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Business Volume Discounts

Christian Bohner, Stefan Minner

TUM School of Management, Technische Universität München,

Arcisstr. 21, 80333 Munich, Germany

Abstract

We consider a supply chain problem with simultaneous supplier selection and order

allocation for multiple products. The suppliers o�er quantity and business volume

discounts, and they are subject to failure. The buyer aims at minimizing total ex-

pected costs. We consider both all-units and incremental quantity discounts and �nd

optimal solutions through mixed-integer linear programming. We discuss the trade-

o� between economies of scale and failure risk and show the cost reduction of our

exact approach compared to a previously proposed heuristic.

Key words: supplier selection; order allocation; quantity discount; business volume

discount; failure risk; mixed-integer linear programming

1 Introduction

Natural disasters not only cause horri�c human tragedies; they also shatter the economy

and in�uence businesses all around the globe. Japan's 2011 "quadruple disaster" (The

Economist, 2011) is one recent example of a supply chain disruption that highlights the

importance to hedge supply chains against supplier outage. Multi-sourcing, i.e. having

di�erent suppliers for the same item, is one way of approaching this issue. However, this

leads to a more complex supply chain (e.g. setting up order policies is more di�cult),

the contract negotiations with di�erent suppliers may be rather time-consuming, or the

costs per item may increase due to lower quantity discounts compared to single-sourcing.

Balancing the advantages and disadvantages of multi-sourcing is a key issue when it comes

to the design of the supply chain and a major challenge for production/inventory systems.

When sourcing an item, a buyer has to consider the risk of a supply chain disruption,

which has a certain probability. Dealing with this risk, the buyer needs to decide upon

the supplier selection and the allocation of orders between suppliers. Ruiz-Torres and
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Mahmoodi (2006) studied a problem with multiple suppliers subject to failure risk and

used an enumeration to decide about supplier selection and order allocation. Meena et

al. (2011) considered disruptions due to catastrophic events and determined the optimal

number of suppliers. Sawik (2014) compared single sourcing to dual sourcing strategies

in make-to-order systems. Silbermayr and Minner (2016) considered multi-sourcing with

di�erent speeds and costs per supplier and examined the trade-o� between economies of

scale and supply disruptions. Tang (2006), Snyder et al. (2016) and Fahimnia et al. (2015)

reviewed supply chains subject to disruptions and their risk management. Thomas and

Tyworth (2006) presented a critical literature review on order splitting. Minner (2003)

provided an overview of multi-sourcing problems.

Individual contracts with suppliers often allow for quantity discounts, i.e. in addition

to considering the disruption risk of a supplier, there are incentives for the buyer to

allocate larger orders to suppliers with larger quantity discounts. Incremental discounts

only apply to items exceeding a certain order quantity while all-units discounts apply to

all items. Burke et al. (2008) modeled incremental quantity discounts without supplier

failure risk. Munson and Rosenblatt (1998) reviewed quantity discounts and Munson

and Jackson (2015) provided a more recent, extensive overview on quantity discounts.

Another regularly observed price reduction comes from business volume discounts, i.e.

the supplier o�ers a discount on the total amount of sales generated by a buyer. Sadrian

and Yoon (1994) and Xia and Wu (2007) considered supplier selection under business

volume discounts. An overview on multi-criteria supplier selection was presented in Ho

et al. (2010).

Our research is based on Meena and Sarmah (2013) who considered order allocation

with supplier failure risk, all-units quantity discounts and deterministic demand among a

pre-selected, �xed set of suppliers. The authors proposed a genetic algorithm for solving

the optimization problem. However, formulating the problem as a mixed-integer linear

program (MILP), we �nd optimal solutions to all their instances in negligible computation

time. Their heuristic solutions deviate from our optimal solutions by up to 4%. We further

extend the problem to include integrated supplier selection and multiple products. We

model both incremental and all-units quantity discounts and include business volume

discounts. In a numerical study, we show that our MILP-approach solves realistic problem
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sizes.

The paper is structured as follows: Section 2 provides an introduction to the problem

and presents the optimization model. In Section 3, we present numerical results that

consist of a) a discussion of the results of Meena and Sarmah (2013) and b) a numerical

study of the extended problem under a full factorial design. In Section 4, we provide

conclusions and ideas for further research.

2 Model

We consider a risk-neutral vendor of multiple products who faces deterministic demand

and has to decide about the supplier selection and order allocation for a single period.

There is a pool of suppliers where every supplier o�ers both quantity discounts per product

and business volume discounts depending on the total sales volume. All suppliers may

disrupt and have certain failure probabilities that may be correlated. Further, a super-

event that hits all suppliers simultaneously can occur. Each supplier has a maximum

capacity for each product and delivers products in �xed lot sizes. From this supplier pool,

we want to �nd a selection of suppliers such that the total expected costs, consisting of

procurement costs, supplier management costs, and shortage penalty costs, are minimized.

If a supplier is selected, �xed supplier management costs that are independent of the

number of products ordered from this supplier, arise. For each product ordered at a

supplier, a certain minimum share of the total demand has to be allocated. If a failure of

one of the selected suppliers occurs, the remaining selected suppliers try to compensate for

this loss by producing up to their respective capacity limits. Note that for each product

only those suppliers who have been selected to deliver the product in the �rst place can

compensate a loss.

The sequence of events is as follows: the buyer selects suppliers and allocates orders.

Selected suppliers might fail; their quantities are reallocated to suppliers who can com-

pensate for the loss. The available share of the orders is delivered, the rest is lost and

incurs a penalty cost.

The quantity discounts o�ered by the suppliers have di�erent levels; the start of one

level is denoted as a price break quantity. For all-units discounts, the attained quantity
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Table 1. Notation.

