
technology consisting of Ph.D. graduates, research publications, and patents. Inputs include the
university’s spending on R&D in engineering and the life sciences, and the university’s own stock of
knowledge measured by past publications in nanobiotechnology. In addition, universities take advantage
of the stock of knowledge produced by other universities in previous periods. We simulate the effect of
the National Science Foundation being able to optimally allocate research funds for nanobiotechnology
research between universities and across time so as to maximize the aggregate amounts of the three
knowledge outputs produced by the universities.

& 2015 Elsevier Ltd. All rights reserved.

1. Introduction

Gordon [1] identifies three industrial revolutions comprising first,
steam and railroads, second, electricity, indoor plumbing, commu-
nications, and the internal combustion engine, and third, computers,
the internet, and mobile phones. However, economic growth has
slowed since the middle of the twentieth century and Gordon predicts
that the bottom 99% of the income distribution might experience
growth of less than one half of 1% in the coming decades.

Although science and research and development of all forms have
been responsible for a large proportion of past economic growth,
recent federal spending on science and private spending on research
and development as a percent of GDP has fallen from about 1.25% in
1976 to approximately 1% in 2009 (Economic Report of the President
[2]). One beacon of light has been in the area of nanotechnology.
Between 2001 and 2008 the number of inventions in nanotechnology
and the number of nanotechnology workers grew at a 25% annual
rate, with the worldwide nanotechnology product market reaching
$254 billion in sales in 2009 (Roco et al. [3]). The National Science
Foundation estimates that nanobiotechnology could become a trillion
dollar industry employing more than 800,000 workers by 2015. In this
paper we examine science spending for nanobiotechnology research
and education at 30 US universities during the period 1990 to 2005.

Weber and Xia [4] estimated inefficiency and Morishima elasticities of
output substitution for nanotechnology research publications, Ph.D.
students, and patents using a stochastic directional distance function.
We extend their research in an effort to shed light on two important
questions. First, can a reallocation of resources between different
universities enhance the university outputs of research, patents, and
Ph.D. graduates? If some universities are consistently on the cutting
edge of the research frontier then reallocation of resources away from
non-frontier universities towards frontier universities could enhance
productivity. On the other hand, scale diseconomies might limit the
extent of the efficiency gains from reallocating resources. Second, can
resources be reallocated across time to enhance productivity? Here,
we want to investigate whether it is better for federal agencies to
allocate research dollars early in the development stage of new
technologies, later in the development stage, or more or less con-
tinuously throughout the period.

To investigate these questions we integrate two recent methods
using data envelopment analysis: dynamic network production and
time substitution. We assume that universities form a network in
producing students, research papers, and patents in nanobiotechnol-
ogy. Changes in the allocation of resources within the network have
the potential to enhance productivity. In addition, if the choice were
available, each individual university might choose to spend more in a
current period by borrowing from a future period so as to maximize
production across all periods. Alternatively, individual universities
might save resources so as to expand future production. However,
to the extent that production by one university in a particular period

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/omega

Omega

http://dx.doi.org/10.1016/j.omega.2015.04.020
0305-0483/& 2015 Elsevier Ltd. All rights reserved.

E-mail addresses: fukuyama@fukuoka-u.ac.jp (H. Fukuyama),
wlweber@semo.edu (W.L. Weber), xiayinmo@hotmail.com (Y. Xia).

Please cite this article as: Fukuyama H, et al. Time substitution and network effects with an application to nanobiotechnology policy for
US universities. Omega (2015), http://dx.doi.org/10.1016/j.omega.2015.04.020i

Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎

www.sciencedirect.com/science/journal/03050483
www.elsevier.com/locate/omega
http://dx.doi.org/10.1016/j.omega.2015.04.020
http://dx.doi.org/10.1016/j.omega.2015.04.020
http://dx.doi.org/10.1016/j.omega.2015.04.020
mailto:fukuyama@fukuoka-u.ac.jp
mailto:wlweber@semo.edu
mailto:xiayinmo@hotmail.com
http://dx.doi.org/10.1016/j.omega.2015.04.020
http://dx.doi.org/10.1016/j.omega.2015.04.020
http://dx.doi.org/10.1016/j.omega.2015.04.020
http://dx.doi.org/10.1016/j.omega.2015.04.020


has an effect on the output possibilities of other universities, such a
unilateral reallocation might not be Pareto improving. For instance,
the accumulation of knowledge often moves in small steps so that if a
single step is removed, the process might go down a different path, or
stagnate. Thus, we want to account for the fact that research papers
written by one university in a given period spill over to other
universities in subsequent periods. The idea of knowledge spillovers
can be represented Isaac Newton’s famous quote: “If I have seen
further it is by standing on the shoulders of giants” (op cit. Merton
[5]).

Given the potential for knowledge spillovers between univer-
sities, coordination of resources between universities and across
periods might allow an expansion in production possibilities. To
the extent that government agencies already attempt to solve such
a problem, any findings of inefficiency in the network might be
attributed to the transaction costs associated with acquiring
information and providing the proper incentives to the producers
to enhance output.

2. Economic returns to science research

The latter part of the 1970s saw the US undergo a period of
stagflation. From 1962 to 1976 annual labor productivity growth
averaged 2.5% but fell to only 0.5% during 1976 to1980 (Economic
Report of the President [2]). Concerns about slow productivity growth
led Congress to pass the Bayh–Dole Act in 1980. This Act allowed
universities to patent and license research results that had been
subsidized through federal funding. Before passage of the Bayh–Dole
Act, any inventions that grew out of federally sponsored research
became property of the federal government. The Act was not without
its critics as some people argued that university research might switch
focus from basic research to applied research. For instance, Boldrin
and Levine [6] and Just and Huffman [7] presented models showing
that when universities are granted monopoly power via patents, the
production of new knowledge falls as resources are reallocated toward
industrial applications. Weber and Xia [4] found supporting evidence
for this theory in the university production of nanobiotechnology
patents and publications. Using estimates of the Morishima elasticities
of transformation, Weber and Xia [4] found that when the quantity of
patents increases relative to publications, the shadow revenue share of
publications falls relative to patents. However, other researchers found
that university patenting activities tended to complement, rather than
substitute for basic research (Thursby and Thursby [8], Azoulay et al.
[9], Fabrizio and DeMinin [10]).

One rationale for the public funding of research is that knowledge
is a public good – both non-rival and non-excludable – and will be
under-produced in private settings since private actors cannot fully
capture its returns. Adams [11] presented evidence indicating a time
lag of 15 to 20 years between the production of basic research and its
embodiment in new technologies. He also suggested that about 15% of
the productivity slowdown in the 1970s could be attributed to World
War II which siphoned scientists and engineers into the war effort. In
a thorough review of the literature on the economic benefits of private
and publicly funded basic research Salter and Martin [12] cite
evidence that the social returns to private R&D spending tend to be
2–5 times higher than the private returns. In addition, they identify six
categories that embody the economic returns to publicly funded
research: new knowledge, more skilled workers, new scientific
instruments, enhanced network effects and social interactions
between researchers and the private sector, an increased capacity to
solve new problems, and new firms spawned by the research. To
measure potential spillovers from agricultural R&D on agricultural
productivity Plastina and Fulginiti [13] estimated a stochastic cost
function for 48 states during the 1949–1991 period. Costs are
dependent on the state’s own R&D stock and the stock of R&D from

adjacent states with increases in R&D from neighboring states causing
declines in the own state’s costs of production. The findings indicate
an average 17% internal rate of return for the state’s own R&D funding
and a 29% social rate of return.

