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One key assumption of Markowitz’s model is that all traders act as price takers. In this paper, we extend 

this mean-variance approach in a setting where large investors can move prices. Instead of having an in- 

dividual optimization problem, we find the investors’ Nash equilibrium and redefine the efficient frontier 

in this new framework. 

We also develop a simplified application of the general model, with two assets and two investors 

to shed light on the potential strategic behavior of large and atomic investors. Our findings validate the 

claim that large investors enhance their portfolio performance in relation to perfect market conditions. 

Besides, we show under which conditions atomic investors can benefit in relation to the standard setting, 

even if they have not total influence on their eventual performance. The ‘two investors-two assets’ setting 

allows us to quantify performance and do sensitivity analysis regarding investors’ market power, risk 

tolerance and price elasticity of demand. 

Finally, for a group of well known ETFs, we empirically show how price variations change depending 

on the volume traded. We also explain how to set up and use our model with real market data. 
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. Introduction 

The main economic assumptions in financial markets are per-

ect competition and symmetric information. Even though, finan-

ial markets generally approach perfect competition, in some cases

hese two assumptions do not hold, especially for powerful in-

estors. Indeed, the investment decisions of institutional investors,

ho usually run a key part of total assets in the market and cover

n even greater portion of the trading volume, can have an impor-

ant impact on market prices, see Campbell, Grossman, and Wang

1993) , Chan and Lakonishok (1995) , Llorente, Michaely, Saar, and

ang (2002) and Huang and Heian (2010) . Moreover, their private

nformation about the market and their individual trading plans

an equally affect the level of competition, see Wang (1994) , Foster

nd Viswanathan (1996) , Wang (1998) , Dasgupta, Prat, and Verardo

2011) . 
✩ The authors are grateful to an anonymous referee for his constructive comments 

nd suggestions. The usual caveats apply. Marcelo Villena grateful acknowledged 

nancial support from the Fondecyt Program, project no. 1131096 . 
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Clearly, if done via single sell-order a trade of 10,0 0 0 shares

mpacts differently than a 100-share trade. Undoubtedly, the price

ill be negatively affected and some relevant information could

e disclosed. Lo and Wang (2009) point out the theoretical conse-

uences of this important empirical regularity: “That the demand

urves of even the most liquid financial securities are downward-

loping for institutional investors, and that the price-discovery

rocess often reveals information, implies that quantities are as

undamental as prices, and equally worthy of investigation”. Lo

nd Wang (2006) built an inter-temporal capital asset pricing

odel around this empirical fact about investors with some mar-

et power. 

Thus, the potential existence of market power in financial mar-

ets raises important questions about the strategic behavior of big

layers, and their role in the definition of portfolio allocation. 

The literature contains different hypotheses regarding the

ssumption that prices depend upon trading strategies, giving rise

o distinct methodological approaches. For example, in practice,

nvestors may face different trading constraints, such as liquidity,

hat eventually could explain such deviations from the equilibrium

rice. Note that transaction costs can influence liquidity and hence

arket power, since transaction costs influence trading strategies

nd the bid/ask spread on the asset price, see Davis and Norman

1990) and Jouini and Kallal (1995) . Regarding methodologies,

uoco and Cvitani ́c (1998) for example considers a price model
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with coefficients depending on large-invest or strategy. In the

same line, Ronnie Sircar and Papanicolaou (1998) , Bank and Baum

(2004) and Cetin, Jarrow, and Protter (2004) develop models

where prices depend on strategies using reaction functions. 

Nonetheless, examples of strategic models based on game the-

ory in finance are very rare. Kannai and Rosenmüller (2010) de-

veloped a financial non-cooperative game in strategic form, where

a finite number of players may borrow or deposit money at a

central bank and use the cash available to purchase a commod-

ity for immediate consumption. The bank can print money to bal-

ance its books and fix interest rates. For this game a pure-strategy

Nash equilibrium is found under various assumptions. An exten-

sion of this model with multiple periods is presented by Mangoubi

(2012) . 

Regarding portfolio theory, one key assumption of Markowitz’s

model is that all traders act as price takers, and hence no sin-

gle one can exercise market power. According to Kolm, Tütüncü,

and Fabozzi (2014) , the main extensions of the model have been

the inclusion of: (i) transaction costs, e.g. Brown and Smith (2011) ,

(ii) different types of specific and institutional constraints, (see

Clarke, De Silva, & Thorley, 2002 ), (iii) modeling and quantification

of the impact of estimation errors in risk and return forecasts (via

Bayesian techniques, stochastic optimization and robust optimiza-

tion), (see Ledoit and Wolf, 2004 and Black and Litterman, 1992 ),

and (iv) multi-period modeling, e.g. Merton (1969) and Campbell

and Viceira (2002) . Thus, despite Markowitz’s portfolio selection

model for a single period ( Markowitz, 1952 ) having been one of

the cornerstones of modern finance – inspiring numerous exten-

sions and applications as those enumerated above – the price taker

assumption has not yet been relaxed. 

In sum, the financial literature has not directly addressed the is-

sue of strategic behavior of large players in the context of portfolio

management. Consequently, possible strategies for atomic players

have remained neglected as well. 

In this paper, we analyze the strategic behavior of large and

atomic investors, using a portfolio optimization model in pres-

ence of an oligopolistic financial market. Thus, the ability of large

investors to move prices in the traditional single period mean-

variance portfolio model is introduced, relaxing one of the key as-

sumptions of Markowitz’s model. Under this framework, the Nash

equilibrium of both investor types emerges and is compared with

standard portfolio results. 

