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Highlights 

 A novel competitive strategy to perform atrial region segmentation is presented; 

 The proposed method was embedded on the B-spline Explicit Active Surface framework; 

 The method’s accuracy was shown in three databases of two different modalities; 

 No merging between contours was found, allowing correct evaluation of thin mid walls; 

 The method’s added value was highlighted for missing walls and noisy structures. 
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Abstract 

Multiple strategies have previously been described for atrial region (i.e. atrial bodies and 

aortic tract) segmentation. Although these techniques have proven their accuracy, 

inadequate results in the mid atrial walls are common, restricting their application for 

specific cardiac interventions. In this work, we introduce a novel competitive strategy to 

perform atrial region segmentation with correct delineation of the thin mid walls, and 

integrated it into the B-spline Explicit Active Surfaces framework. A double-stage 

segmentation process is used, which starts with a fast contour growing followed by a 

refinement stage with local descriptors. Independent functions are used to define each 

region, being afterward combined to compete for the optimal boundary. The competition 

locally constrains the surface evolution, prevents overlaps and allows refinement to the 

walls. Three different scenarios were used to demonstrate the advantages of the proposed 

approach, through the evaluation of its segmentation accuracy, and its performance for 

heterogeneous mid walls. Both computed tomography and magnetic resonance imaging 

datasets were used, presenting results similar to the state-of-the-art methods for both atria 

and aorta. The competitive strategy showed its superior performance with statistically 

significant differences against the traditional free-evolution approach in cases with bad 

image quality or missed atrial/aortic walls. Moreover, only the competitive approach was 

able to accurately segment the atrial/aortic wall. Overall, the proposed strategy showed to 

be suitable for atrial region segmentation with a correct segmentation of the mid thin walls, 

demonstrating its added value with respect to the traditional techniques.   

Keywords: Image segmentation; Competitive contours; Atrial and aortic tract 

segmentation; B-spline Explicit Active Surfaces; 
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1. Introduction 

Anatomical assessment of the atrial region (i.e. atrial bodies and aortic tract - Ao) 

through medical imaging has gained particular interest during the last decade. Several 

authors extracted/isolated multiple contours of the atrial anatomies using different 

segmentation strategies (Tobon-Gomez et al., 2015), proving the clinical relevance of a 

correct anatomical and functional assessment of each atrial region for global cardiac 

function quantification and even for risk stratification (Hoit, 2014; Melenovsky et al., 

2014). Moreover, enhanced minimally invasive cardiac interventions were proposed, using 

electroanatomic mapping techniques (Rolf et al., 2014) or even superimposing pre-

operative anatomical atrial surfaces (Bourier et al., 2016), extracted from highly detailed 

datasets, into intra-operative imaging (e.g. fluoroscopy). In fact, the fusion of pre- and 

intra-operative data is an emergent research topic, where the limitations commonly 

associated with the intra-operative data (e.g. difficult to detect the cardiac boundaries, or 

the small field-of-view) are reduced, facilitating the entire procedure and making it safer 

even in inexperienced hands.  

Automatic and semi-automatic atrial region segmentation solutions have been explored 

and presented for multiple imaging modalities, such as computed tomography (CT, 

(Ecabert et al., 2011; Kirişli et al., 2010; Zheng et al., 2008)) and magnetic resonance 

imaging (MRI, (Zuluaga et al., 2013)). Since the manual approach is tedious, time-

consuming and has a high intra- and inter-observer variability, automated segmentation 

processes have been widely explored and increasingly accepted in normal clinical practice. 

The majority of the applied methods are based on deformable models (Ecabert et al., 2011), 

atlas-based techniques (Kirişli et al., 2010; Zuluaga et al., 2013) and machine learning 

(Zheng et al., 2008), proving its high accuracy in a high number of cases with different 

pathologies. Some studies focused only on the left atrium (LA) due to its importance for 

atrial fibrillation, using a simple initialization strategy through a multi-atlas to obtain a 

rough contour alignment (Sandoval et al., 2013) or a probabilistic atlas (Stender et al., 

2013), followed by a region growing and multiple 2D individual segmentations with 

circular shape descriptors (Ammar et al., 2013). Moreover, (Zuluaga et al., 2013) presented 

an atlas-based technique with global and deformable alignment for LA segmentation only.  

Nevertheless, the current solutions show inaccurate results in thin septal walls (Zhuang et 

al., 2010) or present a total merge/overlap between atrial contours (Kirişli et al., 2010; 

Zuluaga et al., 2013). Specifically, the atlas-based technique with a final majority voting 

per chamber approach presented by (Kirişli et al., 2010) was unable to prevent overlap 

between contours. Contrarily, the atlas-based approach from (Zuluaga et al., 2013) and the 

deformable model proposed by (Ecabert et al., 2011) prevented overlapping regions by 

simply merging these regions. Thus, accurate assessment of the thin walls is currently not 

possible, missing their use for specific diagnostic purposes and interventional planning 

related with the thin atrial walls, e.g. transseptal puncture (Morais et al., 2016).  
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Multiple strategies have been proposed to segment multiple structures in different 

scenarios, using different formulations to identify the target regions and prevent overlap 

and gap regions between contours (Jimenez-del-Toro et al., 2016). Initially, several authors 

extended their individual structure methods to multi-structures. Some examples are the 

atlas-based (Okada et al., 2015; Wolz et al., 2013; Xu et al., 2015), and statistical-based 

approaches (Yan et al., 2005; Yang et al., 2004). Despite the high versatility obtained, 

overlapping and merged regions were typically found, requiring post-processing techniques 

through mathematical morphology operations or refinement methodologies (Iglesias and 

Sabuncu, 2015).  

Cooperative strategies (e.g., coupled level sets) were also presented and showed their 

robustness for multiple structure situations (Yezzi et al., 2002), such as endo- and epicardial 

left ventricular wall segmentation (Alessandrini et al., 2009; Pedrosa et al., 2016; Queirós 

et al., 2014). These strategies use multiple functions (one per target region) and combine 

them during the optimization. Each individual curve is affected by the remaining ones, 

consequently cooperating to maximize/minimize the functional energy. As such, these 

strategies are less sensitive to local minima and to the initialization when compared with 

multiple independent segmentation approaches (Chen et al., 2008; Yezzi et al., 2002). 

However, these models do not have an intrinsic restriction to prevent overlapping regions 

(Faisal et al., 2015), consequently requiring several and complex penalty terms (Barbosa et 

al., 2010) to obtain mutual exclusiveness and boundary share between the different 

contours (Faisal et al., 2015).  

