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Abstract

Major engineering projects characterized by intensive technologies and high investment are becoming more complex with increasing risks in a
global market. Because incorrect investment decision-making can cause great losses to investors, quantitative risk assessment is widely used in
establishing the financial feasibility of projects. However, existing methods focus on the impact of uncertain parameters, such as income, on
decision variables of investment, neglecting assessing the impact of risk events, such as the sales of products falling short of expectations. In the
context of international engineering projects from a risk driver perspective, this paper presents an improved quantitative risk assessment model to
help risk managers identify the direct relationships between specific risk events and decision variables of investment. Stress testing is also
introduced to assess the negative impact of extreme risks. The new model is applied to an on-going international petrochemical project to
demonstrate its use and validate its applicability and effectiveness.
© 2016 Elsevier Ltd, APM and IPMA. All rights reserved.
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1. Introduction

The global operation of engineering companies has resulted
in increasing foreign trade and investment. Due to the changing
external environment and the complexity and high level of
investment needed for projects, investment risks are becoming
greater and more worrying for investors as wrong investment
decisions, characterized by irreversibility and uncertainty, often
exert a long-term impact, such as considerable financial losses
and reputational damage (Kim et al., 2012; Alkaraan, 2015;
Hallegatte et al., 2012). Consequently, it is considered vitally
important to conduct a detailed risk assessment when making
such investment decisions (Virlics, 2013).
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Risk assessment is a systematic, evidence-based approach
for assessing uncertain or risky future events. Here, uncertainty
refers to a state where an exact numerical value cannot be given
for an activity as some variation in values may occur due to
unpredictable circumstances, while a risk event is defined as the
probability that an event will occur and considers the impact on
corresponding objectives when the event occurs (Samson et al.,
2009). A widely used method for risk assessment of investment
decisions for international engineering projects is Monte Carlo
simulation. Practically, it is very common for individuals to
evaluate the impact of uncertain parameters (such as costs,
price of raw materials, sales price, construction period and
productivity) on decision variables (Hacura et al., 2001; Ye and
Tiong, 2000; Rezaie et al., 2007; Suslick et al., 2008). This
commonly involves calculating the variation in net present
value (NPV) and internal rate of return (IRR) under the
condition that uncertain parameters vary within a specific range
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and then to obtain the probability distributions of NPV and
IRR.

The values of the uncertain parameters involved vary with
the occurrence of risk events. That is, it is the risk events rather
than the uncertain parameters that are the root causes of the
variation in the decision variables of investment. However, the
traditional quantitative risk assessment model does not take into
account the influence of risk events on decision variables and
so no targeted measures are developed to prevent losses that
might subsequently be incurred.

To overcome this defect, this paper presents an improved
model to assess investment risks quantitatively for international
engineering projects from a risk driver perspective. Stress
testing is introduced to assess the negative impact of extreme
risk events. The input and output information and specific
processes of the model are firstly elaborated, followed by a case
study to demonstrate its use and validate its applicability and
effectiveness. Final remarks concern the potential of the model
to provide more practical decision-making support for invest-
ment in international engineering projects as a means of
reducing the prospects of investment failure.

2. The traditional quantitative risk assessment model

Risk assessment can be divided into qualitative and
quantitative methods, with the traditional academic focus
being on the latter (Tah and Carr, 2001). Quantitative risk
assessment is inherently related to risk modelling (Taroun,
2013). Risk modelling has developed along with the shift of
risk perception from an estimation variance initially (Edwards
and Bowen, 1998; Taroun, 2013) to a project attribute later
(Dikmen et al., 2007; Merna and Al-Thani, 2008). As a result,
risk is mainly evaluated on two dimensions: the probability of
occurrence and impact. Correspondingly, risk assessment tools
have evolved from statistical methods based on probability
theory (e.g., Edwards and Bowen, 1998) to analytical tools
(e.g., Lazzerini and Mkrtchyan, 2011; Nieto-Morote and
Ruz-Vila, 2011), such as the Analytical Hierarchy Process
(AHP) and decision trees, and stochastic simulation (e.g.,
Choudhry et al., 2014)—used to simulate independent
variables based on a set of random values to obtain probability
distributions of the forecast variables, such as Monte Carlo
simulation.