3. The knowledge production process

Various researchers have developed network models of produ-
cer performance and models that measure dynamic performance
by examining the allocation of resources over multiple periods.
Färe and Grosskopf [14] developed a dynamic measure of firm
performance where decision-making units determine the amounts
of a final output and an intermediate output (capital) to maximize
production over multiple periods. Nemoto and Goto [15,16]
derived dynamic optimality conditions so that overall producer
efficiency can be decomposed into static and dynamic efficiencies.
Tone and Tsutsui [17], Fukuyama and Weber [18] and Akther et al.
[19] develop a network performance indicator where producers in
a first stage of production use exogenous inputs to produce an
intermediate output that becomes an input to a second stage of
production where final outputs, including an undesirable output
are produced. In their model the past production of the undesir-
able output shrinks the current period’s production possibility set.
Fukuyama and Weber [20,21] account for the possibility that in the
second stage of production a second intermediate output can be
produced in lieu of final outputs so as to expand the production
possibility set in a future period. Thus, the performance measure
compares the observed use of inputs and production of outputs
with the potential outputs that could be produced if resources
were allocated efficiently across many periods. Sacoto et al. [22]
examine university production where various inputs are used to
generate an intermediate output of student internships that
become an input in the production of job placements—the final
output. Fallah-Fini et al. [23] provide a thorough review of
dynamic measures of performance.

In this section and the next we present a dynamic network
production model that accounts for the potential for the stock of
knowledge created in the past to influence the current production of
new knowledge. We assume that production takes place by k¼1,…, K
universities in t ¼ 0;1;…; T periods. We follow conventional notation
and represent vector valued variables in bold face and scalar variables
in italics. The n¼ 1;…;N inputs used by university k in period t are
represented by xt

k ¼ ðxtk1;…; xtkNÞARN
þ . In the empirical section of the

paper we assume that these inputs include real university R&D
expenditures in engineering, the physical sciences, and the life
sciences. Another input is derived from grants from the National
Science Foundation that have been awarded for the study of nano-
technology. Furthermore, universities harness the existing stock of
knowledge as an input to help create new knowledge. The universities
use these inputs to produce m¼ 1;…;M knowledge outputs repre-
sented by yt

k ¼ ðytk1;…; ytkMÞARM
þ . Our data set allows us to identify

three university outputs in the area of nanobiotechnology: publica-
tions ðy1Þ, patents ðy2Þ, and Ph.D. graduates in ðy3Þ.

To account for the dynamic process of production we recognize
that knowledge produced in the form of publications (y1) is not lost or
sold, but instead becomes an input to the production process in future
periods. In addition, university researchers draw not only on their own
publications, but on the publications of their colleagues at other
universities. The knowledge embodied in publications serves as a
spillover input that becomes available to researchers at other uni-
versities. It seems reasonable to assume that the stock of past
publications generated by the university might have a different
marginal effect on the production of new knowledge than the stock
of past publications generated by other universities in the same field,
since such knowledge might only be tangential to the research and
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teaching at one’s own university. In fact, Salter andMartin (p. 512 [12])
write that “Scientific knowledge is not freely available to all, but only
to those who have the right educational background and to members
of the scientific and technological networks. The informational view
fails to appreciate the extent to which scientific or technical knowl-
edge requires a substantial capability on the part of the user.”

Thus, two other inputs are the university’s own past cumulative
stock of publications and the past cumulative stock of publications
from other universities. Knowledge, like other assets, depreciates and
becomes obsolete over time as new knowledge is created. In addition,
past knowledge become embodied in new knowledge via the pub-
lication process as researchers survey the literature, report past
findings, and synthesize those findings in new publications. Following
Weber and Xia [4] we assume that the previous three years of
cumulated publications constitute the knowledge input in the present
year used to produce new knowledge outputs. Thus, we define
another input as ztk ¼

P3
l ¼ 1 y

t� l
k1 , where l¼ 1;2;3 represent the

university’s own publications from the previous three years. In
addition, publications from other universities in the previous three
years constitute an additional knowledge input that have the potential
to spill-over and enhance the specific university’s knowledge produc-
tion process. The spillover knowledge input is represented as
Yt
k ¼

P3
l ¼ 1

PK
k0 ak y

t� l
k'1 . That is, the cumulative publications produced

by all other universities in the previous three years spills over as a
knowledge input to university k. In addition to a university’s cumu-
lative own publications from the previous three years and the
corresponding spillover knowledge input we also consider the cumu-
lative sum of all past own publications and all past publications of
other schools, where knowledge depreciates at a constant rate per
year. We further describe the formulas for these alternative measures
of knowledge inputs, ztk and Yt

k, in Section 5.
The production possibility set for university k in period t is

represented by Ptðxt
k; z

t
k;Y

t
kÞ ¼ fy : ðxt

k; z
t
k;Y

t
kÞ can produce yg.

Here, the amount of output that can be produced depends on the
inputs available from the university and the NSF, past knowledge
represented by publications, and past publications at other universi-
ties. The DEA constant returns to scale production possibility set for
the kth university in period t takes the form

Ptðxt
k; z

t
k;Y

t
kÞ ¼ fy : ymr

XK
j ¼ 1

λtj y
t
jm; m¼ 1;…;3;

xtknZ
XK
j ¼ 1

λtj x
t
jn; n¼ 1;…;N; ztkZ

XK
j ¼ 1

λtj z
t
j ; Yt

kZ
XK
k ¼ 1

λtj Y
t
j ;

λtj Z0; j¼ 1;…;K; t ¼ 0;1;…; Tg ð1Þ

Efficiency/inefficiency in period t can be measured by either the
Shephard output distance function or the directional output dist-
ance function. We choose the directional output distance func-
tion because it is additive in outputs and will allow us to better
model the dynamic network aspects of the technology. Let the
directional vector for the M outputs be represented as g¼ ðg1;
…; gMÞ. The directional output distance function scales the
observed outputs along the directional vector to the frontier of
the production possibility set. This function takes the form:

D
!t

okðxt
k; z

t
k;Y

t
k; y

t
k;gÞ ¼ max fβ : yt

kþβgAPtðxt
k; z

t
k;Y

t
kÞg: ð2Þ

When a university produces on the frontier of the technology its
directional distance function takes a value of 0 meaning that it is not
possible to expand the set of outputs any further given the directional
vector. As such, the directional distance function serves as a measure
of inefficiency with larger values indicating greater inefficiency. While
a directional technology distance function could also be estimated, this
distance function seeks the maximum expansion in outputs and
simultaneous contraction in inputs. We choose to hold inputs constant
because it allows us to compare the potential output gains given

inputs with the potential output gains that might arise from reallocat-
ing various university inputs across time. In addition, we want to
compare potential outputs holding inputs constant with potential
outputs when a particular government agency – The National Science
Foundation – reallocates its fixed budget across universities and across
time. We take up the problem of reallocation across time in the next
section when we address time substitution.