On the contrary, competitive contours use a different multi-structure segmentation 

paradigm, where the multiple curves that define the target structures interact between them 

at the contour boundaries to avoid overlapping regions (Brox and Weickert, 2006; Lankton 

and Tannenbaum, 2008). This interaction is usually performed through act-react strategies 

(Brox and Weickert, 2006; Lankton and Tannenbaum, 2008), where the contour with 

stronger force controls the update of the remaining ones. Nevertheless, at regions of no 

competition, external terms (e.g., constant growing (Brox and Weickert, 2006)) are required 

to prevent empty regions between contours. Initially, these methods were applied for the 

entire image domain, failing to segment small regions of the image or at least requiring an 

extra function that represents the background (Gao et al., 2012). As such, these strategies 

were suboptimal for medical imaging problems, where only a few number of organs are 

typically assessed per study. In this sense, Gao et al. (Gao et al., 2012) presented a local 

robust statistic driven active contour that uses act-react forces to perform interactive 

segmentation in small portions of the image. Since full union between contours was not 

required, this solution proved its added value for the segmentation of regions with thin 

walls. Nevertheless, this generic framework presented some limitations to perform accurate 

segmentation of thin walls with low contrast, generating small bridges/connections between 

contours. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

6 
 

In this work, we present a novel competitive contours approach for segmentation of 

multiple structures. The novel method is applied for atrial region segmentation with correct 

delineation of the thin mid atrial walls, even in low contrast scenarios. Multiple 

independent functions are used to control each contour (i.e. LA, Ao and right atrium – RA), 

being afterwards combined to compete for the optimal boundary transition. Indeed, the 

competition is only applied when two or more contours are near each other, penalizing the 

surface evolution based on the local distance between contours. As such, fast contour 

growing is prevented, and a refinement to the thin wall is achieved. Although this 

competitive methodology is generic and suitable to be applied in several frameworks, we 

decided to prove its advantages using the B-spline Explicit Active Surfaces (BEAS) 

framework (Barbosa et al., 2012), which proved to be suitable for individual cardiac 

chamber segmentation, such as the left ventricle (Queirós et al., 2014) and the aorta 

(Queirós et al., 2016a; Queirós et al., 2016b). It should be noticed that, although coupled 

BEAS strategies have been proposed for myocardial segmentation using concentric 

contours (Pedrosa et al., 2016; Queirós et al., 2014), generic competitive approaches that 

allow segmentation of multiple structures without shape/model restrictions are still missing. 

Hereupon, the current work introduces three novelties, namely: 1) a new competitive 

strategy that allows accurate segmentation of multi- structures with thin and heterogeneous 

mid walls; 2) a novel methodology to segment the atrial region in multiple imaging 

modalities based on the proposed competitive strategy; and 3) exhaustive validation of the 

novel competitive method for atrial region segmentation. 

This paper is structured as follows. In section 2, a technical description of the proposed 

strategy for atrial region segmentation is presented, followed by an explanation of the 

proposed competitive technique. In section 3, the validation experiments and their results 

are presented. Section 4 evaluates and discusses the performance of the proposed 

competitive method against state-of-the-art techniques and free-evolution approaches. 

Finally, the conclusions of the work are presented in section 5. 

2. Methods 

In this section, we present the strategy used to segment the LA, RA and Ao. The 

proposed semi-automatic method relies on three consecutive stages (Figure 1): 1) manual 

identification of the different regions through one click in each chamber and three clicks in 

the aortic tract; 2) fast growing of the contours using a BEAS-threshold strategy (section 

2.1.4); and 3) contour refinement using BEAS-segmentation (section 2.1.5) with localized 

energies. 

The clicked positions are used to initialize two ideal spheres (for LA and RA) and one 

cylinder (for Ao), which are afterwards adapted to the anatomy. Each individual click 

defines the center position of a sphere with a radius of approximately 15 mm and the three 

clicks in the Ao define the centerline of a cylinder with a radius of approximately 5 mm. 
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Furthermore, and in order to identify the mitral and tricuspid valve region, both left and 

right ventricles (LV and RV) are also initialized (two ideal spheres with radius of 5 mm) 

with one click in each blood pool. The spatial location of both ventricles is used to locally 

constrain the atrial surfaces, preventing their evolution inside the ventricle regions (further 

details in section 2.2.2).    

The BEAS-threshold is first used to grow the initialized contour (i.e. the cylinder and 

spheres) using global descriptors, minimizing the influence of the initialization on the 

segmentation result. The segmentation is then applied to refine the current surfaces and to 

accurately delineate the atrial and aortic walls. In order to increase the robustness of the 

technique, edge-based (section 2.1.2) and simple shape regularization terms (section 2.1.3) 

are used during the entire process. The edge-based terms reduce the influence of the 

initialization and guide the segmentation in heterogeneous and vacuum regions, while the 

regularization term uses the curvature information of each contour to regularize the contour 

and to reduce the degrees of freedom of the segmentation. Moreover, the regularization 

term controls the contour evolution in vacuum regions (e.g., tricuspid valve). 

Two independent implementations are presented, one where each structure evolves 

independently (henceforward mentioned as free-evolution BEAS, section 2.1), and a 

second where a novel competitive approach is presented, allowing interaction between the 

contours while guaranteeing the integrity of the thin mid atrial walls (competitive BEAS, 

section 2.2). 

It should be noticed that both ventricles (LV and RA) are only evolved in the threshold-

based stage (section 2.1.4, Figure 1), allowing their local competition with the atrial 

chambers and consequently defining the valve plane.  

 

 

 

 

 

Figure 1 - Overview of the proposed competitive strategy for atrial region segmentation. 
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2.1. Free evolution B-spline Explicit Active Surfaces 

2.1.1. B-spline Explicit Active Surfaces 

The BEAS framework was initially proposed in (Barbosa et al., 2012), having as key 

novelty the representation of the interface as an explicit function described using B-spline 

coefficients (     . This implies that one of the coordinates of the points of the interface, 

  {          } in a  -dimensional space, is expressed as a function of the remaining 

coordinates (i.e.    {       }  consequently reducing the dimensionality of the 

segmentation problem and intrinsically including shape limitations with clear advantages 

for non-complex shapes. 

The explicit function   is therefore defined as (Almeida et al., 2016): 

    (    ∑       

      

(
      

  
)  (1) 

where   (   is the uniform symmetric (    -dimensional B-spline of degree  . The 

knots of the B-splines are located on a regular grid defined on a specific space (e.g., polar 

or cylindrical space).    and    are smoothness parameters that control the scaling and 

spacing of the B-spline kernel, respectively. Specifically for atrial region segmentation, 

both atria are described through a spherical model, while the aorta tract is represented by a 

cylindrical one. 

Regarding the contour evolution, multiple energies are used to control the optimization 

process of each contour  . Two strategies can be used to optimize the multiple energy 

terms. The first approach minimizes each energy individually, therefore allowing that one 

energy converges before the second one. Contrarily, the second approach combines both 

terms and the iterative process is only stopped when both contours converge. Due to the 

simplicity of the method (mainly when more than two contours are used), we decided to 

prove the advantage of our competitive technique using the second strategy. Nonetheless, 

note that the independent optimization approach could also be implemented. In this sense, 

the BEAS energy (   for multiple contours is computed through: 

   ∑  

 

  

   ∫    
(  ∫  (       (      

  
  

(2) 

where   (     ( 
     ,   {     } with   representing the total number of contours, 

    are independent spatial locations in the image domain     
 
(   is a level-set like 

function representing the region inside the interface   ,    
 is the dirac function and    an 

image criteria (e.g. localized Chan-Vese energy, (Lankton and Tannenbaum, 2008)). 