The most common quantitative risk assessment tools for
investment decision-making are decision trees and Monte
Carlo simulation. A decision tree model predicts target
variables through a set of prediction rules that are arranged in
a tree-like structure (Syachrani et al., 2012). It is used to
represent different decision alternatives and their consequences.
However, the analysis of decision trees is based on a
single-value point estimate as an average outcome for the
long run, which limits their real-life applications to a narrow
scope of decision problems (Moussa et al., 2006). Monte Carlo
simulation, on the other hand, is suitable for use with objects
with probabilistic characteristics and is able to generate
additional data (Shen et al., 2011) to produce probability
distributions of possible outcome values and also indicate
which inputs affect the outcome the most, which makes it the
most common and applicable tool for quantifying investment
risks in major engineering projects.

Investors need to make decisions based on the likely values of
the financial results of investment, using metrics such as NPV
and IRR (Li and Sinha, 2009; Warszawski and Sacks, 2004;
Hartman and Schafrick, 2004), and the use Monte Carlo
simulation enables risk managers to determine their probability
distributions by specifying influencing factors or independent
variables (IVs), such as capital expenditure, operation costs,
maintenance costs, productivity, product prices, prices of raw
materials and inflation indices (Ye and Tiong, 2000; Davidson et
al., 2006; Girmscheid, 2009; Hawas and Cifuentes, 2014), as
probability distributions and calculating the results repeatedly,
each time using a different set of random values from the
probability functions. To do this necessitates risk managers
defining the form of the IV probability distributions and their
associated parameters. However, these parameters are them-
selves uncertain. Product price, price of raw materials and the
inflation index, for example, are affected by risk events, such as
the breakout of the global financial crisis.

In traditional quantitative risk assessment practice, the values of
these uncertain IV parameters are estimated based on predictions
and assumptions about the future. Investors cannot lower the
possible losses incurred from the variation of uncertain parameters
by making an increased effort. Nevertheless, investors still can
lower or eliminate risk by further efforts. Most engineering project
risk events, such as delays in the supply of raw materials, are
knowledge-related and partly due to an inability to understand the
project and its surrounding environment (Flage et al., 2013). Such
risk events can be managed by risk reduction countermeasures as
distinct from pure parameter estimation to bring about improved
forecasts of NPV and IRR.

Stewart and Deng (2014) argue that risk managers generally
pay insufficient attention to the probability of occurrence of risk
events when conducting risk analysis. To overcome this, both
the probability of occurrence and impact of risk events need to
be defined as IVs. In addition, as extreme events occur that are
characterized by low-probability and high-impact, the corre-
sponding financial results are prone to deteriorate significantly.
Investors therefore need to reserve enough risk provision or
make corresponding risk countermeasures in advance or else,
when extreme events do occur, they may suffer huge losses and
even investment failure. To do this involves calculating the
incurred loss when a risk has low-probability but
high-impact—termed here as “stress testing”—to determine
the negative impact of extreme risks on NPV and IRR.

In short, the traditional quantitative risk assessment model
has two important drawbacks in failing to (1) define risk events
that are the root causes of losses as IVs of decision variables of
investment and (2) assess the negative impact of extreme risk
events. An advanced quantitative risk assessment model is
therefore presented to overcome these drawbacks by building
up the direct relationships between risk events and decision
variables of investment from a risk driver perspective and
providing stress testing on the likely variation of the decision
variables of investment.



Table 1
Risk driver matrix.