This paper is organized as follows. Section 2 describes the gen-

eral portfolio model considering oligopolistic financial markets. We

derived its equilibrium and show how to construct an efficient

frontier under this new framework. Section 3 constructs an exam-

ple of the equilibrium for two risky assets and two types of in-

vestors: large and atomic. We analyze and compare performance

results between both players and also with respect to results ob-

tained in a perfect market setting. Section 4 shows how the model

can be calibrated and applied to real financial data. Finally, some

conclusions and potential for further research is presented. 

2. The model and its equilibrium 

Let us assume a market composed of m investors and n assets.

The portfolio return for investor i is defined as: 

r i p := 

n ∑ 

j=1 

x i j r j = r ′ x i (1)

where x i 
j 

is the fraction allocated in asset j by investor i and r j is

the return of the asset j . From (1) , the portfolio mean return and its

volatility emerges easily from having each asset’s expected return,

volatility and correlation between assets: 
μi 
p := E(r i p ) = 

n ∑ 

j=1 

E(r j x 
i 
j ) = μ′ x i 

(σ i 
p ) 

2 := V ar (r i p ) := 

n ∑ 

j=1 

n ∑ 

k =1 

x i j x 
i 
k C jk = (x i ) ′ Cx i 

ith C jk := cov( r j , r k ). 

In the classical Markowitz problem, each investor determines

 

i 
j 

by taking the best compromise between the variance and the

xpected return of the portfolio, considering the budget constraint

 

′ 
x i = 1 . 

Markowitz model assumes a perfect market setting. Investors

re price takers, and therefore returns are exogenous to them. In

hese expressions, returns do not depend on investors’ allocations

nd their wealth is irrelevant when determining optimal allocation.

Now, let us assume participants can individually affect the pre-

ailing market price by modifying the quantity demanded of as-

ets. Following Vath, Mnif, and Pham (2007) and Lo and Wang

2006) , a large investor could affect the price of the asset. The

tock price rises when a trader buys and falls when s/he sells, and

he impact is increasing relative to the size of the order. Specifi-

ally, we will assume a positive relationship between the volume

f the demand for the asset in the market and its price, i.e., a price

echanism of the form 

 (Q j ) := P PM 

j + θ j Q j (2)

here P ( Q j ) is the market price of asset j , P PM 

j 
is the price of asset

 in a perfect market setting, θ j ≥ 0 is an elasticity measure, or

ow the price is affected by the volume of assets demanded, and

 j represents the quantity of asset j demanded in the market. Thus,

j Q j represents the degree of market power. 

If P 0 
j 

stands for the current price and w 

i represents the wealth

f investor i , then Q j = 

∑ m 
i =1 w 

i x i 
j 

P 0 
j 

. Hence, the price in (2) becomes 

 (Q j ) = P PM 

j + θ j 

∑ m 

i =1 w 

i x i 
j 

P 0 
j 

In this context, the return of asset j is 

 j := 

P (Q j ) 

P 0 
j 

− 1 = 

P PM 

j 

P 0 
j 

+ 

θ j (
P 0 

j 

)2 

m ∑ 

i =1 

(
w 

i x i j 
)

− 1 = r PM 

j + θ
′ 
j 

m ∑ 

i =1 

w 

i x i j 

here r PM 

j 
represents the return of the asset in a perfectly compe-

itive market and θ
′ 
j 
= 

θ j 

(P 0 
j 
) 2 

. Then the expected return of asset j is

j := r̄ PM 

j + θ
′ 
j 

m ∑ 

i =1 

w 

i x i j (3)

here μPM 

j 
is the expected return when solving the traditional

arkowitz model. Note that r j can stand above or below r̄ PM 

j 
be-

ause we allow long and short positions. From now on we denote

¯ PM 

j 
as r̄ j . 

.1. Optimal allocations in the oligopolistic setting 

Following previous definitions, and writing D for the diago-

al matrix with D j j = θ
′ 
j 
, the investor’s mean-variance problem

ecomes 

in 

(
x i 
)T 

Cx i − λi 

( 

r̄ + 

m ∑ 

k =1 

w 

k Dx k 

) T 

x i 

s.t 1 

′ 
x i = 1 
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ith λ > 0 denoted the risk aversion parameter. Note that

arkowitz is recovered when assets are not sensitive to demand

j = 0 ∀ j. Denoting market power mp i := 

w 

i ∑ 

k w 

k 
, we deem an

nvestor i atomic when it has insignificant market power, that

s mp i ≈ 0 and large or powerful otherwise. We recover perfect

arket returns when we assume that all investors are atomic,

ince w 

i ≈ 0 in such case. 

Common wisdom holds that in a perfect market case, alloca-

ions with a particular λ can be obtained by setting a portfolio re-

urn target R . This target is given by the relationship λ = 2 

(
R − g 

h 

)
f− g 2 

h 

ith f = r̄ 
′ 
C −1 r̄ , g = 1 

′ 
C −1 r̄ , h = 1 

′ 
C −1 1 . Recall that solution in the

erfect market case is given by: 

¯
 

λ = 

λ

2 

C −1 ( ̄r − g 

h 

1) + 

1 

h 

C −1 1 (4)

We assume each investor knows the wealth of the others and

herefore their market power pw 

i := 

w 

i ∑ 

k w 

k 
, just like in a typical

ournot-type game. In this setting, instead of having an individual

ptimization problem, we have to find the Nash equilibrium of the

nvestors. 