 (     corresponds to a mask function in which the regional parameters that locally drive 

the contour evolutions are computed and it is defined as the set of points belonging to the 

normal direction of   and whose distance is lower than  . Furthermore, the energy is 
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minimized through the computation of the energy derivatives with respect to each B-spline 

coefficient for each contour  , through (Barbosa et al., 2012): 

   

      
  ∫  ̅ ( 

    
 (

       

   

)   

  

  (3) 

with  ̅ ( 
   representing the feature map (e.g. first derivative of the local Chan-Vese 

energy, (Lankton and Tannenbaum, 2008)) of each contour  . The traditional formulation 

from BEAS used regional intensity-based terms directly extracted from the image ( ̅   , 

mathematically described as image criteria    and feature   ̅̅̅̅ . As such, equation (2) and (3) 

are updated to: 

  (     (  , (4) 

 ̅ ( 
    ̅ 

  (      ̅̅̅̅ (   , (5) 

The reader is kindly directed to the (Barbosa et al., 2012) for further details on BEAS. 

2.1.2. Edge based energy term 

Queirós et al. (Queirós et al., 2014) presented and integrated an edge-based term in 

BEAS to segment 2D+t stacks of cine magnetic resonance imaging (MRI) datasets. 

Inspired by this work, we present a pure 3D edge term, which is computed through the 

following strategy (Figure 2): 1) estimation of the image edges ( ) through a Canny edge 

detector (Canny, 1986), and 2) computation of the edge energy term (   as an unsigned 

distance function between each volume point and the identified edges. The representation 

of   as a distance function, improves the robustness of the edge detection strategy, filling 

 
Figure 2 - Overview of the edge term used. (a) Canny edge detector result; (b) unsigned distance function (UDF) in the 
spherical (top) and cylindrical space (bottom); (c) the respective feature; (d) profile of the energy (UDF) and the feature 
used during the segmentation.  
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small gaps due to missing edges in the map. Specifically, equations (4) and (5) are now 

described as: 

  (     
    (    (    (6) 

 ̅ ( 
    ̅ 

  (      
    ̅̅̅̅ (        ̅(   , (7) 

with  (       (‖    ‖ ,   representing each edge of the map   and    ̅(    the edge 

energy map gradient along the radial direction, which is computed through centered finite 

differences.   
  is a positive hyper-parameter that balances the regional and edge-based 

terms.  

2.1.3. Regularization term 

In order to reduce the model’s degrees of freedom and to prevent incorrect 

segmentation due to image artifacts, regularization terms are typically used. In the current 

work, we apply a curvature-based shape prior regularization to prevent concave shapes. As 

such, local regions with negative concavities are penalized, consequently pushing the 

surface outward. Specifically, a binary curvature-based switch is used: 

  ̅̅̅̅ (      (     (  (   )  (8) 

updating equation (7) to: 

 ̅ ( 
    ̅ 

  (      
    ̅̅̅̅ (        ̅(      

    ̅̅̅̅ (      (9) 

where   
  represents positive hyper-parameters that balance the multiple terms used.   is 

the local curvature of the contour. Note that,  (  (     guarantees that only concave 

regions are regularized.   

2.1.4 BEAS-threshold 

BEAS-threshold was previously presented in (Queirós et al., 2014; Queirós et al., 

2016b) for initialization of a myocardial wall or aortic wall segmentation technique. The 

method uses a priori defined rules to locally expand or shrink the contour. The contour is 

updated by directly using the B-spline coefficients (     ) as described in equations (3, 9), 

allowing a fast evolution process with intrinsic control of the smoothness degree for each 

contour. The original BEAS-threshold method is purely based on intensities, using a fixed 

threshold (e.g. mean intensity of the target region) to generate a feature map to update the 

contours. Specifically, the fixed threshold is compared with the image intensity in each 

control point of the surface, and these points are then updated accordingly with the pre-

defined rule (i.e. expand or shrink). No energy is used to control the contour evolution, 

being the process finished by simple factors, such as the number of iterations or the area. In 
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this sense, equations (3, 9) are used to evolve the multiple contours, i.e. 

  {              }, with: 

  ̅̅̅̅ (    {
      (̅      
            

, (10) 

where  (̅    is the image intensity at position   , and    is the fixed threshold used. Both 

intensity and edge-based terms are now used to guide the initialization and make the 

strategy more suitable for heterogeneous regions. Moreover, it should be noticed that the 

ventricles are used in the current stage to define the valve plane, as explained in detail in 

section 2.2.2. 

2.1.5. Contour refinement 

The contours refinement step directly minimizes the energy function in equation (2), 

using its derivative (3,9). The strategy is used to refine the atrial region, assuming three 

independent contours, i.e.   {        }. In opposition to the BEAS-threshold, the 

segmentation uses smaller steps computed using small portions of the image, consequently 

refining the contour to the real anatomy. The regional term (    is described using the 

localized signed Yezzi energy (Queirós et al., 2014): 

  (         
(11) 

and its derivative   ̅̅̅̅ : 

  ̅̅̅̅ (    ( (̅        ( (̅         
 

(12) 

where    and    are the mean intensities inside and outside of the evolving interface at 

point  , calculated using mask  .  (̅    is the image value at position 

  {    (           }. The presented energy searches for the optimal position as the 

maximum contrast point between regions. However, since all chambers are brighter than 

the cardiac wall, a signed version of this energy is used. As such, a specific representation 

of the target transition (bright to dark) is explicitly embedded into the functional energy, 

making it less sensitive to artifacts.  

2.2. Competitive B-spline Explicit Active Surfaces 

The aforementioned free-evolution strategy (section 2.1) allows segmenting multiple 

structures, but does not prevent overlapping regions, being therefore sub-optimal for 

several medical applications (e.g. evaluation of mid thin walls). In this section, we expand 

the previous methodology introducing a novel competitive strategy. This competitive 

strategy locally constrains the evolution of each contour when they are too near, preventing 

overlapping regions. Moreover, the novel competitive strategy is expanded to prevent 

merging between contours, allowing an accurate segmentation of mid thin walls as found in 

the atrial region. For the sake of clarity, we start by explaining how this competition can be 
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performed between two contours (section 2.2.1), being subsequently expanded for   

contours and specifically for the atrial region segmentation problem (section 2.2.2). The 

authors would like to emphasize that no restrictions about the models’ shapes are made. 

Moreover, the current methodology can be used for either 2D or 3D problems. 

2.2.1. Two contours 

Assuming a hypothetic segmentation scenario with two regions (e.g. LA and RA only), 

two independent functions and their corresponding evolution energies,    and     are 

required. The energy combination is performed using equation (2) and the energy 

minimized using equation (3). In order to include a competition strategy between the 

different contours, a novel term should be included in equation (9): 

 ̅ ( 
    ̅ 

  (          ̅   
   (    and (13) 

 ̅ ( 
    ̅ 

  (          ̅   
   (      with 

       |    |  
(14) 

where  ̅  are the features extracted from the image (i.e. signed localized Yezzi, edge based 

and regularization terms) and  ̅    represents the competition term. Moreover, 

                 are confidence terms. Both confidence terms are used to increase the 

influence of one of the contours throughout the competition process, due to a priori 

knowledge of superior image quality in one of the regions.        means that no 

penalization related with competition is applied in contour 1, and the contour evolution is 

only performed based on the image data. In contrast, total penalization (        is 

applied in contour 2 based on the competition process.          represents an equal 

confidence on both contours. Moreover, it may be noted that     is required for 

concentric contours (i.e. contours with the same expansion/shrinking direction), where the 

penalization factor should be applied in opposing directions, increasing the wall thickness 

between them and preventing overlapping regions.  