Färe and Grosskopf [24] have shown that under certain
conditions, when all producers’ inefficiencies are evaluated using
a common directional vector, the sum of the directional functions
over all producers can serve as a measure of industry inefficiency.
Let the sum of the directional distance functions be represented
as D-t

oðxt ; zt ;Yt ;yt ;gÞ ¼∑K
k ¼ 1D

-t
okðxt

k; z
t
k;Y

t
k; y

t
k;gÞ, where

xt ¼ ðxt
1;…; xt

k;…; xt
K Þ, zt ¼ ðzt1;…; ztk;…ztK Þ, Yt ¼ ðYt

1;…;Yt
k;…Yt

K Þ,
and yt ¼ ðyt

1;…; yt
k;…; ytK Þ are vectors of all producers’ outputs

and inputs.
The spillover knowledge from all universities to each particular

university represented by Yt
k constitutes one aspect of the network

knowledge production process. The second aspect of the network
economy acknowledges the fact that some of the private inputs
received by university k are grants derived from a particular govern-
ment agency, in our case, the National Science Foundation, and
assumes that those grants can be reallocated among all universities.
We partition the input vector, xt

k ¼ ðxtk1;…; xtkNÞ, into two sub-vectors:
inputs specific to university k represented as xt

k ¼ ðxtk1;…; xtkF Þ and

inputs that can be reallocated among universities, ~x t
k ¼ ð ~xkFþ

1t ;…; ~xtkNÞ. Let the total amount of each input that is available to be
reallocated between universities but not across time be represented as

xt ¼ PK
k ¼ 1

~x t
k ¼

PK
k ¼ 1

~xtkFþ1;…;
PK
k ¼ 1

~xtkN

 !
.

The National Science Foundation grant process uses peer review
and allocates funds on the basis of merit and broader impacts [25].
The highly competitive nature of the grant process is reflected by
the increase in the number of proposals from 31,942 in 2001 to
48,999 in 2013 and the decline in the percent funded declined from
31% to 22% during the same period. However, Cole et al. [26] report
on an experiment in which 150 NSF proposals were independently
reviewed by a set of external reviewers. The outcome of the
experiment suggested that whether a proposal receives funding
depended on chance – who reviewed the proposal – even though
there was no evidence of systematic bias by NSF reviewer. Further-
more, predicting the success of unproven ideas is fraught with error,
with established research areas and researchers favored over
fledgling ones (Merton [5], Porter and Rossini [27], Langer [28]).
Recently, Congress halted NSF funding of political science proposals
unless those proposals could be certified as “promoting national
security or the economic interests of the United States” (Prewitt
[29]). If the NSF funding is random, subject to a “Matthew effect”
(Merton [30]), or based on political expedience, the allocation of
NSF funds to universities might be less than optimal and will
manifest itself in university performance that is less than that
which might have been attained via a grant allocation process with
zero transaction costs and perfect foresight. In these cases the level
of inefficiency in the network equals the sum of the individual
university inefficiencies. However, if the agency can somehow
coordinate its funds to maximize output in a given period it could
choose to solve a problem like the following:

max
βk ;x � k

∑
K

k ¼ 1
βk subject to

ytkþβkg∈P
tðxt

k; x � t
k; z

t
k;Y

t
kÞ k¼ 1;…;K ;

∑
K

k ¼ 1
x
� t

kn ≤x
t
n; n¼ Fþ1;…;N; � xtkn≥0; k¼ 1;…;K:

ð3Þ
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Problem (3) represents industry inefficiency in period t when
the agency chooses the amounts to allocate to each university so
as to maximize the size of the aggregate production possibility set.
Let the optimal objective function for (3) be represented as
∑K

k ¼ 1β
tn
k and let the optimal vector of NSF inputs allocated to

the k¼1, …, h, …, K universities be ~x tn ¼ ð ~xtnk ;…; ~xtnh ;…; ~xtnK Þ. Since
the status quo level of ~xtk is feasible, but not necessarily optimal,
we have the relation that ∑K

k ¼ 1β
tn
k ≥D

!t

oðxt ; zt ;Yt ; yt ;gÞ ¼
∑K

k ¼ 1 D
!t

okðxt
k; z

t
k;Y

t
k; y

t
k;gÞ.

Problem (3) can be estimated as a linear programming problem
given the k¼1, …, K production possibility sets in (1). In each
period t, the problem is solved as

maxλk ;βk ; � xk ∑
K

k ¼ 1
βtk subject to

yt1mþβt1gm ≤ ∑
K

j ¼ 1
λtj y

t
jm; m¼ 1;…;M; xt1n≥ ∑

K

j ¼ 1
λtj x

t
jn; n¼ 1;…; F

� xt1n≥ ∑
K

j ¼ 1
λtj � xtkn;n¼ Fþ1;…;N; ztk≥ ∑

K

j ¼ 1
λtj z

t
j ; Yt

k≥ ∑
K

j ¼ 1
λtj Y

t
j ;

9>>>=
>>>;

k¼ 1

⋮

ythmþβthgm ≤ ∑
K

j ¼ 1
λtj y

t
jm; m¼ 1;…;M; xthn≥ ∑

K

j ¼ 1
λtj x

t
jn; n¼ 1;…; F ;

x � t
hn≥ ∑

K

j ¼ 1
λtj x

� t

jn; n¼ Fþ1;…;N; zth≥ ∑
K

j ¼ 1
λtj z

t
j ; Yt

h≥ ∑
K

j ¼ 1
λtj Y

t
j ;

9>>>=
>>>;
k¼ h

⋮

ytKmþβtKgm ≤ ∑
K

j ¼ 1
λtj y

t
jm; m¼ 1;…;M; xtKn≥ ∑

K

j ¼ 1
λtj x

t
jn; n¼ 1;…; F;

x � t
Kn≥ ∑

K

j ¼ 1
λtj x

� t
jn; n¼ Fþ1;…;N; zt−1K ≥ ∑

K

j ¼ 1
λtj z

t
j ; Yt

K≥ ∑
K

j ¼ 1
λtj Y

t
j ;

9>>>=
>>>;

k¼ K

∑
K

k ¼ 1
x
� t

kn ≤x
t
n; x

� t

kn≥0; n¼ Fþ1;…;N; k¼ 1;…;K

λtj≥0; j¼ 1;…;K ; βtk≥0; k¼ 1;…;K : ð4Þ

In problem (2) the actual amounts of ~x t
k allocated to each

university are taken as given. In contrast, in problem (4) the govern-
ment agency (agencies) chooses the amounts of the inputs ~x t

k, k¼1,
…, K to allocate to each university so as to maximize the sum of the
distances from each university’s own observed outputs to its respec-
tive production frontier subject to the constraint that a finite amount
of the resource is available. Let the optimal amounts of ~x t

k found as

part of the solution to problem (4) equal ~x tn
k . It is clearly the case thatPK

k ¼ 1
~xtkn ¼

PK
k ¼ 1

~xtnkn; n¼ Fþ1;…;N. Again, we assume a common set

of scaling variables ðg¼ ðg1; g2; g3ÞÞ for the three university outputs so
that we can interpret the optimal objective function as a measure of
industry technical inefficiency in period t. By constraining each

βt
kZ0; k¼ 1;…;K there is a limit to how much the NSF can

reallocate: each university must still be able to produce its observed
outputs so that reallocation can only take place from universities that
are inefficient under the status quo. Thus, ytkAPtðxt

k; ~x
t
k; z

t
k;Y

t
kÞ under

the status quo and ytkAPtðxt
k; ~x

tn
k ; z

t
k;Y

t
kÞ for an optimal reallocation of

NSF funds. Problem (4) is solved for each of the t ¼ 0;1;…; T periods.

4. Time substitution

The idea of time substitution addresses when inputs should be
used and was investigated by Shephard and Färe [31] and then later
by Färe and Grosskopf [14], Färe et al. [32], and Färe et al. [33]. In this
section we want to incorporate time substitution into our network
production model. We consider when the best time is for the National

Science Foundation to make inputs available to universities to produce
knowledge outputs.