Since the problem is convex in x i , KKT conditions are sufficient

o find the optimal strategy. The Lagrangian L i ( x 
i , ρ i ) for investor i

s 

 i 

(
x i , ρ i 

)
= 

(
x i 
)′ 

Cx i − λi 

( 

r̄ + 

m ∑ 

k � = i 
w 

k Dx k + w 

i Dx i 

) 

′ 

x i + ρ i 
(
1 

′ 
x i − 1 

)
The KKT conditions for investor i are 

 

(
C − λi w 

i D 

)
x i − λi 

( 

r̄ + 

m ∑ 

k � = i 
w 

k Dx k 

) 

+ ρ i 1 = 0 (5)

 

′ 
x i = 1 (6) 

Plugging (5) in (6) and defining C i := C − λi w 

i D, g i := 1 
′ 
C i 

−1 
r̄

nd h i := 1 
′ 
C i 

−1 
1 , we have 

i = 

λi 

h 

i 

( 

g i + 1 

′ 
C i 

−1 
m ∑ 

k � = i 
w 

k Dx k 

) 

− 2 

h 

i 
(7) 

Plugging (4) , then (5) becomes 

 C i x i − λi 
m ∑ 

k � = i 
w 

k Dx k + 

λi 

h 

i 

m ∑ 

k � = i 
w 

k 
(
1 

′ 
C i 

−1 

Dx k 
)
1 

= λi r̄ − λi g i 

h 

i 
1 + 

2 

h 

i 
1 = 2 C i x̄ λ

i 

(8) 

Eq. (8) represents the best response equation for each in-

estor, i.e. the best allocation x i as a function of every other

nvestor’s allocations x k . By solving the mxn system of linear equa-

ions defined by (8) the equilibrium of the game arises. Defin-

ng b i 
l 

:= 1 
′ 
C i 

−1 
e l , with e l as the l th canonical vector, 1 T C i 

−1 
Dx k =

 

T C i 
−1 (∑ 

l e l e 
′ 
l 

)
Dx k = 

∑ 

l b 
i 
l 
e T 

l 
Dx k = 

∑ 

l b 
i 
l 
θl x 

k 
l 
. Eq. (8) can be written

s: 

 

n ∑ 

l 

C i jl x 
i 
l − λi θ j 

m ∑ 

k � = i 
w 

k x k j + 

λi 

h 

i 

m ∑ 

k � = i 
w 

k 
n ∑ 

l 

b i l θl x 
k 
l = 2[ C i x̄ λ

i 

] j (9) 

earranging terms, (9) is equivalent to 

 

n ∑ 

l 

C i jl x 
i 
l + 

m ∑ 

k � = i 

[
−λi θ j w 

k 

(
1 −

b i 
j 

h 

i 

)]
x k j + 

m ∑ 

k � = i 

n ∑ 

l � = j 

λi 

h 

i 
θl w 

k b i l x 
k 
l 

= 2[ C i x̄ λ
i 

] j 
Hence, we can obtain the values of x = [ x 1 
1 
, x 1 

2 
, . . . , x 1 n , x 

2 
1 
,

 

2 
2 . . . x 

2 
n , . . . , x 

m 

1 
, x m 

2 
. . . , x m 

n ] 
T by solving the linear equation Ax = c,

ith: 

 n (i −1)+ j,n (k −1)+ l 

← 

⎧ ⎪ ⎪ ⎪ ⎪ ⎪ ⎨ ⎪ ⎪ ⎪ ⎪ ⎪ ⎩ 

C i 
jl 

k = i 

−λi 

2 

θ j w 

k 

(
1 −

b i 
j 

h 

i 

)
k � = i, l = j 

λi 

2 h 

i 
θl w 

k b i 
l 

k � = i, l � = j 

c n (i −1)+ j ← [ C i x̄ λ
i 

] j (10) 

This result represents the Nash equilibrium of the game and

he previous equilibrium does not hold for any risk tolerance. The

ptimization problem a player solves can be unbounded for some

. Since this situation does not hold in practice, we can add con-

traints to avoid it. For example, we can add a bound on the total

mount of an asset bought in the market or avoid shorting. For

ither possibility, we can get an equilibrium. However, these equi-

ibriums cannot be obtained in a close form as we did previously.

n the two players-two asset example in Section 3 , we will revisit

nd explain how to proceed in such cases. 

.1.1. Special cases 

Now we analyze allocation results for some specific cases. 

1. Investor have no risk tolerance: That is λi = 0 in which case

x i is the minimum variance portfolio (MVP) allocation of the

perfect market setting. 

x i = x̄ 0 = 

1 

h 

C −1 1 

Note that in this case market power is irrelevant. 

2. Investors are identical: That is w 

i = w 

k and λi = λk in which

case x i = x k . To see this, first note that C i = C k and hence g i =
g k , h i = h k . Thus, Eq. (5) for investor i and k becomes: 

i : 2 C i x i − λi w 

i Dx k + 

λi 

h 

i 
w 

i 1 

′ C i −1 

Dx k 1 = A 

d 

k : 2 C i x k − λi w 

i Dx i + 

λi 

h 

i 
w 

i 1 

′ C i −1 

Dx i 1 = A 

d 

With A 

d the rest of the terms not depending on x i and x k . It

emerges that the situation for i equals k and that x i = x k . 

3. All Investors are atomic: In such case we recover Markowitz al-

locations for each investor, since no investor has the power to

move the price of an asset. It has the same effect as the no

price elasticity case ( θ j = 0 ∀ j) 

4. All Investors are identical: That is, everyone has the same mar-

ket power and risk tolerance, mp i = w 

1 
m 

, λi = λ ∀ i . We know

from previous results that allocations are equal. But in this

case we have a close solution. From (5) and (6) and defining

C eq := C − wλ
2 (1 + 

1 
m 

) D, g eq = 1 
′ 
C eq −1 

r̄ , h eq = 1 
′ 
C eq −1 

1 we get the

solution by 

x = 

λ

2 

C eq −1 

(
r̄ − g eq 

h 

eq 
1 

)
+ 

1 

h 

eq 
C eq −1 

1 

Note, we recover the perfect market results when all investors

are atomic when ( w = 0). 