Risk events Probability Impact range

1 0 MIN ML MAX

Risk event 1
Risk event 2
Risk event 3
······
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3. Advanced quantitative risk assessment model

The processes of the new model are shown in Fig. 1. First,
risk managers identify risk events and filter high- and
medium-level risk events through a risk probability–impact
matrix with reference to expert opinions. They then quantita-
tively assess the influence of the filtered risk events on the
decision variables of investment (NPV and IRR in this case).
The remainder of this section deals with the input needs and
output possibilities of the model. These inputs are necessary for
performing a risk analysis with a computer program. The
outputs are chosen in support of investment decision-making
and can be obtained from the program on completion of the
analysis.
3.1. Inputs

3.1.1. Risk driver matrix
Given that risk events are root causes of losses, it is

necessary to understand the influence of risk events on the
decision variables of investment, namely to establish a risk
driver matrix. The risk driver matrix shown in Table 1 lays the
foundation for subsequent sensitivity analysis and Monte Carlo
simulation in providing the probabilities and impact range of
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on the decision variables of investment. These three-point
estimates are based on the impact value when the correspond-
ing specific risk event does not occur. The probabilities and
range of impact of the filtered risk events are all determined by
experts' subjective opinions due to lack of historical and
operational data (Goossens and Cooke, 1997).
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filtered risk events and uncertain parameters (collectively
referred to here as ‘input variables’). Pritsker (1995) defines a
p.d.f. as any rule that assigns a probability to all possible values
of a random variable. In practice, risk managers should define
the p.d.f.s of both the probabilities of occurrence of risk events
and their impact on the decision variables of investment.
However, considering the uncertain parameters fluctuate
continuously due to the changing external environment, risk
managers only need to determine the p.d.f.s of the parameters
themselves.

Risk managers need to select the p.d.f.s of the input
variables carefully, as the quality of the simulation results is
strictly related to their accuracy. As an aid to doing this, Maio et
al. (2000) has identified three approaches, namely trace-driven
simulation, empirical distribution and a theoretical distribution
function. Trace-driven simulation allows the use of real data in
the simulation model, but has drawbacks in reproducing solely
what has happened and in being time-consuming due to the
need for large amounts of data (Law and Kelton, 1991). An
empirical distribution function is obtained by grouping the data
into a frequency histogram for use directly by the simulation
model. This dampens extreme values however. In contrast, a
theoretical distribution function using heuristic procedures or
goodness-of-fit techniques will take extreme values into
account, and represents the most compact and timesaving
procedure in performing simulations (Maio et al., 2000).
Consequently, most risk managers use this last method in
defining the p.d.f.s involved.

In investment decision-making for international engineering
projects, the theoretical p.d.f.s of the input variables most
commonly used in the quantitative risk assessment model are
the (1) uniform distribution, (2) triangular distribution, (3)
normal distribution, (4) logarithmic normal distribution and (5)
Bernoulli distribution. The p.d.f.s of the first four of these are

F xð Þ ¼ 1

b−a
; a≤x≤b ð1Þ

F xð Þ ¼
2 x−að Þ
b−að Þ c−að Þ ; a≤x≤c

2 b−xð Þ
b−að Þ b−cð Þ ; cbx≤b

8>><
>>: ð2Þ

F xð Þ ¼ 1

σ
ffiffiffiffiffiffi
2π

p exp −
x−μð Þ2
2σ2

 !
ð3Þ

F xð Þ ¼ 1

xσ
ffiffiffiffiffiffi
2π

p exp −
ln xð Þ−μ½ �2
2σ2

 !
ð4Þ

where a, b and c in Eqs. (1) and (2) denote the minimum,
maximum and most likely values of a random variable, and
μ,σ2 in Eqs. (3) and (4) the mean and variance. In general, risk
managers mostly use three-point estimates, i.e., estimates of the
minimum, most likely and maximum values, to determine the
corresponding parameters of every p.d.f. In practice, risk
analysts do not usually have access to sufficient objective
information to determine the p.d.f.s of the input variables and
therefore have to resort to information provided by experts, the
imprecision of which is subject to the theory of possibility
(Flage et al., 2013). Therefore, interviews with four experi-
enced industrial experts were conducted to determine the p.d.f.s
of the input variables. Three of these are from construction
firms ranked in the Engineering News-Record (ENR) Top 250
International Contractors List in 2015 and have over 5 years
working experience of quantitative risk assessment, while the
other expert is from a risk management consulting firm. The
probability of occurrence of risk events and their impact on the
investment variables are empirically defined as Bernoulli and
triangular p.d.f.s. The price of raw materials and products is
usually defined as either normal or lognormal p.d.f.s depending
on their coefficient of variation (cv), with cv b 30% for the
former and cv N 30% for the latter.