The basic time substitution model assumes that there is at
least one input of finite amount that can be reallocated across
time. We continue to assume that the first F inputs of the vector
xt
k are fixed and that the last Fþ1, …, N inputs can be reallocated

among universities and across time. In actuality, universities
might spend resources by hiring lobbyists and professors, pur-
chasing research equipment, adding graduate students, and
augmenting library resources so as to influence the NSF funding
process, but these potential game theoretic decisions are beyond
the scope of the present study. Let the subset of inputs
that can be reallocated across time be represented by
~x t ¼ ð ~x t

Fþ1;…; ~xNÞ. The finite amount of each of these inputs that
can be reallocated among universities and across time equals
xn ¼∑T

t ¼ 0∑
K
k ¼ 1

~xkn; n¼ Fþ1;…;N.
Consider the timeline depicted in Fig. 1.
The problem of time substitution is to determine when to begin

production and for how long production should take place. Let τ
represent when to begin production and let Γ represent the
number of periods in which production takes place. To account
for time preferences we weight each university’s distance function
by the discount factor δt , where δt ¼ ð1þRÞ� t and R is the interest
rate. For university k, the time substitution problem can be
represented as

max
τ;Γ; x

� τ
∑
τþΓ

t ¼ τ
δt D

-t

okðxt
k; x

� t

k; z
t
k;Y

t
k;y

t
k;gÞ subject to

D
-t

okðxt
k; x

� t

k; z
t
k;Y

t
k; y

t
k;gÞ≥0; t∈ τ; τþΓ½ �

∑
τþΓ

t ¼ τ
x
� t

kn ≤xkn; n¼ Fþ1;…;N:

ð5Þ

In the time substitution problem represented by (5) the
individual university chooses when to begin production, τ, when
to end production, τþΓ, and how much of the finite input to use
in each period, ~xtn; n¼ Fþ1;…;N; tA ½τ; τþΓ� so as to max-
imize the sum of the distances from the observed input–output
combinations in each period to that period’s production possibility
frontier. If Γis relatively small, production takes place during a
short time span and the input is used intensively. When Γis
relatively large, production takes place over many periods and the
input tends to be used less intensively in each period. When
technological progress occurs it pays for the producer to delay
production so τ tends to be large. In contrast, when technological
regress occurs it pays for the producer to begin production earlier
resulting in a small τ.

Färe et al. [32] also investigated the time substitution problem
under different scale economy regimes. Under increasing returns
to scale it pays to intensively use the resource in a single period –

either early or late in the period – so as to realize the greatest
economies of scale. Under decreasing returns to scale an equal
quantity of the resource should be employed in each period so as
to minimize the effects of dis-economies of scale. Finally, under
constant returns to scale the inputs can be used in any quantity
during any period and the producer is indifferent concerning the
choice of when to begin, τ, and for how long to produce, Γ.

The time substitution problem in this paper is complicated by the
knowledge spillovers that occur between universities and across
periods. Given the amount of knowledge previously produced by
other universities, Yt

k, what might be an optimal time path for

0 τ τ+Γ

t

Fig. 1. Timeline of input use.

H. Fukuyama et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎4

Please cite this article as: Fukuyama H, et al. Time substitution and network effects with an application to nanobiotechnology policy for
US universities. Omega (2015), http://dx.doi.org/10.1016/j.omega.2015.04.020i

http://dx.doi.org/10.1016/j.omega.2015.04.020
http://dx.doi.org/10.1016/j.omega.2015.04.020
http://dx.doi.org/10.1016/j.omega.2015.04.020


resource use by one university, might not be the optimal time path
when accounting for the knowledge spillovers. In addition, the
government agency (NSF) has control over at least one of the inputs
that university k has at its disposal: ~xtkn; n¼ Fþ1;…;N, t¼1, …, T.
We will assume that the agency seeks to maximize the sum of the
sizes of the university production possibility sets by choosing when
ðτÞ and how long ðΓÞ to make the input (~xtk) available and which
universities are to receive this input subject to the resource scarcity

constraint
PK
k ¼ 1

PτþΓ

t ¼ τ
~xtknrxn; n¼ Fþ1;…;N.

Fig. 2 depicts the flow of knowledge outputs over time and
between three hypothetical universities—A, B, and C. In period t,
university A uses its own inputs, xt

A, and its knowledge inputs that
were produced in a previous period, ztA ¼ yt�1

A . In addition, the
university receives an allocation from the government agency, ~xtA,
and it can draw on the stock of knowledge that was created at
universities B and C in the previous period, Yt

A ¼ ztBþztC ¼
yt�1
B þyt�1

C . These four kinds of inputs, (xt
A; ~x t

A; ztA;Y
t
A) are used

to produce knowledge outputs ytA. A similar process is going on at
universities B and C which are using inputs (xt

B; ~x t
B; ztB;Y

t
B) and

(xt
C ; ~x t

C ; ztC ;Y
t
C) to produce the knowledge outputs ytB and ytC . The

knowledge outputs produced by the three universities become
inputs to each university in the subsequent period. Each university
in period tþ1 draws on its stock of knowledge produced in the
previous period, represented as ztþ1

A , ztþ1
B , and ztþ1

C , and in the
spillovers they receive from the other two universities: Ytþ1

A ¼
ytBþytC , Y

tþ1
B ¼ ytAþytC , and Ytþ1

C ¼ ytAþytB.

The time substitution problem facing the agency can be
represented in DEA form as

max
τ;Γ;λ; ~x ;β

XK
k ¼ 1

XτþΓ

t ¼ τ
δtβt

ksubjectto

ytkmþβt
kr

XK
j ¼ 1

λtj y
t
jm; m¼ 1;…;M; k¼ 1;…;K

ztkZ
XJ
j ¼ 1

λtj z
t
j ; k¼ 1;…;K

Yt
kZ

XJ
j ¼ 1

λtj Y
t
j ; k¼ 1;…;K

xtknZ
XK
j ¼ 1

λtj x
t
jn; n¼ 1;…; F; k¼ 1;…;K

~xtknZ
XK
j ¼ 1

λtj ~x
t
jn; ~xtknZ0; n¼ Fþ1;…;N; k¼ 1;…;K

λtj Z0; j¼ 1;…;K

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>;

t ¼ τ

⋮

ytþ1
km þβtþ1

k r
XK
j ¼ 1

λtþ1
j ytþ1

jm ; m¼ 1;…;M; k¼ 1;…;K

ztþ1
k þβt

kZ
XJ
j ¼ 1

λtþ1
j ztþ1

j ; k¼ 1;…;K

Ytþ1
k þ

XK
jak

βt
j Z
XJ
j ¼ 1

λtþ1
j Ytþ1

j ; k¼ 1;…;K

xtþ1
kn Z

XK
j ¼ 1

λtþ1
j xtþ1

jn ; n¼ 1;…; F; k¼ 1;…;K

~xtþ1
kn Z

XK
j ¼ 1

λtþ1
j ~xtþ1

jn ; ~xtþ1
kn Z0; n¼ Fþ1;…;N; k¼ 1;…;K

λtþ1
j Z0; j¼ 1;…;K

9>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>;