5. Monopoly: If one investor has all the market power ( w . l . g . in-

vestor M ), then its decisions will not depend on other players,

and their allocations are determinable as in the perfect mar-

ket case. Indeed, Eq. (7) becomes ρM = 

λM g M 

h M 
− 2 

h M 
and plugging

this into (8) , we have: 

x M := 

λM 

2 

C M 

−1 

(
r̄ − g M 

h 

M 

1 

)
+ 

1 

h 

M 

C M 

−1 

1 



682 M.J. Villena, L. Reus / European Journal of Operational Research 254 (2016) 679–688 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3

 

i  

f  

d  

s

3

 

0  

o  √
 

b  

a

A

 

p  
For the rest of the players Eq. (7) becomes ρ i = 

λi 

h 
(g +

w 

M 1 T C −1 Dx M ) − 2 
h 

and plugging this into (8) , we get: 

x i = x̄ λ
i + 

λi w 

M 

2 

[ 
C −1 Dx M − 1 

h 

(1 

′ 
C −1 Dx M ) C −1 1 

] 
2.2. Oligopolistic efficient frontier 

In the perfect market, the efficient frontier appears by solving

the Markowitz problem with different values of λ. Its construc-

tion does not depend on others investors. Once investors calibrate

their risk tolerance, and therefore λ, they can know the portfolio

mean return and volatility for their portfolio. The efficient frontier

is unique for all investors. 

However, in the oligopolistic model described previously, al-

locations and returns depend on every investor’s market power

and risk tolerance. Each investor will have their particular effi-

cient frontier, since mean return depends on the particular market

power of each investor. This efficient frontier corresponds to the

volatility and mean obtained for each different tolerance value λ
off all investors. 

With this new setting, we can compare the efficient frontier

from two perspectives. First, from within the new oligopolistic set-

ting, e.g., between investors with different market power. Second,

we can compare the efficient frontier of each investor with respect

to the perfect market case. Denoting μ̄i 
p and σ̄ i 

p as the portfolio

mean return and volatility of player i in a perfect market setting

then: 

μi 
p = ( ̄r + 

∑ m 

k =1 w 

k Dx k ) ′ x i = μ̄i 
p + 

∑ m 

k =1 w 

k (x k ) ′ Dx i (11)

(σ i 
p ) 

2 = (x i ) ′ Cx i = ( ̄σ i 
p ) 

2 (12)

For this perspective we compare the mean returns of both type

of market under the same volatility, or equivalently under the

same allocation. There is no other allocation that can give the same

volatility target. To show the latter, suppose that x and y are al-

locations in perfect and oligopolistic market, respectively. Since C

is semi-definite positive, if both have the same portfolio volatility

target, that is x ′ Cx = y ′ Cy, then x = y 

Hence, we can compare mean returns applying the same allo-

cation x . To compare efficient frontiers between different market

structures, we will compare the expected portfolio returns under

the same allocation. 

Now we show what we know about efficient frontiers in special

cases 

1. Investor have no risk tolerance: When λi = 0 then investor gets

the mean and volatility from the MVP allocation, that is 

σ i 
p = σ̄MV P = 

1 √ 

h 

μi 
p = μ̄MV P + 

1 

h 

( 

m ∑ 

k =1 

w 

k x k 

) ′ 
DC −1 1 

Note that μi 
p can change for other values of λk , since x k changes

too. Also note μp between two investors ( i and k ) is equal when

both have no risk tolerance, even if both have different market

power. 

μi 
p = μ̄MV P + (w 

i + w 

k ) x ′ Dx + 

m ∑ 

k =1 ,l � = i,k 
w 

l x 
′ 
Dx l = μk 

p 

where x = x̄ 0 . 

2. Identical allocations: When two investors hold the same alloca-

tion x , then volatility and mean are the same. This is easy to
see from (11) and (12) . Moreover, when everyone has the same

allocation x 

μi 
p = μ̄i 

p + x ′ Dx 

m ∑ 

k =1 

w 

k ∀ i 

We have seen above that this situation develops with identical

investors, yet it might hold in another situation as well. Hence,

investors with less market power could eventually have com-

mon points in the efficient frontier with investors with more

market power. Further details and examples of this situation

appear in the two by two setting. 

3. Monopoly: Eq. (11) for the single powerful player M becomes: 

μM 

p = μ̄M 

p + w 

M (x M ) ′ Dx M > μ̄M 

p (13)

As expected, a powerful player benefits in this new structure

when x M is the allocation in the perfect market case. The rest

will have a return of: 

μi 
p = μ̄i 

p + w 

M (x i ) ′ Dx M ∀ i (14)

Note μi 
p > μ̄i 

p when atomic investors align with first player al-

locations, that is when allocations in each asset have the same

direction (sign). In short, atomic players should consider to fol-

low the herd. 

. Equilibrium in a market with two assets and two investors 

The case of two risky assets and two investors is a handy build-

ng block for the general case. It allows us to derive a close formula

or optimal allocations and hence to determine under which con-

itions each type of investor can benefit from oligopolistic market

tructure. 

.1. Optimal allocations 

We assume an atomic and large (powerful) player that is w 

A =
 and w 

M = 1 . For simplicity, we assume one asset with and an-

ther without elasticity, i.e. θ1 = 0 and θ2 = θ > 0 . Denote σ j :=
 

C j j and suppose r̄ 1 ≤ r̄ 2 and σ 1 ≤ σ 2 . Let ρ be the correlation

etween the two assets. Then C = 

[
σ 2 

1 ρσ1 σ2 

ρσ1 σ2 σ 2 
2 

]
. In this case A

nd c in (10) become 

 = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

C 11 C 12 0 λA θ
b A 2 

2 h 

C 12 C 22 0 −λA θ
b A 1 

2 h 

0 0 C 11 C 12 

0 0 C 12 C 2 22 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

, 

c = 

⎡ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

λA 

2 

(
r̄ 1 − g 

h 

)
+ 

1 

h 

λA 

2 

(
r̄ 2 − g 

h 

)
+ 

1 
h 

λM 

2 

(
r̄ 1 − g M 

h 

M 

)
+ 

1 

h 

M 

λM 

2 

(
r̄ 2 − g M 

h 

M 

)
+ 

1 

h 

M 

⎤ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

Since x i 
1 

= 1 − x i 
2 

then equations two and four are linearly de-

endent of one and three. Taking one and three, the system
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educes to solve ˜ A x = ̃

 c with x = [ x A 2 , x 
M 

2 ] 
′ and: 