Regarding the competition term ( ̅    , it is described as: 

 ̅   
   (    (          (          (15) 

 ̅   
   (    (          (          (16) 

with    representing the estimated minimal thickness parameter,   is a signed distance 

map between each node of the surface 1 against the entire surface 2 (and vice-versa), and   

a Heaviside operator. Note that   is only equal to one in nodes with   lower than   , 

being zero in the remaining nodes (Figure 3). Therefore, the interactive strategy is only 

applied in the nearest regions of the contours (i.e. distance lower than   ). Regarding  , it 

is computed as the minimal result of three tested possibilities: 1) a point-to-point distance 

between all the vertices of both surfaces; 2) an edge-to-point distance defined as the 
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intersection result between all the edges of surface 2 against the target point in surface 1; 

and 3) a face-to-point distance, computed as the intersection between the multiple 

faces/planes of surface 2 against the point in surface 1. It should be noticed that overlapping 

contour regions are defined as negative distances. The reader is kindly directed to 

(Baerentzen and Aanaes, 2005) for further details on signed distance function computation.  

A schematic about the competition workflow can be found in Figure 3. As described 

above, the distance between two surfaces is used to locally constrain the surfaces’ 

evolution. When the distance between contours is lower than   , a force with opposite 

direction to the contour evolution direction is applied to prevent fast steps, consequently 

allowing small refinements of both contours (without changing force orientation, Figure 

3b). Although a minimal thickness parameter (    is defined a priori, the final 

segmentation result with thinner mid-walls between contours (i.e. minimal distance lower 

than   ) is allowed, consequently increasing the flexibility of the model to abnormal 

situations. Nevertheless, when the thickness between both contours is too small, high 

penalization is applied requiring both contours to retreat (Figure 3c). Then, the 

minimization continues and correct refinement to the middle wall is possible. 

2.2.2. Expansion to  -contours 

For   contours (and specifically for atrial region segmentation, i.e. LA, RA, Ao), a total 

of   energies (    for the atrial region) are now required to control each contour as 

 

Figure 3 - Schematic diagram of the competitive strategy used. (a) No competition is used since the contours are too 
far; (b) competition is applied but the contour is still moving in the same direction; c) contours changed their evolution 
direction due to the small distance between them. Solid and dashed lines represent the contour at time t and t+1, 
respectively.  
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described in section 2.1.1. Contrary to section 2.2.1, multiple competitions between the   

contours are now considered requiring a generalization of equations (13,14) to: 

 ̅ ( 
     ̅ 

  (    ∑     

 

       

  ̅   
   (     

         (  |        |)  

(17) 

with, 

 ̅       
   (    (       )  (       )  (18) 

Note that equation (17) combines all the   contour pairs. As such, in each iteration, the 

distance between all pairs is computed and all the thin regions refined through the 

competition between the nearest contours. 

The proposed competitive implementation is integrated on both the BEAS-threshold 

(section 2.1.4) and contour refinement stages (section 2.1.5). During the BEAS-threshold, 

the competitive strategy is used to: 1) improve the LA-RA-AO contours initialization 

thanks to the spatial interactions between them; and 2) define the valve plane through the 

competition between atria and ventricles. Contrarily, in the contour refinement stage, the 

LA-RA-Ao contours compete between them to accurately identify the atrial boundaries. 

The ventricles are not refined throughout the segmentation due to the RV anatomy and the 

difficulty in describing it using an explicit function.  

In Appendix A, the mathematical formalism required to expand the proposed 

competitive strategy for a traditional level-set model is presented, showing the versatility of 

the described methodology.  

 

3. Experiments 

Three experimental scenarios are used to prove the advantages of the proposed 

competitive BEAS for atrial segmentation, namely atrial region evaluation in CT (section 

3.1), LA benchmark in CT (section 3.2) and atrial region evaluation in MR (section 3.3).  

Two major comparisons are addressed: 1) differences between the competitive BEAS 

against the free-evolution strategy, and 2) comparison between the competitive strategy 

against state-of-the-art methods. For each experiment, one observer was responsible for 

identifying the points required to initialize the method through one click in each chamber 

and three clicks in the aortic tract. 

3.1.  Atrial region assessment using CT 

Description 

Forty-one datasets retrospectively obtained in the clinical practice from patients with 

suspicion of pathology in the atrial region were used to validate the proposed competitive 
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approach. Specifically, patients with pacemaker, mitral and aortic prosthetic valves, atrial 

body enlargement and candidates to pulmonary vein ablation were included. ECG-gated 

cardiac multi-slice CT images were acquired with multi-detector Siemens CT scanner, 

Table 1. Both end-diastolic and end-systolic phases were included. 

Ground truth generation 

The LA and RA segmentation was performed by one expert using the semi-automatic 

CARTO3 segmentation tool (Biosense Webster, Diamond Bar, CA, USA), followed by 

manual corrections. More details about the segmentation can be obtained in (Bourier et al., 

2016). In order to identify the atrial body and similarly to the proposed in (Tobon-Gomez et 

al., 2015), multiple bounding boxes were generated around the pulmonary veins, vena cava 

and left and right atrial appendage (LAA and RAA). All bounding boxes were drawn 

around the ostia of each structure. ParaView (Kitware, Inc.) (Squillacote and Ahrens, 2007) 

was used to visualize the surface generated by the expert, and to identify the multiple 

bounding boxes. Mitral valve and tricuspid valve planes were obtained through the 

following steps: 1) manual delineation of the valve region in several rotated slices, and 2) 

plane fitting using all scattered points. Furthermore, aortic tract manual delineation was 

performed through an in-house framework (Queirós et al., 2016b). Initially, three points 

along the aortic tract were manually defined to generate a centerline. Then, several planes 

(25-30 planes) perpendicular to the centerline were used to perform multiple manual 2D 

delineations. Finally, all scattered points were transformed into a 3D surface. Of note, all 

Table 1 – Acquisition parameters of the CT scanners. 

Parameter Brilliance CT and 
Brilliance iCT 

SOMATOM Force 

Manufacter Philips Siemens 
No. of patients 30 41 
Detector rows 16-,40-,64- and 256-slices 64, 128 slices 

Contrast injection 40-100 ml 40-100 
Image resolution (mm

2
) 0.30x0.30 to 0.78x0.78 0.69×0.69 

Slice thickness 0.33 to 1.00 mm 0.8 
Matrix size 512×512 512×512 

Nº of phases 1 1 
 

Table 2 - Parameters used to define the competition between surface 𝛼𝑆  𝑆   

 S2 

S1
 

Chambers 
Initialization Segmentation 

LA RA AO LV RV LA RA AO 

LA - 0 0.5 0.5 0 - 0.5 0.5 

RA 1 - 1 1 0.5 0.5 - 0.5 

AO 0.5 0 - 0.5 0 0.5 0.5 - 

LV 0.5 0 0.5 - 0 - - - 

RV 1 0.5 1 1 - - - - 
LA – Left atrium; RA – Right atrium; AO – Aorta; LV – Left ventricle; RV – Right Ventricle; 
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bounding boxes and planes were only used to evaluate the segmentation performance, not 

interfering in the segmentation pipeline.  