3.1.3. Determination of correlation coefficients
It is widely recognized that the correlation between

uncertain parameters must be taken into consideration for
engineering projects (e.g., Wang, 2002; Yang, 2006). The
Pearson product–moment correlation coefficient measures the
linear relationship between two continuous variables and is
therefore generally unsuited to non-linearly correlated variables
(Hauke and Kossowski, 2011). The Spearman's rank correla-
tion, although less powerful, can deal with the correlation of
variables that satisfy the monotonic relation without a strict
requirement of linear correlation (Hauke and Kossowski, 2011;
MacFarland and Yates, 2016). In the practice of quantitative
risk assessment of investment decisions for international
projects, if a coefficient is higher than 0.3, the coefficient is
taken to be significant and supposed to be taken into account;
while if a coefficient is higher than 0.6, the correlation needs to
be considered.

3.1.4. Determination of the sampling method
In Monte Carlo simulation, generally, there are two

sampling methods, namely Monte Carlo sampling and Latin
Hypercube sampling. Monte Carlo sampling is used to generate
valid numbers randomly based on pre-determined p.d.f.s. These
numbers are completely independent, which means numbers in
the sample will not have an effect on those of another sample.
Adopting the method requires more samples to increase the
statistical accuracy. In contrast, Latin Hypercube sampling
generates random numbers from equally probable intervals.
Sampling this way is more accurate than Monte Carlo sampling
as it can provide a more complete picture of the p.d.f.s. In
general, Monte Carlo sampling is better when attention has
been paid to simulation of the practical application, while Latin
Hypercube sampling is preferred when focusing on the
statistical accuracy of the simulation.

Moreover, sampling will be setup to terminate only when
the mean and variance of the forecast variables become stable,
which can be achieved by use of risk analysis software.



208 J. Liu et al. / International Journal of Project Management 35 (2017) 204–211
3.2. Outputs

3.2.1. Sensitivity analysis
Sensitivity analysis is used to understand how the forecast

variables can be qualitatively or quantitatively apportioned to
different input variables (Saltelli, 2004). This has also been
used in the past for model identification (Tang et al., 2007) and
complexity reduction (Van Werkhoven et al., 2009). In
practice, sensitivity analysis is used to estimate the likely
variation in forecast variables when the input variables deviate
from their expectations. Sensitivity analysis can be performed
from a mathematical model defined by a series of equations and
input variables. This can be conducted in quantitative risk
assessment by risk assessment software after Monte Carlo
simulation.

Considering the investment decision variables are calculated
under uncertainty, a global (rather than local) sensitivity
analysis method is chosen. The latter is carried out when one
is interested in performing the analysis around a point of
interest in the model input space (Borgonovo and Plischke,
2016). After sensitivity analysis, a rank of sensitivity can be
obtained according to the impact of the input variables on the
investment decision variables to determine the critical factors
involved to develop specific control measures in response.
3.2.2. Cumulative distribution functions of decision variables
After establishing the functional relationship between the

input variables and decision variables of investment, risk
analysis tools such as @RISK can be used to obtain the c.d.f.s
of the decision variables. These reflect not only all possible
values but also their corresponding probabilities and enable a
comparison to be made with pre-determined decision criteria to
improve the accuracy of decisions.
Table 2
Cash flow of the project.