 

 = 

⎡ ⎣ 

C 12 − C 11 λA θ
b A 2 

2 h 

0 C 12 − C 11 

⎤ ⎦ , ˜ c = 

⎡ ⎢ ⎢ ⎣ 

λA 

2 

( ̄r 1 − g 

h 

) + 

1 

h 

− C 11 

λM 

2 

(
r̄ 1 − g M 

h 

M 

)
+ 

1 

h 

M 

− C 11 

⎤⎥⎥⎦
Easily observable is that b M 

2 
= −C 12 −C 11 | C| and 

˜ c = (C 12 −

 11 ) 

[ 

λA 

2 

¯r 2 − ¯r 1 | C| h − C 12 −C 11 | C| h 
λM 

2 

¯r 2 − ¯r 1 
| C| h −λM θ

− C 12 −C 11 
| C| h −λM θ

] 

. Then the solution is given by: 

 

M 

2 = 

λM 

2 

r̄ 2 − r̄ 1 
| C| h − λM θ

+ 

C 11 − C 12 

| C| h − λM θ
= x̄ λ

M 

2 

( | C| h 

| C| h − λM θ

)
(15) 

 

A 
2 = 

λA 

2 

r̄ 2 − r̄ 1 
| C| h 

+ 

C 11 − C 12 

| C| h 

+ 

λA θ

2 | C| h 

x M 

2 = x̄ λ
A 

2 + 

λA θ

2 | C| h 

x M 

2 (16) 

Henceforth, x A 2 and x M 

2 are denoted as x M 

and x A , respectively.

ikewise, x̄ λ
i 

2 is denoted as x̄ i 

.2. Powerful player 

As laid out in Section 1 , this equilibrium does not hold for any

. To clarify, let us see when the problem is unbounded for the

owerful player. The large player solves 

in (| C| h − λM θ ) x M 

−(λM ( ̄r 2 − r̄ 1 ) + 2(C 11 − C 12 )) x M 

− λM r̄ 1 + C 11 

When | C| h − λM θ < 0 , the problem is unbounded, i.e. a pow-

rful player can arbitrarily increase the objective function by in-

reasing allocation in asset two. Obviously this does not happen in

ractice, since even large players have only limited amounts to in-

est, even if they short in other assets. To simplify analysis, we as-

ume no shorting, that is 0 ≤ x M 

≤ 1. By adding this constraint, we

re implicitly bounding the amount bought and asset’s two return:

 ̄2 + θx M 

≤ r̄ 2 + θ . Now θ represents how much powerful player is

ble to shift the return. 

So when | C| h − λM θ < 0 then x M 

= 1 . If | C| h − λM θ ≥ 0 , then it

epends on market conditions and player risk tolerance. 

• If 0 ≤ λM 

2 ≤ C 12 −C 11 
r̄ 2 −r̄ 1 

then x M 

= 0 

• If 
C 12 −C 11 

r̄ 2 −r̄ 1 
≤ λM 

2 ≤ C 22 −C 12 
r̄ 2 −r̄ 1 +2 θ

then x M 

= x̄ M 

( | C| h 
| C| h −λM θ

) 

• If λM 

2 > 

C 22 −C 12 
r̄ 2 −r̄ 1 +2 θ

then x M 

= 1 

Allocation of large investor does not depend on atomic deci-

ions. We also observe that x M 

≥ x̄ M 

and hence x M 

is increasing

n risk tolerance λM too. It easily appears that the objective func-

ion z M 

p := (σ M 

p ) 
2 − λM μM 

p is better as we increase risk tolerance.

ndeed: 

∂z M 

p 

∂λM 

= −2 θx M 

∂x M 

∂λM 

λM − μM 

p ≤ 0 

The reward for more risk is higher than in the perfect mar-

et case, where 
∂z p 

∂λM = −μM 

p . The following shows how a powerful

layer benefits in this new setting. 

roposition 1. For any risk tolerance λM , a powerful player gets a

etter (at least equal) value of z M 

p in relation to a perfect market set-

ing. If x M 

+ x̄ M 

≤ 1 , the benefit increases as we decrease asset’s cor-

elation and decreases otherwise. 

roof. First, let us calculate the difference in volatility and return

n both markets: 

M 

p [ x M 

] − μ̄M 

p [ ̄x M 

] 

= (1 − x M 

) ̄r 1 + x M 

( ̄r 2 + θx M 

) − ((1 − x̄ M 

) ̄r 1 + x̄ M 

r̄ 2 ) 

= ( ̄r 2 − r̄ 1 )(x M 

− x̄ M 

) + θ (x M 

) 2 
(σ M 

p [ x M 

]) 2 − ( ̄σ M 

p [ ̄x M 

]) 2 

= | C| hx 2 M 

− 2(C 11 − C 12 ) x M 

+ C 11 

− (| C| h ̄x 2 M 

− 2(C 11 − C 12 ) ̄x M 

+ C 11 ) 

= (x M 

− x̄ M 

)(| C| h (x M 

+ x̄ M 

) − 2(C 11 − C 12 )) 

= (x M 

− x̄ M 

)(| C| h (x M 

− x̄ M 

) + λM ( ̄r 2 − r̄ 1 )) 

hen the difference in z M 

p between both markets is: 

 

M 

p [ x M 

] − z̄ M 

p [ ̄x M 

] = (σ M 

p [ x M 

]) 2 − ( ̄σ M 

p [ ̄x M 

]) 2 − λ(μM 

p [ x M 

] − μ̄M 

p [ ̄x M 

])

= | C| h (x M 

− x̄ M 

) 2 − λM θx 2 M 

(17) 

• If | C| h − λM θ < 0 then the difference is | C| h (1 − x̄ M 

) 2 − λM θ ≤
| C| h − λM θ

• If | C| h − λM θ > 0 , when x M 

= 0 is easy to see that x̄ M 

= 0 too.