Implementation Details 

The Canny edge detector was computed using a sigma of 1.5 mm, and a lower and 

upper threshold of 0.7 and 0.9, respectively.   
  was set to 0.5 during the initialization, and 

  
     in segmentation. Regularization through curvature analysis (  

    ) was only 

applied in the RA, RV and LV. Regarding the competition, Table 2 presents the parameters 

used and a    of 2mm was employed as suggested in (Beinart et al., 2011). It may be noted 

that, during the initialization, the left heart controls the right heart evolution, due to the 

superior contrast and reduced number of artifacts usually found in the left heart compared 

to the right side. In other words, during the BEAS-threshold, the left side contours evolve 

freely pushing the right heart contours. Then, during the segmentation, competitive 

contours with equal weights (       were used. The fixed threshold (    was computed 

as the average value between the mean intensity on the selected region (window of size 

equal to 3 × 3 × 3 mm
3
) and the expected intensity of the atrial/aortic walls (50 HU, 

(Ecabert et al., 2008)). The stop criteria of the BEAS-threshold method relies on the 

difference between mesh positions in two consecutive iterations and it finishes when small 

differences are found. Regarding the BEAS parameters, a total of 40 × 40 points were used 

to represent each contour. Local profiles with 10 mm inward and outward of the contour 

were used, and    
     

   for   {           } and    
     

   for   {  } 

were applied. 

Statistical Analysis 

The absolute point-to-surface (P2S) distance, Dice coefficient (DC) and 95
th

 percentile 

of Hausdorff distance were computed for each chamber (LA, RA and Ao) to compare the 

methodology with and without competition. The influence of the virtually generated 

bounding boxes and mitral/tricuspid valve planes was also assessed. A paired t-test 

(p<0.05) between the strategy with or without competition was used to check for 

statistically significant differences on the results. Furthermore, a small region of interest 

(ROI) was created around each thin wall (aortic and atrial wall) in order to assess the 

segmentation accuracy in these regions. The region was defined as the largest connected 

component with a thickness inferior to 5 mm (computed as LA vs RA, LA versus AO, RA 

versus Ao). The errors obtained with competition and without competition were assessed 

through P2S, 95
th

 percentile of Hausdorff distance and a Wilcoxon matched-pair test to 

check for statistically significant differences (p<0.05). The influence of the estimated 

thickness parameter    on the final segmentation result was also assessed and compared 

through a paired t-test (p<0.05) to check for statistically significant differences. Finally, the 

computational time of both approaches (with and without competition) was registered. All 
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results were computed using MATLAB code (no parallelization) on an Intel (R) i7 CPU at 

2.8 GHz and 16 GB of RAM. A C++ implementation of the competition strategy was 

wrapped in the MATLAB Code.  

Results 

Table 3 presents the results obtained for both methodologies in terms of P2S, DC and 

Hausdorff distance. The RA presented the highest P2S error with 1.68±0.47 mm and the 

aortic tract the lowest with an error of 0.65±0.12 mm. Moreover, when comparing the 

competitive strategy and its free-evolution version, a superior performance was always 

achieved by the competitive version for all the assessed regions (Figure 4). Figure 5 

presents the errors obtained when a small ROI around the aortic/atrial walls is assessed, 

where a clear advantage of the proposed competitive technique is observed. Globally, the 

strategy with competition showed a statistically significant superior accuracy when 

compared with the free-evolution version. The former strategy is however more 

computationally demanding, requiring 73.4±6.9 seconds per dataset, against the 35.8±3.7 

seconds recorded for the free-evolution approach. Representative segmentation cases 

corresponding to the 10
th

, 30
th

, 50
th

, 70
th

, and 90
th

 percentiles according to the average P2S 

error are shown in Figure 6. Moreover, results in patients with anatomical pathologies are 

presented in Figure 7. Finally, the influence of the    parameter throughout the competitive 

strategy is shown in Figure 8a. No significant differences were observed between the 

selected value (i.e. 2 mm) and its neighbors, but in contrast, statistically significant 

differences were found when too high values were used.  

3.2. Left atrium assessment using CT 

Table 3 – Point-to-surface (P2S) error, Dice coefficient and 95
th

 percentile Hausdorff distance obtained between the 
semi-automatic method (with and without competition) against the manual delineation in CT. The left atrium and 
right atrium body are assessed. Aortic tract errors are also analyzed.  

 P2S (mm) Dice Hausdorff (mm) 
Competition With Without With Without With Without 

Le
ft

 A
tr

iu
m

 

Entire 1.54 ± 0.32* 1.57 ± 0.33 0.91 ± 0.01 0.92 ± 0.01 6.52 ± 2.41* 6.67 ± 2.42 

MV 1.36 ± 0.27* 1.39 ± 0.28 0.93 ± 0.01 0.93 ± 0.01 5.46 ± 1.87* 5.55 ± 1.86 

PV 1.20 ± 0.20 1.25 ± 0.23 0.94 ± 0.01 0.94 ± 0.01 4.47 ± 1.63 4.85 ± 1.75 

LAA 1.07 ± 0.17 1.14 ± 0.21 0.95 ± 0.01 0.95 ± 0.01 3.36 ± 0.98 3.62 ± 1.10 

R
ig

h
t 

A
tr

iu
m

 Entire 2.13 ± 0.51* 2.37 ± 0.66 0.87 ± 0.03* 0.85 ± 0.05 8.13 ± 2.18* 8.90 ± 2.47 

TV 2.01 ± 0.46* 2.26 ± 0.68 0.88 ± 0.03* 0.87 ± 0.05 7.81 ± 1.97* 8.54 ± 2.48 

VC 1.87 ± 0.47* 2.13 ± 0.67 0.90 ± 0.02* 0.89 ± 0.05 7.20 ± 2.03* 8.14 ± 2.63 

RAA 1.68 ± 0.47* 1.98 ± 0.72 0.91 ± 0.02* 0.90 ± 0.05 6.03 ± 2.04* 7.52 ± 3.57 

A
o

rt
ic

 

tr
ac

t 

Entire 0.65 ± 0.12* 0.68 ± 0.13 0.94 ± 0.02 0.94 ± 0.02 1.61 ± 0.33 1.67 ± 0.36 

* paired t-test between the result obtained with and without competition (p<0.05). MV – Mitral Valve; PV – 

Pulmonary Veins; LAA – Left Atrial Appendage; TV – Tricuspid valve; VC – Vena Cava; RAA – Right Atrial Appendage. 
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Description 

Recently, a benchmark (STACOM 2013) was published to assess the accuracy of left 

atrium segmentation techniques. The public database has thirty datasets, 10 datasets for 

training and 20 datasets for testing. Only LA segmentation methods are allowed to be 

evaluated with the current benchmark. Further details about acquisition and ground truth 

generation are indicated in Table 1 and in (Tobon-Gomez et al., 2015). 