tþ1¼ τþ1

⋮

Fig. 2. Network production with knowledge spillovers ~x τ
Aþ ~x τ

Bþ ~x τ
C þ ⋯þ ~x τþΓ

A þ ~x τþΓ
B þ ~x τþΓ

C rx.
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ytþΓ
km þβtþΓ

k r
XK
j ¼ 1

λtþΓ
j ytþΓ

jm ; m¼ 1;…;M; k¼ 1;…;K

ztþΓ
k þβtþΓ�1

k Z
XJ
j ¼ 1

λtþΓ
j ztþΓ

j ; k¼ 1;…;K

YtþΓ
k1 þ

XK
jak

βtþΓ�1
j Z

XJ
j ¼ 1

λτþΓ
j YτþΓ

j ; k¼ 1;…;K

xtþΓ
kn Z

XK
j ¼ 1

λtþΓ
j xtþΓ

jn ; n¼ 1;…; F; k¼ 1;…;K

~xtþΓ
kn Z

XK
j ¼ 1

λtþΓ
j ~xtþΓ

jn ; ~xtþΓ
kn Z0; n¼ Fþ1;…;N; k¼ 1;…;K

λtþΓ
j Z0; j¼ 1;…;K

9>>>>>>>>>>>>>>>>>>>>>>>>>>>=
>>>>>>>>>>>>>>>>>>>>>>>>>>>;

tþΓ ¼ τþΓ

XK
k ¼ 1

XτþΓ

t ¼ τ

~xτknrxn; ~xτknZ0; n¼ Fþ1;…;N; k¼ 1;…;K

βt
kZ0; k¼ 1;…;K; t ¼ 1;…; T : ð6Þ

The choice variables in (6) include when the universities should
begin production, τ, for how long production should occur, Γ, the
amount of NSF funds to allocate to each university in each period,
~xtk, and the intensity variables that determine the frontier in each

period, λtk, so as to maximize the weighted sum of the distances to
the frontier across universities and periods. We note that in the
period that production begins, past knowledge outputs enter the
problem as pure inputs in the two sets of equations ztkZPJ
j ¼ 1

λtj z
t
j ; k¼ 1;…;K and Yt

kZ
PJ
j ¼ 1

λtj Y
t
j ; k¼ 1;…;K . Then, in

every subsequent period, those past knowledge outputs are
expanded given the amount of inefficiency in the previous period.
For instance, in period tþ1, the university’s own past knowledge
outputs are an input, but those inputs are expanded by the amount
of inefficiency from the previous period so the set of equations is

modified as ztþ1
k þβt

kZ
PJ
j ¼ 1

λtþ1
j ztþ1

j ; k¼ 1;…;K . Similarly, the

stock of knowledge outputs produced by other universities in the
previous period becomes an input in the subsequent period and
those spillover knowledge outputs are again augmented by the
inefficiencies of all universities in the preceding period so the set

of equations is Ytþ1
k þ PK

jak
βt
j Z

PJ
j ¼ 1

λtþ1
j Ytþ1

j ; k¼ 1;…;K . The

university’s own stock of knowledge (ytk1) is an intermediate

output which serves as an input in the subsequent period (ztþ1
k )

and is augmented by the university’s own inefficiency in the

previous period, βt
k. Similarly the spillover input (Ytþ1

k ) is aug-
mented by the preceding period’s inefficiencies of other univer-

sities,
PK
jak

βt
j . Adding to both knowledge inputs relaxes the two

inequality constraints and expands the production possibility set.

5. Data and estimates

We employ a unique panel data set comprising 25 universities
that were engaged in nanobiotechnology knowledge production
during the period 1990–2005. Three knowledge outputs are
produced by universities: nanobiotechnology journal publications
ðy1Þ, nanobiotechnology patents ðy2Þ, and Ph.D. graduates in
nanobiotechnology ðy3Þ. The production of knowledge outputs is
generally not confined to a single year, but occurs over several
years. We follow Weber and Xia [4] and take a three year moving
average of the three outputs. Thus, the first year we have data for
the three year moving average is 1992. Foltz et al. [34] use a similar
framework for defining the outputs of 98 research universities.

Since knowledge outputs produced in one period become inputs
to a subsequent period’s production technology, our model can be
estimated for the 13 year period 1993 to 2005. Using the GDP
deflator with a base year of 2005, total real university spending in
engineering, life sciences, and physical sciences comprise one of
the university inputs ðx1Þ. The other university inputs are lagged
own publications ðzÞ, lagged publications of other universities ðYÞ,
and real grants in nanotechnology from the National Science
Foundation ð ~xÞ.

We consider two different ways of measuring the stock of
lagged own publications and lagged publications of other uni-
versities. In model 1, lagged own publications ðzÞ equal the sum of
the university’s own publications in nanobiotechnology in the
previous three years. Similarly, the spillover knowledge output ðYÞ
consists of the sum of all other universities’ publications in the
previous three years. In model 2, we employ a perpetual inventory
method to construct the total stock of previous knowledge
produced by the university in all previous periods as the own
stock of knowledge and the total stock of previous knowledge
produce by other universities in all previous periods as the spil-
lover knowledge output. Like physical capital, knowledge can
depreciate and become obsolete (see Park et al. [35] and Grubler
and Nemet [36]) because of human capital turnover (researchers
move to other institutions) and because of rapid innovation and
creative destruction. Given a depreciation rate of θ, the universi-
ties own stock of knowledge embodied in past publications is
ztk ¼ zt�1

k ð1�θÞþyt�1
k1 with the year 1990 serving as the first year

in which publications can occur1. For model 2, the spillover
knowledge output consists of the sum of all other universities’
depreciated publications from all previous years:
Yt
k ¼ Yt−1

k ð1−θÞþ∑K
j≠ky

t−1
j .

Clearly, the rate at which journal publications (knowledge)
depreciate affects the values of ztk and Yt

k. Hall [37] finds that
knowledge depreciation rates vary depending on whether a produc-
tion function approach or market value approach is used to measure
depreciation. Darr et al. [38] find extremely high rates of depreciation
of service firms’ own stock of knowledge. Grubler and Nemet [36] find
similarly high rates of depreciation (on the order of 100% per year) in
service industries due to staff turnover. In contrast, Alston et al. [39]
find depreciation rates of less than 10% for agricultural R&D. Park et al.
[33] estimate an average depreciation rate of 13.3% for technological
knowledge across various industries during the period 1985 to 1999.
We choose a depreciation rate of θ¼ 0:15. This depreciation rate gives
a half-life for a publication slightly greater than four years.

Fig. 3 graphs the number of total number of publications,
patents, and Ph.D. students in nanobiotechnology for the period
1990 to 2005. In 1990, there were only six publications among the
25 universities in our sample, but by 2005 that number had
increased to 723. Patents and Ph.D. graduates grew less rapidly
during the period. In 1990 there were 28 patents and 10 Ph.D.
graduates. By 2005 universities patented 162 inventions and
graduated 179 Ph.D. graduates in nanobiotechnology. Given the
large increase in publications it is possible that the quality of
publications changed during the period or that the value of a
publication relative to a patent or Ph.D. graduate changed. How-
ever, without price data on the three outputs and with no data on
citations which might serve as a measure of quality we are unable
to measure changes in the relative values of the three outputs.
Instead, our model partially controls for the increasing number of
publications in that we control for past publications in the form of
the university’s own stock of knowledge and the spillover stock of

1 For instance, for the years 1994 and 1995 the variable ztk is defined as
z1994k ¼ z1993k ð1�θÞþz1992k ð1�θÞ2þz1991k ð1�θÞ3þy1993k and
z1995k ¼ z1994k ð1�θÞþy1994k .
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knowledge from other universities. Since both of these knowledge
inputs are increasing it seems reasonable to expect the production
of new knowledge will also increase.

Table 1 reports descriptive statistics for the three outputs and
four inputs. The three year moving average of publications is
6.6 and ranges from 0.3 at several universities to 45.3 at Harvard
University in 2005. Patents average 3.4 and several universities
had no patents in at least one year and the University of Michigan
had 17 nanobiotechnology related patents in 2005. The universi-
ties produced a three year moving average of 1.5 Ph.D. graduates
ranging from 0 at several universities to 11 at Cornell University in
2005. The three year moving average of university research dollars
allocated to engineering, physical sciences, and life sciences
averaged $252 million and ranged from $19.5 million at Rice
University in 1995 to $663 million at UCLA in 2004. NSF grants
averaged $3.1 million and ranged from $0 to $32.5 million at
Cornell University in 2001.