Therefore the difference is zero. When x̄ M 

= 1 , then x M 

= 1

and therefore the difference is zero too. Finally when x M 

=
x̄ M 

( | C| h 
| C| h −λM θ

) then the difference equals − x̄ 2 
M 

θλM | C| h 
| C| h −λM θ

≤ 0 

If we differentiate the previous term with respect to ρ we get: 

2 ̄x M 

σ1 σ2 λ
M θ

(| C| h − λM θ ) 
{ 1 − x̄ M 

− x M 

} 
ence, when λM is small enough so that x M 

+ x̄ M 

≤ 1 , perfor-

ance difference decreases as we increase correlation, and rises

therwise. �

If we want to compare an efficient frontier of both settings,

e already know from (13) that for the same volatility and hence

ame allocation ( x 2 ), mean portfolio return is higher in the new

arket. In fact (13) becomes μM 

p = μ̄M 

p + θx 2 
2 
. Thus, the difference

s bigger when we increase the volatility target. 

To add some numerical example to the latter re-

ults, we construct the following setting: ( ̄r 1 , σ1 ) =
(5 percent , 15 percent ) , ( ̄r 2 , σ2 ) = (10 percent , 30 percent ) , θ =
 percent . Fig. 1 shows Proposition 1 results. Note that differences

etween both markets increases with higher risk tolerance and

ower correlation. 

Sensitivity analysis in θ is straightforward. As it increases, dif-

erence in results accentuates: allocation difference of asset two is

arger, as well as the risk-return compromise. Analogously, differ-

nces disappear as θ approaches zero. 

.3. Atomic player 

For atomic investors, allocation depends on powerful investors.

sset two’s allocation still increases in λ and x A ≥ x̄ A . To see the

ifference in performance with respect to the perfect market case,

q. (17) for an atomic player becomes 

 C| h (x A − x̄ A ) 
2 − λ1 θx A x M 

= | C | h 

(
λA θ

2 | C | h 

x M 

)2 

− λ1 θx A x M 

= 

x M 

λA θ

(| C| h ) 

{
λA θx M 

4 

− λA 

2 

( ̄r 2 − r̄ 1 + θx M 

) + C 12 − C 11 

}
= 

x M 

λA θ

(| C| h ) 

{
−λA 

2 

(
r̄ 2 − r̄ 1 + 

θ

2 

x M 

)
+ C 12 − C 11 

}
(18) 

o if x M 

= 0 , z A p is the same as in perfect market setting. If not,

hen an improvement exists only when 

λA 

2 > 

C 12 −C 11 

r̄ 2 −r̄ 1 + θ2 x M 
. The last

ondition always holds if C 12 − C 11 < 0 , that is when ρ < 

σ1 
σ2 

. 

If we want to compare an efficient frontier of both settings, we

lready know from (14) that for the same volatility, mean portfo-

io return is higher in the new market, as long as allocation of the
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Fig. 1. Risk-return compromise of powerful player in perfect market (PM) and oligopolistic market (OM). Figure at the top (bottom) is set with ρ = −. 8 ( ρ = . 8) . For both 

situations, λM 

2 
∈ [ max { 0 , C 12 −C 11 

r̄ 2 −r̄ 1 
} , C 22 −C 12 

r̄ 2 −r̄ 1 +2 θ
] . 
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atomic player is positive. In fact, for atomic allocation x 2 in asset

two, (14) turns into μA 
p = μ̄A 

p + θx 2 x M 

. Its difference is bigger when

we increase each player’s volatility target. Note that when ρ < 

σ1 
σ2 

,

allocation in assets two is always positive, so in this case the dif-

ference is positive. When not, this happens if λA 

2 > 

C 12 −C 11 
r̄ 2 −r̄ 1 

. 

Fig. 2 shows the ultimate results with the same numerical ex-

ample as in the powerful player example. For ρ = −. 8 we are cer-

tain the atomic player will improve z A p and the volatility–mean re-

lationship. With ρ = . 8 , we have better z A p when 

λA 

2 > 

C 12 −C 11 

r̄ 2 −r̄ 1 + θ2 x M 
=

. 24 and better volatility-mean relationship when 

λA 

2 > 

C 12 −C 11 
r̄ 2 −r̄ 1 

=
. 14 . If we increase x M 

this threshold also increases. That is, when

the powerful player tolerates more risk, the atomic player does

likewise to finish better off than in a perfect market case. 

3.4. Powerful player vs. atomic player 

Previously, we compared each player’s performance with re-

spect to the perfect market case. Now we compare the perfor-

mance of both players within the new market setting. To begin,

we work out the difference between z M 

p and z A p : 

z M 

p [ x M 

] − z A p [ x A ] = (σ M 

p [ x M 

]) 2 − (σ A 
p [ x A ]) 

2 

− (λM μM 

p [ x M 

] − λA μA 
p [ x A ]) 

= (x M 

− x A )(| C| h (x M 

+ x A ) − 2(C 11 − C 12 )) 

− ((λM − λM ) ̄r 1 + ( ̄r 2 − r̄ 1 )(λ
M x M 

− λA x A ) 

+ θ (λM x 2 M 

− λA x 2 A )) (19)