Year Cash flow
before payment
of taxes

Cash flow
after payment
of taxes

Year Cash flow
before payment
of taxes

Cash flow
after payment
of taxes

1 −313,436 −313,436 16 1,674,610 1,369,049
2 −522,393 −522,393 17 1,765,039 1,442,978
3 −783,589 −783,589 18 1,860,251 1,520,899
4 −992,546 −992,546 19 1,960,810 1,603,028
5 283,668 141,462 20 2,429,290 1,821,967
6 900,665 720,076 21 2,560,471 1,773,246
7 1,009,249 818,908 22 2,698,737 2,024,053
8 1,099,484 898,865 23 2,844,469 2,133,351
9 1,158,856 947,403 24 2,998,070 2,248,552
10 1,221,434 998,563 25 3,159,966 2,369,974
11 1,287,392 1,052,485 26 3,330,604 2,497,953
12 1,356,911 1,109,320 27 3,510,456 2,632,842
13 1,430,184 1,169,223 28 3,700,021 2,775,016
14 1,507,414 1,232,361 29 3,899,822 2,924,867
15 1,588,814 1,298,908 30 6,150,054 5,122,450
3.2.3. Stress testing
Stress testing is used to calculate the possible loss involved

when low-probability/high-impact risks occur. This is helpful
in understanding the current risk exposure of a project. The
method has been introduced into many fields, for example,
financial risk management and software engineering (e.g.,
Dempster, 2002; Marciniak and Shumskas, 1994). However, it
has had no application in risk assessment for investment
decision-making of engineering projects. Once extreme risk
events occur, investors can suffer huge losses, hence, it is
necessary to undertake stress testing on low-probability but
high-impact risk events.

In a Monte Carlo simulation, the scenarios generated on
screen do not obviously reflect these low-probability scenarios
and the p.d.f.s of input variables with a high impact on the
decision variables need to be modified accordingly. This is
especially the case for continuous distributions and discrete
distributions without a well-defined maximum or minimum. To
carry out stress testing, the selected range of probabilities is
from at least P80 to P100. This can enable investors to better
understand their risk exposure, make investment decisions and
devise targeted risk reduction countermeasures in advance.
4. Case study

4.1. Background

The project chosen for demonstrating the model is an actual
oil refinery project in Brazil. The main raw materials of the oil
refinery are crude oil, natural gas and methanol. Its products
mainly comprise liquefied petroleum gas, naphtha, benzene,
M8A, propylene, clean gasoline, jet fuel, diesel oil, low sulphur
fuel oil, other fuel oil, petroleum coke, sulphur and liquid
ammonia. The cash flow of the project is present in Table 2. In
view of the project's complexity and its changing environment,
a risk assessment model was needed for the detailed risk
analysis to establish financial feasibility.

In consideration of risk level of projects in South America
and experience and judgement of experts, the investor
determined the decision criteria to be Prob(NPVN0)≥0.60 or
Prob(IRRN13%)≥0.60 based on both its risk tolerance and
international strategy.

4.2. Inputs

The risk managers first identified the major risk events
involved by consulting historical data and analysing character-
istics of the project, and then assessed risk events by a
probability–impact matrix. Based on the assessment results,
they then filtered out the high- and medium-level risk events.
After determining probabilities of occurrence of the risk events
and their impact range on NPV and IRR, a risk driver matrix
was constructed (Table 3).

Taking R14, labour risk, as an example, its probability of
occurrence and non-occurrence is 0.70 and 0.30, respectively.
The minimum, most likely and maximum impact values of 0.7,
1.1 and 1.3, respectively, of R14 are determined based on the
condition that R14 does not occur. The variables affected by R14



Table 3
Risk driver matrix of the project.