We report the model 1 and model 2 estimates of university
performance found by solving problems (2), (4), and (6) in Table 2,
but focus our discussion on the model 1 results. The numbers of
frontier universities are reported in Table 3 and the actual and optimal
amounts of NSF funds are reported in Table 4. To estimate the network
performance of universities we chose a directional vector
g¼ ðg1; g2; g3Þ ¼ ð1;1;1Þ to scale the three knowledge outputs to
the frontier. Thus, the interpretation of the estimate for the directional
distance function for a university, βt

k, is that it gives the simultaneous
unit expansion in the three outputs that would be feasible if the
university were to adapt the best-practices of the most efficient
universities. Other directional vectors could also be chosen. Another
directional vector that is common to all universities would to use the
average output quantities of all universities: g¼ ðy1; y2; y3Þ: In this
case, the estimate of university performance, βt

k, would be the
expansion in the three outputs as a proportion of their mean. As an
example of a directional vector that is university specific would be
gk ¼ ðyk1; yk2; yk3Þ. With this directional scaling vector the value of the
directional output distance function in a specific period, βt

k, would
give the proportional expansion in the three outputs. However, with a
university specific directional vector an indicator of aggregate perfor-
mance cannot be obtained as the sum of the individual university
performance indicators (Färe and Grosskopf [24]).

In problem (2) we assume that all inputs, including grants from
the NSF ( ~x), are fixed and estimate the directional distance
function for each university in a given period. That is, we allow
for the production frontier to shift from period to period. Average
university inefficiency equals

^
D
!t

oðxt
k; z

t
k1;Y

t
k; y

t
k;1Þ¼0.20 in 1993.

Thus, the typical university could have achieved 0.2 more patents,
publications, and Ph.D. graduates if it realized greater efficiency
and produced on the frontier in 1993. In this model, the sum of the
individual university directional distance functions equals

aggregate university technical inefficiency reported in column
3 of Table 2. From 1993 to 1997 aggregate inefficiency moves in
a zig-zag pattern ranging from a low of 4.05 in 1994 to a maximum
of 5.74 in 1995. Beginning in 1998, aggregate inefficiency increases
to 6.04 and ends at 12 in 2005. Table 3 reports the number of
universities that produced on the frontier which ranged from a
low of 13 in 1996 to a high of 19 in 1997. The sum of discounted
aggregate inefficiency over the 13 year period is 72.12 where we
use an interest rate of R¼3.43%. This interest rate equals the real
interest rate calculated as the difference between the 20 year
Treasury bond rate and the rate of inflation measured by the
consumer price index.

We also used the perpetual inventory method to measure the
stock of a university’s own publications and the spillover input of
other university’s publications (model 2) when there is no reallo-
cation of NSF funds across universities or time. The estimates
resulted in the same general pattern of aggregate inefficiency, with
inefficiency lowest in 1994 and greatest in 2004. The sum of
discounted aggregate inefficiency for the 13 year period was
higher, 93.3 compared to 72.12. Furthermore, as seen in Table 3,
the model 2 estimates show fewer universities to be on the
frontier in each period compared to model 1.

Our data set has a relatively small number of observations (25
universities) for which to estimate a technology with three out-
puts and four inputs and thus might suffer from what is called the
curse of dimensionality. That is, it is likely that most universities
are compared to themselves when evaluating efficiency which is
evident from the large number of frontier universities. One
possible method for addressing the dimensionality problem is by
reducing the number of inputs or outputs to evaluate (see Avkiran
[40] for an example), although theory gives us little guidance of
which outputs or inputs to eliminate and would be akin to the
problem that the error term captures the effect of missing
variables in classical regression analysis. As an alternative, the
researcher could combine PCA (principal components analysis)
with DEA (data envelopment analysis) following Adler and Golany
[41] to get more power to discriminate among the producers.
However, the dynamic network structure of our knowledge
production problem complicates the use of PCA with DEA. Instead,
we estimated the principal components of the three outputs and
the four inputs and estimated a simple DEA model with no
network and no dynamic effects. The results are reported in
Table 4. As expected, the model that uses the principal compo-
nents of the outputs and principal components of the inputs
estimates greater inefficiency in each year and fewer universities
on the frontier relative to the actual data on inputs and outputs. To
get even greater discriminatory power we further constrained the
model to the top two principal components of the three outputs
and the top two principal components of the four inputs. The top
two principal components accounted for 93% of the variance of

Fig. 3. University knowledge outputs in nanoikbiotechnology.

Table 1
Descriptive Statistics.

Variable Mean Std Minimum Maximum

Publications¼y1 6.63 6.63 0.3 45.3
Patents¼y2 3.38 3.26 0 17
Ph.D.s¼y3 1.49 1.65 0 11
University research dollars¼x1
(millions of $, base¼2005)

251.68 133.58 19.5 662.7

NSF funds¼ ~x (millions of $,
base¼2005)

3.13 4.65 0 32.5

Lagged other publications

¼Yt
k ¼

P3
l ¼ 1

PK
k'ak

yt� l
k'1

419.23 267.06 124 1112

Lagged Own publications ztk ¼
P3
l ¼ 1

yt� l
k1

16.08 14.87 1 100
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outputs and 79% of the variance of the four inputs. With this
model we estimated even greater inefficiency and fewer univer-
sities on the frontier. Although the curse of dimensionality might
truly exist with our data set, we argue that the large number of
frontier universities should not be unexpected in the nascent
nanobiotechnology research that is taking place among some of
the top US research universities.

When the NSF can reallocate the input it gives to universities,
aggregate inefficiency as estimated by problem (4) increases in
every year. This result was expected because the status quo
allocation by the NSF is feasible, but not necessarily optimal so

that ∑K
k ¼ 1β

tn
k ≥D

-t

oðxt ; zt ;Yt ; yt ;1Þ, where D
!t

oðxt ; zt ;Yt ; yt ;1Þ repre-
sents aggregate inefficiency under the status quo allocation of the
NSF input and∑K

k ¼ 1β
tn
k represents aggregate inefficiency when the

NSF can reallocate its nanotechnology grants to universities in a

given year. The difference between ∑K
k ¼ 1β

tn
k and D

!t

oðxt ; zt ;Yt ; yt ;1Þ
equals the extra publications, extra patents, and extra Ph.D.
graduates that could have been produced given an optimal
reallocation of NSF funds, ~xtk; k¼ 1;…;K , if the universities were
to use their resources efficiently and produce on the production
possibility frontier. As shown in the fourth column of Table 2 this
difference (5.90–4.91) ranged from about 1 extra publication,
1 extra patent, and 1 extra Ph.D. graduate in 1993 among the 25
universities to 7.1 extra publications, 7.1 extra patents, and 7.1 extra
Ph.D. graduates in 2003. We can also see in Table 3 that optimal
reallocation of NSF funds reduces the number of universities that
produce on the frontier relative to the status quo allocation of NSF
funds in every year except 2004. Further analysis of this result
showed that the NSF would have taken just enough of their
allocation away from an inefficient university and reallocated it

Table 2
Estimates of Inefficiency for 25 universities.

a. Model 1 Results1,2

No reallocation of NSF
funds ( ~x)