Fig. 3 shows the numerical example results for Eq. (19) for different

equilibriums. As expected, the atomic player can only get better z p 
than the powerful player when the latter is more risk averse and

the former increases risk tolerance. In that case the atomic player

can get a greater benefit with the increase in asset two’s return 
Apparently, no close exists for the relationship between λM 

nd λA that could determine the sign of Eq. (19) . However, in

ome cases we can determine when the atomic player may eventu-

lly perform better than the powerful player. Note, when x M 

= x A ,

19) equals −(λ2 − λ1 ) μp [ x A ] . So in these cases it suffices to have
1 > λ2 . Recalling from previous results: 

• In R 1 := { λM 

2 > min { | C| h 
2 θ

, 
C 22 −C 12 

r̄ 2 −r̄ 1 +2 θ
} , λA 

2 > 

C 22 −C 12 
r̄ 2 −r̄ 1 + θ } then x M 

=
x A = 1 

• If ρ > 

σ1 
σ2 

, R 2 := { λM 

2 < 

C 12 −C 11 
r̄ 2 −r̄ 1 

, λ
A 

2 < 

C 12 −C 11 
r̄ 2 −r̄ 1 

} then x M 

= x A = 0 . 

In other cases, we have x M 

= x A when x̄ M 

( | C| h 
| C| h −λM θ

) = x̄ A +
λA θ

2 | C| h x M 

. It is not hard to see that this equation turns into: 

 3 : θ ( ̄r 2 − r̄ 1 ) 
λA 

2 

λM 

2 

− [ | C| h ( ̄r 2 − r̄ 1 ) + θ (C 11 − C 12 )] 
λA 

2 

+ [ | C| h ( ̄r 2 − r̄ 1 ) + 2 θ (C 11 − C 12 )] 
λM 

2 

= 0 

So in region R A = R 1 ∪ R 2 ∪ R 3 ∪ { λA > λM } the atomic player

an certainly achieve a better risk-return compromise than

he powerful player. Analogously R M 

= R 1 ∪ R 2 ∪ R 3 ∪ { λA < λM } is

here the large investor receives a higher benefit. 

.5. No adaptation cost 

We would like to quantify the cost for an atomic player when

t is assumed that all players are atomic but in fact are not. Specif-

cally, we want to compare z A p when allocating as in the perfect

arket case, instead of allocating as Eq. (16) . The cost is the fol-

owing: 

 

A := z A p [ ̄x A ] − z A p [ x A ] 

= (σ A 
p [ ̄x A ]) 

2 − (σ A 
p [ x A ]) 

2 − λA (μA 
p ([ ̄x A ]) − μA 

p [ x A ]) 
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Fig. 2. Risk-return compromise of atomic player in a perfect market (PM) and an oligopolistic market (OM). Figure at the top (bottom) is set with ρ = −. 8 and ρ = . 8 . For 

both situations, x M = 0 . 5 and λA 

2 
∈ [0 , C 22 −C 12 

r̄ 2 −r̄ 1 + θx M 
] . 
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Table 1 

Mean and test results of daily returns, classified according to volume traded. Data 

daily taken from Google finance database from July 2006 until Oct 2015. V i stands 

for the i th percentile of shares traded in millions. σ Gi is the standard deviation of 

returns in group i (basis points). Pk Gi is the k th percentile of returns in group i 

(basis points). 

SPY EFA EMM TLT GSC BIL 

V 25 47 8 30 2 0.1 0.08 

V 75 161 20 69 7 0.3 0.5 

σ G 1 136 127 165 70 110 5 

σ G 2 183 262 309 118 199 4 

P 5 G 1 −200 −209 −231 −123 −164 −6.5 

P 5 G 2 −300 −417 −451 −197 −341 −4 

P 95 G 1 181 216 241 116 191 6.5 

P 95 G 2 288 385 523 168 303 2 

w  

d

 

W  

p  

p  

a

 

e  

o  

e  

t  

t

 

f  

G

i  

b  

f

= ( ̄x A − x A )(| C| h (x A − x̄ A ) − λA θx M 

) 

= 

λA θx M 

2 | C| h 

(
λA θx M 

2 

− λA θx M 

)
= 

(λA θx M 

) 2 

4 | C| h 

This represents the cost for an atomic player to allocate with

perfect market information each time a powerful investor decides

to invest and affect asset two’s return. Note, the cost is an even

function in terms of x M 

. This means that the cost remains the same

no matter if powerful investment is buying or selling asset two. 

As expected, the cost increases when more risk is taken by ei-

ther player and also when elasticity is higher. To know whether

less correlation decreases the cost, it is easy to see that 

∂c A 

∂ρ
= 

(λA θ ) 2 x M 

σ1 σ2 

2 | C | h (C h − λM θ ) 2 
[ −1 + x̄ A + 2 x A ] 

The previous term is certainly positive with x̄ A ≥ 1 
3 , that is less

correlation decreases cost. Fig. 4 shows this cost for the numeric

example and also shows how the cost increases with higher corre-

lation and allocation of the powerful investor in asset two. 

4. Application with OTC data 

In this section, we first present empirical evidence of how the

amount traded is correlated with price variations (returns). Then

we show a way to estimate the effect a powerful player has on

assets. 

We select historical data from six known ETF, each from a dif-

ferent asset class. For each asset, we classify data in two groups,

according to the volume traded V on that day. If V is below the

first quartile, data goes into the first group ( G 1) and if it is above

the third quartile into the second ( G 2). Table 1 and Fig. 5 shows

the clear difference between the return’s distribution of the two

groups. Except for money market ETF (BIL), its clear that returns

from group two have thicker tails and higher volatility. BIL is also

affected, but in the other direction. Therefore, variations in days
ith more transactions are different (higher except for BIL) than

ays with less transactions. 