Statistical Analysis 

The segmentation accuracy was assessed using two metrics described in the original 

manuscript: P2S and DC. Furthermore, the obtained result with the proposed methodology 

(with and without competition) was compared with the 5 best works assessed in the current 

benchmark (total of 9), namely a region growing formulation with rough contour 

initialization using an atlas-based approach (LTSI-VRG) (Sandoval et al., 2013), a 

probabilistic atlas approach (LUB-SRG) proposed by (Stender et al., 2013), a marginal 

space learning strategy with (SIE-MRG) (Tobon-Gomez et al., 2015) or without refinement 

(SIE-PMB) (Zheng et al., 2008) through graph-cuts, and a multi-atlas approach with global 

and local transforms for LA segmentation only (UCL-1C) (Zuluaga et al., 2013). Inter-

observer variability is also available. Furthermore, the added value of the proposed 

 
Figure 4 - Error obtained with and without competition for the LA (a), RA (b) and aortic tract (c) in CT. 

 
Figure 5 – Point-to-surface (P2S) and 95

th
 percentile of Hausdorff error obtained for each thin wall in CT using the 

proposed strategy with and without competition. LA – Left atrium, RA – Right Atrium, Ao – Aortic tract.  
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Figure 6 –Segmentation results and error map (EF – entire surface, EC – cropped version) obtained with competitive 
BEAS technique for the cases corresponding to the 10

th
 (a), 30

th
 (b), 50

th
 (c), 70

th
 (d) and 90

th
 (e) percentiles, 

according to the average P2S error. The bounding boxes (black boxes for pulmonary vein and vena cava, and red box 
for LAA and RAA) and valve planes (pink plane) are also presented. The bottom panel shows 2D slices with the semi-
automatic results (red - LA, green – RA, blue - aortic root and white - bounding boxes) and the ground truth (yellow).  

approach was explored, through a comparison of the result obtained with and without 

competition using an unpaired t-test (p<0.05).  

Results 

Figure 9 shows a comparison between the proposed methodology (competitive BEAS) 

and the state-of-the-art techniques for LA body segmentation. The proposed strategy 

obtained a P2S error of 0.89±1.03 (with competition), proving its robustness and accuracy 

with results similar to the remaining techniques. Regarding the competitive strategy, 

statistically significant differences (p=0.02) were found against the free-evolution 

technique in terms of P2S error. 

3.3. Atrial region assessment using MRI 

Description 

Similarly to section 3.2, the current data was obtained from an available benchmark 

(Tobon-Gomez et al., 2015). Again, 30 datasets were acquired, 10 datasets are used as 

training, while the remaining 20 cases are used for the algorithm evaluation. The reader is 

kindly directed to (Tobon-Gomez et al., 2015) for further details about the image 

acquisition protocol. 



ACCEPTED MANUSCRIPT

ACCEPTED M
ANUSCRIP

T

20 
 

Ground truth generation 

The LA was segmented using the strategy described in (Tobon-Gomez et al., 2015). 

Contrarily to the CT data (section 3.2), no limitations were imposed on these datasets, 

allowing their application for further studies. In this sense, and in order to assess the 

accuracy of the competitive strategy in a different imaging modality, a manual contouring 

of the RA and the aortic tract was additionally performed. The RA was segmented using the 

MITK software (Medical Imaging Interaction Toolkit, (Wolf et al., 2005)), where multiple 

2D slices were delineated and then interpolated to a 3D surface. Moreover, bounding boxes 

and valve plane were generated as explained in section 3.1. Regarding the aortic tract, it 

was segmented as described in 3.1. 

Implementation details 

Due to the particularities of the MRI datasets (i.e. noisy images, with superior pixel 

 
Figure 7 – Segmentation result example in pathological patients: (a) patient with pacemaker; (b) prosthetic mitral 
valve and (c) prosthetic aortic valve. The left atrium is represented as red, the right atrium as green and blue is used 
for the aortic tract. Yellow contours represent manual delineations and the arrows the pathology. The error (EC) is 
presented using a cropped surface (removing bounding boxes and valve plane).  

 
Figure 8 - Influence of 𝑅𝑇 parameter in the final segmentation result in (a) CT and (b) MR images. * p < 0.05 in paired 

t-test between each result and the selected one (i.e. 2 mm). 
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spacing when compared with a CT acquisition), small modifications were required in 

specific parameters of the segmentation methodology, namely: 1)   
  was set to 1 during the 

threshold stage; 2) each contour was discretized by 32 × 32 points; and 3)    
       

   

for   {     }  The optimal parameters were estimated using the training datasets only. 

Statistical Analysis 

The LA body segmentation was assessed in terms of P2S error and DC using the 

software released with the benchmark. Moreover, the result obtained with the proposed 

methodologies was compared with the 5 best strategies described in (Tobon-Gomez et al., 

2015) (a total of 8 were presented). In detail, the multi-atlas approach described by 

(Zuluaga et al., 2013) with an atlas database encompassing all cardiac cavities (UCL4C) or 

LA only (UCL1C) and the 2D segmentation strategy with threshold-based techniques and 

circularity shape descriptors (TLEMCEN) (Ammar et al., 2013) were included. 

Furthermore, two versions of the strategy proposed in (Sandoval et al., 2013) were also 

 
Figure 9 - Assessment of the proposed methodologies (termed OUR, with and without competition) for left atrium 
segmentation in CT data and comparison against the best results available in the left atrium benchmark. The team’s 
name were defined based on [34]. IOV represents the inter-observer variability. 

 
Figure 10 - Assessment of the proposed methodologies (termed OUR, with and without competition) for left atrium 
segmentation in MRI data and comparison against the best results available in the left atrium benchmark. The team’s 
name were defined based on [34]. IOV represents the inter-observer variability. 
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considered, one with label fusion through majority voting (LTSI-VRG) and another using 

the STAPLE (LTSI-VSRG) algorithm. Inter-observer variability is also available. The RA 

and aortic tract were assessed in terms of P2S, DC and 95
th

 percentile of Hausdorff 

distance. A paired t-test (p<0.05) was computed to check for statistically significant 

differences between the technique with and without competition. Similarly to section 3.1, 

the errors found at aortic/atrial wall were assessed using the P2S error, the 95
th

 percentile of 

Hausdorff and Wilcoxon matched-pair ranked test (p<0.05). Furthermore, the influence of 

the    parameter on the atrial segmentation in MRI was also evaluated. Finally, the 

computational time required by each methodology was recorded.  

Results 

Figure 10 presents the results obtained by the proposed technique for LA segmentation 

using the benchmark. The proposed strategy obtained a mean error of 1.57 mm, proving to 

be similar against the remaining strategies available in literature. A similar performance 

was obtained by the proposed method when compared with the inter-observer variability. 

Figure 11 presents the results in each individual dataset, proving the clear advantages of the 

competitive strategy (with statistically significant differences, p=0.04) against the 

Table 4 – Point-to-surface (P2S) error, Dice coefficient and 95
th

 percentile of Hausdorff distance obtained between the 
semi-automatic method (with and without competition) against the manual delineation in MR. The right atrium body and 
aortic tract error are assessed.  