No reallocation of NSF funds ( ~x) Sum over all
universities

Reallocation between universities, but not
across time

Reallocation between universities and
across time

Year
D
!t

okðx; z; Y ;y; 1Þ
PK
k ¼ 1

D
!t

okðx; z;Y ; y;1Þ
PK
k ¼ 1

D
!t

okðx; z; Y ; y; 1Þ
PK
k ¼ 1

D
!t

okðx; z;Y ; y;1Þ

1993 0.20 4.91 5.90 5.38
1994 0.16 4.05 6.11 7.52
1995 0.23 5.74 7.01 9.66
1996 0.22 5.50 8.51 10.86
1997 0.17 4.29 6.69 10.00
1998 0.24 6.04 10.02 13.07
1999 0.23 5.75 9.00 14.61
2000 0.30 7.51 11.50 19.15
2001 0.38 9.53 15.01 23.02
2002 0.16 4.06 6.57 16.86
2003 0.40 9.94 17.04 26.41
2004 0.47 11.74 16.13 44.95
2005 0.48 12.00 15.31 45.95PT
t ¼ 0

PK
k ¼ 1

δt D
!t

okðx; z; Y ; y;1Þ ¼
72.12 106.61 188.88

b. Model 2 Results3

No reallocation of NSF
funds ( ~x)

No reallocation of NSF funds ( ~x) Sum over all
universities

Reallocation between universities, but not
across time

Reallocation between universities and
across time

Year
D
!t

okðx; z; Y ;y; 1Þ
PK
k ¼ 1

D
!t

okðx; z;Y ; y;1Þ
PK
k ¼ 1

D
!t

okðx; z; Y ; y; 1Þ
PK
k ¼ 1

D
!t

okðx; z;Y ; y;1Þ

1993 0.20 4.91 5.90 5.42
1994 0.16 3.98 7.00 7.40
1995 0.22 5.51 7.03 8.04
1996 0.20 5.10 7.57 8.29
1997 0.22 5.39 6.71 7.70
1998 0.28 7.00 10.84 11.65
1999 0.32 7.88 10.78 12.14
2000 0.40 9.90 17.05 18.35
2001 0.51 12.64 19.27 20.15
2002 0.34 8.61 15.11 15.67
2003 0.55 13.85 24.76 28.77
2004 0.75 18.70 24.42 37.95
2005 0.67 16.65 27.92 36.74PT
t ¼

PK
k ¼ 1

δt D
!t

okðx; z; Y ;y;1Þ ¼
93.30 142.39 166.74

Note:

1. The network input/output is the three year sum of lagged own publications: ztk ¼
P3
l ¼ 1

yt� l
k1 and the spillover input is the three year sum of all other universities’

publications: Yt
k ¼

P3
l ¼ 1

PK
k'ak

yt� l
k'1 .

2. The discount rate is δt ¼ ð1þRÞ� t ; where R¼ 0:0343.
3. The network input output is the depreciated sum of all own past publications: ztk ¼ zt�1

k ð1�θÞþyt�1
k1 ,. The spillover input is the depreciated sum of all other universities’

past publications: Yt
k ¼ Yt�1

k ð1�θÞþ PK
k'ak

yt�1
k' . The depreciation rate is θ¼ 0:15.

H. Fukuyama et al. / Omega ∎ (∎∎∎∎) ∎∎∎–∎∎∎8



to other universities so that the loss of potential output from the
inefficient university was less than the potential gain to the other
universities. In addition, the loss of funds turned the inefficient
university into one of the efficient producers. Using the specifica-
tion of the knowledge outputs for model 2 and where the NSF
reallocates funds across universities but not across time again
results in higher levels of inefficiency with inefficiency rising from

1997 to 2003, a slight decline in 2004, and then greater ineffi-
ciency in 2005. However, the number of frontier universities
increases in every year relative to the status quo allocation. Again,
this result occurs because the NSF takes money away from
inefficient universities shifting their production frontiers inward
toward their observed outputs and reallocates the money to
universities where potential outputs can increase more than the
loss of potential output at the inefficient universities.

In problem (6) we allow the NSF to reallocate its grants
between universities and across time. We calculated the real
risk-free interest rate as the return on 20 year treasury bonds
and the inflation rate, where the inflation rate equals the percent
change in the consumer price index. From 1993 to 2005 this real
risk-free interest rate averaged 3.43% and we use that rate as the
weight or discount rate for problem (6): δt ¼ ð1þ :0343Þ� t ;

t ¼ 0;1;…; T : Discounted aggregate inefficiency summed over
time increases relative to when NSF can only reallocate funds
between universities in a given period. However, we see that for
1993, aggregate inefficiency (or potential output gains) actually
declines relative to when NSF can only reallocate between uni-
versities in a given period. This result occurs because using the
money in a future period can result in larger potential output gains
than is lost by taking the money away from 1993. There is a rising
trend in aggregate inefficiency throughout the 13 year period. In
addition, the sum of discounted aggregate inefficiency over the 13
year period is more than twice as high when NSF can optimally
reallocate its funds across universities and time relative to the
status quo estimate of discounted aggregate inefficiency. The
number of frontier universities reported in the last column of
Table 3 declines in every period relative to the status quo.

Table 5 reports the means for actual and optimal NSF grants
and these provide us with an explanation for why aggregate
inefficiency is less in 1993 when the NSF can reallocate resources
across time, than when it can only reallocate resources across
universities. Since fewer NSF grants would have been given in
1993 than were actually given, the sum of the sizes of the
production possibility sets for the 25 universities shrinks when
NSF can reallocate across time. In fact, mean optimal NSF grants
are smaller in 1993 and 1995 to 2002, but the decline in those
years is offset by increases in 1994 and the period 2003 to 2005.
Such intertemporal reallocation of NSF funds increases the number
of publications, patents, and Ph.D. graduates that could have been
feasibly produced if universities were able to increase their

Table 3
Number of Frontier universities.

Model 1

Year No reallocation
of NSF funds ( ~x)

Reallocation between
universities, but not
time

Reallocation between
universities and across
time

1993 16 15 15
1994 16 11 8
1995 15 13 7
1996 13 9 5
1997 19 14 8
1998 14 10 5
1999 15 12 4
2000 15 13 5
2001 16 12 7
2002 17 14 7
2003 15 12 5
2004 14 15 4
2005 17 12 3
Model 2

Year No reallocation
of NSF funds ( ~x)

Reallocation between
universities, but not
time

Reallocation between
universities and across
time

1993 15 15 15
1994 7 16 8
1995 12 14 6
1996 10 13 7
1997 11 16 7
1998 10 14 8
1999 11 15 7
2000 10 13 8
2001 12 16 11
2002 8 14 10
2003 9 13 6
2004 8 12 5
2005 9 14 3

Table 4
Principal Components Analysis with DEA.