Code Risk events Probability Impact Range

1 0 MIN ML MAX

R1 Supply risk of raw materials 0.75 0.25 0.8 1 1.3
R2 Sales risk 0.75 0.25 0.7 1 1.3
R3 Political changes 0.60 0.40 0.6 1.2 1.4
R4 Economic changes in host country of the project 0.70 0.30 0.9 1 1.2
R5 Price fluctuation of international oil and natural gas 0.50 0.50 0.9 1 1.2
R6 Fluctuation in exchange and interest rates 0.60 0.40 0.9 1 1.2
R7 Technological limitations 0.30 0.70 0.7 1 1.3
R8 Force majeure or disasters not covered in the contract 0.25 0.75 0.9 1 1.1
R9 Disputes arising from the process of signing and performing the contract 0.60 0.40 0.9 1 1.1
R10 Regulatory changes in the host country of the project and contract modifications 0.50 0.50 0.9 1 1.1
R11 Tax policy changes 0.60 0.40 0.9 1 1.2
R12 Cost overrun 0.60 0.40 0.8 1 1.2
R13 Schedule delay 0.60 0.40 0.8 1 1.2
R14 Labour risk 0.70 0.30 0.7 1.1 1.3

Table 4
Sensitivity: NPV after payment of taxes.

No. Input variables Correlation
value

Contribution to variance
(%)

1 R2-impact 0.56 41.2
2 Crude oil price −0.45 25.8
3 R1-impact −0.35 16.1
4 Country V automobile diesel

fuel
0.28 9.9

5 R5-impact −0.13 2.2
6 93# clean gasoline 0.10 1.3
7 R5-prob. −0.08 0.8
8 97# clean gasoline 0.07 0.7
9 R1-prob. −0.07 0.6
10 Jet fuel 0.04 0.2
11 M8a 0.04 0.2
12 R9-prob. 0.03 0.1
13 Production load 0.02 0.1
14 R13-impact −0.02 0.1
15 R12-impact −0.02 0.1
16 Low sulphur fuel oil 0.02 0.1
17 Capital expenditure −0.02 0.1
18 R6-impact −0.02 0.1
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include capital expenditure, interest incurred during construc-
tion, cash flow, NPV and IRR. Since the uncertain parameters
are influenced by various risk events, their total impact values
are a product of the impact values of related risk events. For
example, capital expenditure is affected by R3, R8, R12, R13 and
R14. Consequently, the minimum, most likely and maximum
impact values of capital expenditure are 0.24 =
(0.6 × 0.9 × 0.8 × 0.8 × 0.7), 1.32 = (1.2 × 1 × 1 × 1 × 1.1)
and 2.88 = (1.4 × 1.1 × 1.2 × 1.2 × 1.3), respectively.

The next step was to define the p.d.f.s of the input variables.
In this case, the probabilities of risk events occurring were
defined as Bernoulli distributions, with the impact of the 14 risk
events all defined as triangular distributions. In addition to
defining capital expenditure as a BetaPERT distribution and
defining both productivity and the inflation index as triangular
distributions, the risk managers proposed to define the prices of
natural gas, methanol and products as normal distributions and
crude oil price as a lognormal distribution.

Before undertaking the simulation, the risk managers needed
to determine the correlations between the uncertain parameters,
especially those between the various prices of raw materials and
products. For uncertain parameters with the same p.d.f., the
correlation coefficients were obtained by direct calculation
from the original data, while the correlation coefficients for the
uncertain parameters with different p.d.f.s were determined
with reference to expert opinions. For example, the correlation
coefficient between prices of crude oil and naphtha was defined
as 0.75.

Monte Carlo sampling was then adopted to obtain the c.d.f.s
of NPV and IRR. In order to achieve mean and variance
stability, the maximum number of iterations was set at 10,000.

4.3. Outputs

4.3.1. Sensitivity analysis
The sensitivity analysis results were obtained by use of

relative functions of @RISK. As Table 4 shows, this indicated
R2-Impact, the price of country V's automobile diesel fuel, 93#
and 97# clean gasoline, jet fuel, M8A and low sulphur fuel oil,
R9-Probability and productivity to have positive relationships
with NPV. The table also shows the negative coefficients
between NPV and some input variables, including crude oil
price, the impact of R1, R5, R6, R7, R12 and R13, and the
probabilities of R5 and R1, capital expenditure. Based on these
results, the risk managers developed risk reduction response
measures for specific high sensitivity risk events. For example,
the investor was able to adopt a strategy of signing sales
contracts in advance to reduce the sales risk to NPV.