 P2S (mm) DICE Hausdorff (mm) 
Competition With Without With Without With Without 

R
ig

h
t 

A
tr

iu
m

 Entire 2.74 ± 0.63* 2.98 ± 0.61 0.83 ± 0.04* 0.80 ± 0.05 10.76 ± 2.80 11.39 ± 2.56 

TV 2.66 ± 0.65* 2.91 ± 0.64 0.84 ± 0.04* 0.83 ± 0.05 10.38 ± 2.90 10.96 ± 2.55 

VC 2.26 ± 0.49* 2.49 ± 0.51 0.88 ± 0.03* 0.87 ± 0.04 8.64 ± 2.48* 9.42 ± 2.19 

RAA 1.94 ± 0.44* 2.20 ± 0.51 0.90 ± 0.03* 0.88 ± 0.04 6.54 ± 1.97* 7.71 ± 2.11 

A
o

rt
ic

 

tr
ac

t 

Entire 0.99 ± 0.21* 1.21 ± 0.58 0.88 ± 0.04* 0.86 ± 0.07 2.52 ± 0.66* 3.11 ± 2.12 

* paired t-test against zero (p<0.05). TV – Tricuspid Valve; VC – Vena Cava; RAA – Right Atrial Appendage. 

 

 
Figure 11 – Point-to-surface error obtained with and without competition for the LA (a), RA (b) and aortic tract (c) in MRI. 
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traditional BEAS formulation. Regarding the remaining chambers, Table 4 indicates the 

accuracy of each semi-automatic contouring against the manual one. The influence of each 

region (RAA, vena cava, valve plane) in the final contour was also assessed, showing a 

correct and accurate definition of the RA body and aortic tract. Again, the competitive 

strategy proved to be more robust than the free evolution technique, with statistically 

significant differences. Specifically, the RA proved to benefit most from the proposed 

competition formulation. Looking for the wall region analysis, a correct definition of these 

smooth and thin regions was only achieved by the competitive BEAS (Figure 12). 

Furthermore, the sensitivity of the segmentation result for different    thickness parameters 

was evaluated (see Figure 8b), presenting a similar trend to the one obtained for CT 

datasets. Regarding the computational time, the competitive BEAS required 28.9±6.2 s, 

while the traditional BEAS only needed 16.0±1.4 s. Representative example results are 

presented in Figure 13. 

4. Discussion 

In this study, we present a novel technique to accurately segment multiple structures. In 

opposition to the majority of the state-of-the-art techniques, constraints to allow thin walls 

between multiple structures are embedded. Furthermore, when compared with previous 

works addressing the same issue (Gao et al., 2012), the proposed formulation appears to 

present a superior performance for the delineation of heterogeneous and noisy walls, 

keeping a minimal wall thickness for all the different scenarios. This technique was 

integrated into an efficient 3D segmentation framework and the advantages of the novel 

competitive methodology was proven for atrial body segmentation. Note that evaluation of 

the mid thin walls is relevant in several clinical evaluations, such as optimal inter-atrial 

puncture location for transseptal puncture (Morais et al., 2016) and for the evaluation of the 

aortic wall thickness (Malayeri et al., 2008). To the author’s best knowledge, no previous 

work was presented for accurate segmentation of the atrial region with intact mid-thin 

walls, being a clear novelty of this work. Previous works as (Ecabert et al., 2011) and 

(Zuluaga et al., 2013) simply merge the different contours (if overlap happens) or prevented 

gap/vacuum regions, being sub-optimal strategies for clinical evaluation of these thin 

regions. Although no significant differences are expected between the merged contour 

strategies and our approach in terms of segmentation evaluation metrics (e.g. P2S or Dice), 

the merged contour approaches are not suitable for novel image-guided minimally invasive 

interventions focused on atrial wall as presented by (Bourier et al., 2016). 

A first evaluation of the proposed competitive approach was performed on atrial region 

segmentation in CT images. The obtained results proved the high accuracy of the method, 

with errors similar to the ones found in other studies in literature (Ecabert et al., 2011; 

Kirişli et al., 2010; Zheng et al., 2008), particularly for LA (Figure 9) and aortic tract 

(Table 3). Indeed, the proposed double-stage segmentation approach (i.e. BEAS-threshold – 
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section 2.1.4 and BEAS-segmentation – section 2.1.5) showed its added-value and 

robustness for atrial segmentation. While the threshold-based stage uses a fast contour 

growing approach to obtain a rough estimation of the target anatomy, the segmentation 

stage applies a localized/regional approach to accurately refine the contour to the real 

anatomic boundaries. Both stages are boosted by the edge-based and regularization terms, 

which always pushes the contour to the nearest edge (i.e. potential optimal transition) and 

prevents incorrect shapes caused by vacuum regions or noise (e.g. right atrium), 

respectively. It should be noted that pure segmentation without an initialization stage is not 

feasible, since the current initialization (i.e. sphere in the middle of the cavity) is too far 

from the real boundaries being therefore sensitive to local minima or even noisy regions 

inside the blood pool. Moreover,  the proposed method showed its high and superior 

performance for segmentation of mid thin walls due to the novel proposed competitive 

strategy (Figure 5). Since the current experiment was only focused on the atrial body and 

the effectiveness of the competitive approach for atrial region segmentation, 3D bounding 

boxes were virtually generated by one experienced observer to separate the atrial body from 

the great vessels. Similar strategies to compute the segmentation errors have been presented 

in literature (Ecabert et al., 2011; Zheng et al., 2008). Furthermore, we would like to 

emphasize that the current BEAS formulation, based on explicit functions, intrinsically 

imposes shape limitations on the model, preventing segmentation of the atrial body plus 

great vessels. For that, a combination of different explicit functions (one function to the 

body and another to each vessel) would be required. As expected, the errors significantly 

reduce from the entire mesh situation until the totally cropped version. The biggest 

differences were found when the appendage’s bounding box was considered, which is 

explained by the variable and complex anatomy found (Tobon-Gomez et al., 2015) (Table 

3). Nevertheless, previous segmentation strategies showed similar limitations to capture the 

appendage region (Ecabert et al., 2011; Tobon-Gomez et al., 2015; Zheng et al., 2008). 

 

Figure 12 – Point-to-surface (P2S) error and 95
th

 percentile of Hausdorff error obtained for each thin wall in MRI using the 
proposed strategy with and without competition. LA – Left Atrium, RA – Right atrium, Ao – Aortic tract.  
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Moreover, the crop through the valve plane showed a small reduction on the final error 

result, proving the robustness of the initialization technique, i.e. the use of the ventricular 

region during BEAS-threshold to compete with the atria and consequently define the valve 

planes. 

An inferior performance was found for the RA body (Table 3 and Figure 6). Several 

issues are typically described in RA segmentation (Ecabert et al., 2011; Zheng et al., 2008), 

namely: 1) difficulties to distinguish between vena cava region and atrial body, 2) noisy 

blood pool due to the contrast in certain regions, and 3) cumbersome tricuspid valve 

identification. Nevertheless, the proposed initialization strategy proved to be able to deal 

with these issues, where the well-defined and well-contrasted left heart works as a barrier 

for the right heart. The competitive approach intrinsically includes spatial constraints 

between contours, easing and improving the segmentation of noisy regions as typically 

found in the RA. As such, while the left heart is allowed to freely evolve due to the high 

signal-to-noise ratio found in the LA body and the clear edge map obtained, the right heart 

contour is always controlled by the left heart during the BEAS-threshold. Thus, contours’ 

overlap is prevented, by having the right heart surfaces pushed when initialized inside the 

left heart region.  