Actual yand x1 All Principal Components of yand x Top 2 Principal components ofyand x

Year PK
k ¼ 1

D
!t

okðx; z;Y ; y;1Þ
# on frontier PK

k ¼ 1
D
!t

okðx; z; Y ; y;1Þ
# on frontier PK

k ¼ 1
D
!t

okðx; z;Y ; y;1Þ
# on frontier

1993 4.91 16 9.54 10 33.06 4
1994 4.04 15 8.62 10 37.98 3
1995 5.76 15 14.93 9 46.53 4
1996 5.50 12 17.83 5 66.70 3
1997 4.28 19 14.30 9 62.73 2
1998 6.03 14 11.72 7 53.99 4
1999 5.79 14 14.10 10 65.40 3
2000 7.50 14 17.17 9 82.85 3
2001 9.54 15 16.15 11 80.30 2
2002 4.07 17 18.78 10 104.15 3
2003 9.95 15 16.11 13 94.98 3
2004 11.75 13 22.77 12 108.83 2
2005 12.01 16 30.23 12 129.06 2

Note:
1. The output vector is y¼ ðy1 ; y2 ; y3Þ and the input vector is x¼ ðx1; ~x ; z;YÞ.
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efficiency to that of the frontier universities. The last row of Table 2
reports the sum of discounted aggregate inefficiencies over the 13
year period, 1993–2005. Relative to the status quo level of
discounted aggregate inefficiency of 72 extra publication, 72 extra
patents, and 72 extra Ph.D. students, if the NSF were to optimally
reallocate across universities but not time, each of the three
knowledge outputs could increase by 34 from 72 to 106. If the
NSF were able to optimally reallocate its grants across universities
and time each of the three knowledge outputs could increase by
82 (from 106.6 to 188.8) if universities were to employ those
resources efficiently.

Table 6 reports the universities that would gain the most NSF
funding and those that would lose the most NSF funding if NSF
funds were optimally reallocated for the model 1 specification of
inputs and outputs. When NSF funds can be reallocated between
universities but not across time, Northwestern from 1993 to 1995,
Cornell from 1996 to 2001, UCLA from 2002 to 2004, and
Wisconsin in 2005 would lose the most funds. The biggest gainers
in NSF funds include UCLA in 1993, Washington University (St.
Louis) in 1994, 2002, and 2005, Michigan in 1995, Ohio State in
1996, Case Western from 1997 to 2001, and the University of
Washington in 2003 and 2004. When resources can also be
reallocated across time, Pennsylvania State University replaces
Northwestern as losing the most NSF funds, but the remainder
of the list is the same except for Cornell replacing UCLA in 2002.
The list of universities that would gain the most in NSF funds
changes to include Maryland in 1994, Tufts in 1998 and 2000,
Virginia in 1999, and Stanford in 2005. Case Western University,
which would have gained the most in NSF funding in the years
1997 to 2001, now only gains the most in 2001. In addition, except
in 1993, 1994, and 2004, the maximum losses of NSF funding are
greater than the maximum gains suggesting that the optimal NSF
distribution of funds is more equal. The more even distribution of

Table 5
Mean Actual ( ~x) and Optimal ( ~xn) National Science Foundation Grants (std.dev.).

Model 1 Model 2

Reallocation
between
universities but
not across time

Reallocation
between
universities
and across
time

Reallocation
between
universities
but not across
time

Reallocation
between
universities
and across
time

Year Actual
NSF ~x

Optimal NSF ~xn Optimal NSF
~xn

Optimal NSF
~xn

Optimal NSF
~xn

1993 0.725 0.725 0.521 0.725 0.535
(1.724) (1.764) (1.704) (1.760) (1.702)

1994 1.342 1.342 1.716 1.342 1.725
(2.829) (2.805) (2.905) (1.874) (2.906)

1995 1.112 1.112 1.035 1.112 0.869
(1.871) (1.882) (1.821) (1.879) (1.606)

1996 1.636 1.636 1.107 1.636 1.014
(2.631) (1.678) (1.542) (2.224) (1.558)

1997 1.123 1.123 0.667 1.123 0.683
(1.734) (1.098) (0.428) (1.616) (0.507)

1998 1.380 1.380 1.234 1.380 1.202
(1.648) (1.039) (0.722) (0.986) (0.772)

1999 1.455 1.455 1.106 1.455 1.127
(1.782) (1.531) (0.747) (1.739) (0.753)

2000 3.439 3.439 2.248 3.439 2.264
(5.288) (3.867) (0.924) (3.931) (0.987)

2001 4.985 4.985 3.626 4.985 3.558
(6.660) (6.049) (2.079) (2.134) (2.212)

2002 6.180 6.180 6.200 6.180 6.385
(6.183) (5.539) (3.226) (3.258) (4.355)

2003 5.780 5.780 6.370 5.780 6.501
(5.162) (3.712) (3.462) (2.779) (3.531)

2004 5.970 5.970 8.853 5.970 8.339
(6.080) (5.992) (6.644) (4.957) (5.656)

2005 5.603 5.603 5.955 5.603 6.527
(5.107) (4.845) (4.610) (4.698) (4.655)

Table 6
Gainers and Losers in NSF funding.

Reallocation between universities but not across time Reallocation between universities and across time

Year Loss of NSF Grants¼( ~xtn
k � ~xt

k) Gain of NSF grants¼( ~xtn
k � ~xt

k) Loss of NSF Grants¼( ~xtn
k � ~xt

k) Gain of NSF grants¼( ~xtn
k � ~xt

k)

1993 �1.62 2.64 �1.62 2.04
(Northwestern) (UCLA) (Northwestern) (UCLA)

1994 �1.87 0.76 �0.31 6.11
(Northwestern) (Washington U.) (Penn State) (Maryland)

1995 �1.46 1.56 �1.41 0.46
(Northwestern) (Michigan) (Northwestern) (Washington U.)

1996 �8.15 2.80 �10.11 2.18
(Cornell) (Ohio State U.) (Cornell) (U. of Washington)

1997 �6.90 5.21 �7.20 1.57
(Cornell) (Case Western) (Cornell) (U. of Washington)

1998 �5.81 4.44 �6.28 1.25
(Cornell) (Case Western) (Cornell) (Tufts)

1999 �5.74 7.50 �5.61 0.65
(Cornell) (Case Western) (Cornell) (Virginia)

2000 �24.58 20.13 �24.49 1.87
(Cornell) (Case Western) (Cornell) (Tufts)

2001 �28.94 31.77 �29.34 2.92
(Cornell) (Case Western) (Cornell) (Case Western)

2002 �6.52 3.33 �17.99 7.71
(UCLA) (Washington U.) (Cornell) (Washington U.)

2003 �13.75 4.66 �13.58 5.48
(UCLA) (U of Washington) (UCLA) (U. of Washington)

2004 �10.88 11.15 �8.50 13.00
(UCLA) (U of Washington) (UCLA) (U. of Washington)

2005 �4.47 2.69 �4.21 3.43
(Wisconsin) (Washington U.) (Wisconsin) (Stanford)
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funding is also seen in the lower standard deviations of the
optimal NSF grants ð ~xnÞ relative to actual NSF grants ð ~xÞ reported
in Table 6, especially in the latter part of the period.

6. Summary

The production of knowledge at a university can enhance its
future production possibilities and spillover and enhance the
production possibilities of other universities. In this paper we
developed three DEA production models to examine the potential
gains in three knowledge outputs in the area of nanobiotechnol-
ogy: publications, patents, and Ph.D. graduates. During 1993 to
2005, the 25 universities in our sample could have produced an
additional 72 publications, 72 patents, and 72 Ph.D. graduates by
reducing inefficiency. Allowing the NSF to optimally redistribute
its grants in nanotechnology among the 25 universities in each
given time period could have resulted in an extra 34 publications,
34 patents, and 34 Ph.D. graduates if the 25 universities had
produced efficiently. Allowing the NSF to optimally redistribute
among the 25 universities and across the 13 year period 1993–
2005 could have resulted in an additional 82 publications, 82
patents, and 82 Ph.D. graduates. Given that the NSF grant process
is highly competitive and subject to peer review our findings of
inefficiency suggest that the transactions costs of NSF acquiring
the necessary information and overcoming political obstacles are
fairly high. This lack of information might be expected given the
fledgling nanobiotechnology industry and might also be part of
the costs of funding basic and applied research in science.
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