4.3.2. c.d.f.s of NPV/IRR
The c.d.f.s of NPV and IRR in the case study are shown in

Figs. 2 and 3. As Fig. 2 shows, the probabilities of NPV greater



Fig. 2. Cumulative distribution functions of NPV.
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than zero before and after payment of taxes are 54.1% and
51.4%, respectively, while, according to Fig. 3, the probabil-
ities of IRR being greater than 13% before and after payment of
taxes are 88.1% and 82.8%, respectively. Based on the
pre-determined decision criteria of Prob(NPVN0)≥60%
or Prob(IRRN13%)≥60%, therefore, the investors were able
to confirm the feasibility of the project.
4.3.3. Stress testing
The three input variables with the most sensitivity were the

impact of sales risk, crude oil price and the impact of supply
risk of raw materials. Taking the impact of supply risk of raw
material as an example, the risk managers changed the p.d.f.
from P95 to P100. The result is shown in Table 5, which
indicates that, if the extreme case of the raw material supply
risk occurred, NPV would be significantly reduced by
approximately $4.5 million, from a mean of $318,714 to −
$4,183,494.

By comparatively analysing the standard deviation and
coefficient of variation, it was concluded that NPV after stress
testing was more concentrated than that before stress testing.
Based on this analysis, the investor was able to both make the
investment decision and take specific risk reduction measures
in advance, including signing raw material supply contracts at
an early stage.
Fig. 3. Cumulative distribution functions of IRR.
4.4. Results

The results obtained by the use of the new advanced
quantitative risk assessment model confirmed the financial
feasibility of this project to the satisfaction of the
investor—validating the applicability and effectiveness of the
model.

5. Conclusions

The new advanced quantitative risk assessment model has
shown its effectiveness in this Brazilian case. With the help of
the model, investors and risk managers now can

1. Assess the influence of both probabilities of occurrence and
the impact of specific risk events on decision variables of
investment;

2. Quantify the possible loss incurred to the investment
outcome in conditions where extreme adverse events can
occur;

3. Provide more practical data support for investment decisions
concerning international engineering projects.

From a risk driver perspective, the model supports the whole
quantitative risk assessment process for engineering project
investment decisions. With the use of the risk driver matrix,
direct relationships are detected between risk events and the
decision variables of investment. The probability of the
occurrence of risk events is also taken into consideration. In
addition, the introduction of stress testing helps to quantify the
possible losses of investment results in the presence of
low-probability but high-impact risk events.

Although the study produces some improvement compared
with the traditional quantitative risk assessment model, it still
suffers from some limitations. In practice, due to the lack of
sufficient hard data for the input variables, individuals have to
resort to expert judgements to determine the inputs, which
causes some imprecision in the outputs. Furthermore, more
trials are needed to further evaluate the applicability and
validity of the new advanced quantitative risk assessment
model.

Additional studies could also help extend the approach by,
firstly, determining the p.d.f.s of the input variables more
rationally and precisely. Secondly, by dividing the influencing
factors of the decision variables of investment into: (1) external
risk resulting from a changing macroeconomic environment and
(2) risk resulting from the risk managers' limited cognitive ability
and experience of the project. Distinguishing the different impacts
of these two types of factors should contribute to further helping
risk managers to adopt different strategies to reduce the current
risks and uncertainties involved in their financial feasibility
appraisals of major engineering projects in future.
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Table 5
Simulation results: NPV after payment of taxes.

No. Statistic Before stress testing After stress testing

1 Mean 318,714 −4,183,494
2 Median 499,418 −4,132,313
3 Standard Deviation 7,866,191 6,331,127
4 Skewness −0.0887 −0.0721
5 Kurtosis 3.24 3.22
6 Coefficient of variation 24.68 −1.51
7 Minimum −28,998,274 −30,099,513
8 Maximum 30,671,603 17,977,339
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