Figure 4 evidenced the importance of this competitive initialization for RA 

segmentation, with significant differences between the strategy with and without 

competition. In fact, a competitive strategy with confidence terms was never presented 

before. Furthermore, our competitive methodology is able to deal with all BEAS shapes 

(i.e. cylindrical, spherical, among others), being a clear advantage and an added value for 

this generic framework. We would also like to emphasize that the required minimal 

thickness parameter (  ) does not have a high influence in the final segmentation result 

(Figure 8a).  Since    is only used as a threshold value to initialize the competition process, 

and since walls thinner than    are still allowed in the current implementation, optimal 

selection of the    parameter is not required. However, for extreme values, differences are 

observed due to a high penalization. Regarding the computational time, although the 

competitive approach is significantly slower than the normal free-evolution BEAS, it is still 

attractive and notably faster than previously presented multi-structure segmentation 

techniques with competitive contours (Faisal et al., 2015). 

Similar observations were obtained for MRI datasets (Table 4). However, larger errors 

were obtained when compared with the CT results. A similar trend (i.e. higher errors in MR 

data) was found for the remaining state-of-the-methods that segment both CT/MR images 

and even in terms of inter-observer variability. MR segmentation is more challenging than 

CT due to the larger pixel size (approximately four times larger than in CT) and inter-slice 

spacing and the noisy blood pools found in MR (Figure 13), as clearly stated in (Tobon-

Gomez et al., 2015). Furthermore, the performance of the edge map is suboptimal when 

compared to the CT one due to the multiple transitions found in the atrial bodies, and the 
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holes found in the thin walls. In this sense, and in opposition to the observed in CT, 

significant differences were found in the entire atrial region between the free-evolution and 

the competitive BEAS approaches (Figure 11). In order to increase the accuracy of the 

atrial segmentation, we believe that a better initialization (anatomic initialization instead of 

a point in the middle of the atrial body) and even a complete segmentation of the atrial 

anatomy (body plus vessels) would be required. Regarding the LA benchmark for MR 

(Figure 10) (Tobon-Gomez et al., 2015), the proposed methodology proved to be 

competitive against the best strategies, and similar to the inter-observer variability. It 

should be noticed that only a few methods were able to accurately segment the LA in both 

CT and MR, all being computationally demanding strategies, such as atlas-based 

techniques (Tobon-Gomez et al., 2015; Zuluaga et al., 2013), and requiring reference/atlas 

cases during the segmentation stage, which constraints the versatility and robustness of the 

method to the shape variability found in the reference cases. Nevertheless, the proposed 

methodology is computationally more attractive and no strong assumption (i.e. no training 

dataset) is required, with the relative position between the different cavities of the atrial 

region being sufficient to achieve successful results. Similarly to the CT evaluation, we also 

assessed the influence of the estimated    parameter in the final MR result (Figure 8b), and 

no significant differences were found between the selected parameter (i.e. 2 mm) and the 

neighboring options. This result proved that exhaustive tuning of this parameter is not 

mandatory, proving the robustness of this strategy. Indeed and although different    values 

could be selected for the inter-atrial and aortic wall problems, this result also justifies why 

we applied the same wall thickness for both scenarios. 

Overall, the added-value of the proposed competitive approach was easily observed for 

the segmentation of atrial region and its heterogeneous thin mid walls (Figures 5 and 12-

13). Merged contours were always prevented by the proposed approach, which was not 

obtained by the traditional approach. Moreover, the need for competitive approaches was 

more pronounced in noisy situations (e.g., inter-atrial septal wall in MRI, Figure 13). In 

these situations (i.e. missing walls), total overlap between contours is obtained with the free 

evolution strategy (Figures 13e), since no boundaries/transitions are found during the 

segmentation process. Nevertheless, it should be noted that correct segmentation of the 

mid-thin walls is not only caused by the competitive formulation, depending on the 

remaining segmentation terms too. The competitive approach only locally constrains the 

contour evolution when they are too near, reducing the step size used throughout the 

contour evolution and allowing a correct refinement of the contours to the real anatomy.  
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Figure 13 - Segmentation results obtained with and without competitive BEAS technique for the cases corresponding to 
the 10th (a), 30th (b), 50th (c), 70th (d), and 90th (e) percentiles, according to the average P2S error. Semi-automatic left 
atrium is represented as red, the right atrium as green and blue is used for the aortic tract. Yellow contours represent 
manual delineations. The error is presented using a cropped surface (removing bounding boxes and regions below the 
valve plane). 
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Finally, we would like to mention that the implementation of this technique in a 

different framework (such as the traditional level sets) is also a viable option, allowing the 

application of the competitive method for segmentation of more complex shape scenarios 

(see Appendix A). Moreover, although the proposed method was proven to be accurate for 

atrial region segmentation in MR and CT, the competitive approach is generic and it also 

shows potential for a multitude of applications in multiple imaging modalities, such as: 

segmentation of left ventricular myocardial wall ((Queirós et al., 2014), see multimedia file 

1), segmentation of both “true” and “false” lumen in aortic dissection ((Chen et al., 2013), 

see multimedia file 2), carotid artery bifurcation wall (Arias-Lorza et al., 2016), pelvic 

cavity (Ma et al., 2012), among others. 

5. Conclusions 

The proposed competitive approach proved to be suitable for atrial region segmentation 

problems with results similar to other state-of-the-art methods. No merging/overlap of the 

multiple contours was obtained, which was not possible with the free-evolution version. 

Moreover and in opposition to the remaining methods described in the literature, the 

proposed framework showed its clear added-value for the segmentation of mid thin walls. 

Finally, segmentation of heterogeneous/noisy regions, bad image quality and missed walls 

cases were significantly improved with the proposed competitive approach.  

Appendix A – Generalization for a standard level-set framework 

In a standard level-set framework as described by (Lankton and Tannenbaum, 2008), 

the general expression of its energy is formulated as: 

  ∫   (  ∫  (      (      
  

  (A.1) 

with,  

 (       (     (       (   (    (     (A.2) 

where,     and      define the energy criteria for the interior and exterior of the interface  .    is 

the Heaviside operator applied to the level-set like function  . Its expansion for multi-

structure segmentation problems is straightforward, as described in equation (2). Multiple 

energies (i.e. one per contour  ) are used (  energies), which are posteriorly combined 

during the optimization (equation (2)). 

The curve evolution is computed as the first derivative of each energy with respect to 

  , as exhaustively described in (Lankton and Tannenbaum, 2008): 

   

  
(      

(  ∫ (        (    (    
 

  (A.3) 

where   (   (   is the first derivative of    with respect to   . 
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        Similarly to equation (17), the competition strategy between   contours can be 

embedded in this standard framework through: 

   (    (       (   ( ̅ 
  (   ∑     

 

       

  ̅   
   (  )  

         (          )  

(A.4) 

with  ̅ 
   representing the image-based terms (e.g. localized Chan-Vese, among others) and 

 ̅   
    the competition term.  ̅   

    is defined as presented in equation (18).  
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