With this data, we can estimate the mean return from Eq. (3) .

e can argue that on days belonging to group two, allocations of

layers are moving prices beyond the prices without their partici-

ation. For the two players case, we can aggregate these allocations

nd think it as an allocation of a single powerful player. 

If we assume that investors are price takers, it is common to

stimate the mean return of an asset with the sample mean r̄ . In

ur model, we have to classify returns on whether powerful play-

rs allocate or not. If we assume that returns belonging to G 2 are

he returns when this happens, then we can estimate the effect of

hese investors on asset’s returns. 

First we classify returns of G 2 in two groups: G 2 + is the group

or positive and G 2 − with negative price variations. We also denote

 2 C as the returns not belonging to G 2. Then, the term θ
′ 
j 

∑ m 

i =1 w 

i x i 
j 

n Eq. (3) can be estimated with r̄ + 
G 2 

– r̄ C 
G 2 

when powerful investors

uy and with r̄ −
G 2 

– r̄ C 
G 2 

when they sell. Table 2 shows the estimation

or all ETF. 
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Fig. 5. Cumulative distribution function for daily returns classified in group 1 (less volume traded) and group 2. The ETFs not shown in the figure have the same patterns 

as SPY, EEM and EFA. 

Table 2 

Powerful players’ influence in ETF daily returns (basis points). For BIL, the difference 

sign is changed, since price variation is inversely related with traded volume. 

SPY EFA EMM TLT GSC BIL 

r̄ C G 2 5.4 5.1 1.8 4.5 0.9 0.1 

r̄ + 
G 2 

130 179.3 242.1 91.9 142 3.4 

r̄ −
G 2 

−133.2 188 −210.7 −102.1 −155.1 −3.6 

r̄ + 
G 2 

– r̄ C G 2 124.6 174.2 240.3 87.4 141.1 −3.4 

r̄ −
G 2 

– r̄ C G 2 −138.6 −193 −212.6 −106.6 −156 3.6 
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Table 3 

Annualized mean returns, volatility and correlation with BIL. When large investors 

buy, μ = ̄r C G 2 + p( G 2 + )( ̄r + 
G 2 

− r̄ C G 2 ) . Analogously when large investors sell μ = ̄r C G 2 + 

p( G 2 −)( ̄r −
G 2 

− r̄ C G 2 ) . With x M = 1 , θ is estimated by μ − r̄ C G 2 . Returns are not in basis 

points and the model is not applied to BIL. 

SPY EFA EEM TLT GSC BIL 

ρ −.16 −.16 −.16 .07 −.08 1 

σ (percent) 22 27 35 16 25 0.8 

r̄ (= ̄r C G 2 ) (percent) 13 13 5 11 2 .1 

p( G 2 + ) (percent) 11.9 11.6 11.5 12.6 11.7 –

μ (percent) 51 63 74 39 43 .1 

θ (x M = 1) (percent) 38 50 69 28 41 0 

p( G 2 −) (percent) 13 13.2 13.3 12.3 13.1 –

μ (percent) −31 −51 −66 −21 −49 .1 

θ (x M = 1) (percent) −44 −64 −71 −33 −51 0 

t  

f

 

a  

W  

t  

fi  

m  

b  

t  

s  

r

 

p  

l  

w  

m

For the two player-two asset example, the difference is equal to

x M 

. To illustrate how this affects atomic player decisions, Fig. 6

hows the analogous result shown in Fig. 2 for an atomic player

ith respect to the perfect market case. But now we use the BIL-

PY and BIL-TLT pairs. To compute the annualized mean return μ
f Eq. (3) from daily estimations, we simply annualized the value

f r̄ C 
G 2 

+ r̄ + 
G 2 

− r̄ C 
G 2 

(multiply by 250). However, the last term has

o be multiply by the probability that powerful investors decide to

uy. That last probability can be estimated by counting the amount

f data belonging to r̄ + 
G 2 

from all the data. Analogously, we can es-

imate μ when large investors decide to sell. Table 3 shows the

atter estimations and the rest of input needed to construct the

TF pairs example. 

. Conclusions and further work 

We have successfully addressed strategic behavior of large and

tomic players in the context of portfolio management. Our model

ermits to find the optimal portfolio for each investor, some of

hem capable of moving asset prices when trading. In this frame-

ork, we also explained that the efficient frontier is different for

ach player and depends on size and degree of risk tolerance of
he remaining investors. We show how to compare this efficient

rontier with the perfect market frontier. 

The two investor-two asset example allows to quantify and an-

lyze how both investors are affected in this new market setting.

e compare results with respect to standard settings and also be-

ween both players. As expected, the large investor always bene-

ts (at least achieves equal results) in terms of risk-return perfor-

ance. Atomic player can also benefit if it emulates the strategic

ehavior of the large investor. This expected pattern of results ob-

ained in risk-return performance helps to validate the model con-

tructed. The example also allows to do sensitivity analysis with

espect to risk tolerance and price elasticity of volume traded. 

We have empirically shown how price variations changed de-

ending on volume traded, which also validates the claim that

arge investors can eventually affect the price of an asset. Finally,

e have implemented the model with real market data, by esti-

ating the influence of large investors on prices. 
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Fig. 6. Risk-return compromise of an atomic player in perfect market (PM) and oligopolistic market (OM) for two pairs: BIL-SPY and BIL-TLT. θ used is the one shown in 

Table 3 when large investors go long in asset two. Other pairs, such as BIL-EFA, BIL-EMM and BIL-GSC are omitted because they follow the same pattern as shown pairs. 
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In this paper we have combined mean-variance portfolio op-

timization and game theory to determine investors’ allocation in

oligopolistic markets, opening an interesting new line of research.

One natural extension of this work is to add studied changes made

to Markowitz model into our model. Another interesting extension

is to analyze investors’ behavior when the game is played in time.

The model can be also used to measure the impact of collusion

between large investors or to understand herd behavior of atomic

players. 
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