Sets and parameters
p ∈ P products
i ∈ N suppliers
j ∈ J quantity discount levels
b ∈ B business volume discount levels
P(N) set of supplier selections | power set of N
m ∈ B(N) enumeration of selections | B(N) = {1, ..., |P(N)|}
Tpm supplier selection m for product p | Tpm ∈ P(N)
P(Tpm) power set of Tpm

Dp deterministic demand for product p
Cp base price for product p
Lp per unit penalty cost for not satisfying the demand for product p
F management costs per supplier (identical for all suppliers i ∈ N)
Qpi lot size for product p at supplier i
Qmax

pi capacity for product p at supplier i
Qmin

pi minimum order quantity for product p at supplier i
(if supplier i is selected for product p)

Qpij price break quantity for product p at supplier i at quantity discount level j
dpij relative quantity discount at price break quantity Qpij

Q̃ib price break volume at supplier i for business volume discount level b

d̃ib relative business volume discount at price break volume Q̃ib

dpijb relative combined quantity and volume discounts,

dpijb = 1− (1− dpij) · (1− d̃ib)
p∗ probability of super-event that all suppliers fail
Xi binary random variable | Xi = 1 if supplier i fails
ai, cm auxiliary parameters (explained below)
M large number
Decision variables
qpijb quantity of product p at supplier i with quantity discount j

and volume discount b
qpij quantity of pruduct p at supplier i with quantity discount j
qpi quantity of product p at supplier i
q̃pib quantity of product p at supplier i with volume discount b
kpi integer for determining multiple of lot size of product p at supplier i,

qpi = kpi ·Qpi

xpij indicator whether quantity qpij > 0
xpi indicator whether supplier i is selected for product p, i.e. if qpi > 0
xi indicator whether supplier i is selected, i.e. ∃qpi > 0
x̃ib indicator whether volume discount b applies at supplier i
bpm indicator whether supplier selection Tpm is chosen
zp auxiliary decision variable (explained below)
upm, ūpm auxiliary binary decision variables (explained below)

4



  

discount is applied to all units ordered, whereas in the case of incremental discounts, the

respective discount level only applies to those units exceeding the price break quantity.

A supplier o�ers a business volume discount if the total sales volume of a buyer exceeds

a certain threshold. That is, the buyer's total costs reduce by a certain percentage. For

business volume discounts we use the term price break volumes, analogously to price break

quantities. Table 1 introduces the notation that is used to develop the model.

The total expected costs have three components: (i) purchasing cost, (ii) supplier man-

agement costs, and (iii) expected total penalty costs. First, we have purchasing costs

PC =
∑
p∈P

Cp ·
∑
i∈N

∑
j∈J

∑
b∈B

qpijb · (1− dpijb). (1)

The total quantity of product p ordered at supplier i, qpi, can be uniquely mapped to

one attained quantity discount level j and one attained business volume discount level

b. For this combination of quantity and business volume discounts, it holds qpijb = qpi,

while for all other combinations we have qpijb = 0, as will be ensured in the constraints.

Therefore, �rst summing over all quantity and business volume discounts yields the desired

summands for �nally summing over products and suppliers. Multiplication with (1−dpijb)

applies the combined quantity and volume discount per product and supplier.

We further have supplier management costs, given through

SMC = F ·
∑
i∈N

xi. (2)

These are linear in the number of suppliers and apply if a supplier is selected for at least

one product, regardless of the number of products and the respective quantities.

The last component of the total costs are the expected total penalty costs (ETP). For

a �xed set of suppliers S ⊆ N , these are obtained by

ETP =
∑
p∈P

Lp ·

(
p∗ ·Dp + (1− p∗) ·

∑
A∈P(S)

P(A) ·
[
Dp −min

(
Dp,

∑
l∈S\A

Qmax
pl

)])
, (3)

where

P(A) = P(Xj = 1,∀j ∈ A,Xl = 0,∀l ∈ S\A). (4)
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For a given supplier selection, A is a subset of failed suppliers. P(A) represents the joint

probability of having a failure of all suppliers in A and no failure by the remaining suppliers

S\A. If a supplier fails, the remaining suppliers try to compensate the loss through extra

production. Following Meena and Sarmah (2013), the purchasing prices for the additional

production lots equal the prices of the failed suppliers, i.e. there are no additional costs

for the buyer to consider. We explain ETP in more detail but will do so for our broader

setting where the supplier selection is part of the optimization, rather than given. Here,

the expected total penalty costs depend on the number of selected suppliers, i.e. they are

non-linear. We deal with this non-linearity by preprocessing the expected penalty costs of

product p and selection m

Vpm = Lp ·
∑

A∈P(Tpm)

P(A) ·
[
Dp −min

(
Dp,

∑
l∈Tpm\A

Qmax
pl

)]
(5)

for all possible selections Tpm ∈ P(N), which resembles the last term in the above def-

inition of ETP. For obtaining the expected penalty costs Vpm of selection Tpm, we sum

over all possible sets of jointly failed suppliers A ∈ P(Tpm). For each of these sets A,

we calculate the joint failure probability of having failures by suppliers i ∈ A (Xi = 1)

and of having no failures by suppliers i ∈ Tpm\A (Xi = 0). The resulting probability is

multiplied by the total lost demand for product p arising from failure set A, which is the

di�erence between the demand and the sum of the capacities of the non-failed suppliers.

With this de�nition of expected penalty costs Vpm, we �nd the linear expression

ETP =
∑
p∈P

(
p∗ · Lp ·Dp + (1− p∗) ·

∑
m∈B(N)

bpm · Vpm

)
, (6)

with bpm = 1 for exactly one selection Tpm per product p and zero otherwise. The ETP per

product then consist of the probability of the super-event that hits all suppliers, p∗, where

all demand is lost, plus the probability of the super-event not happening multiplied by

the corresponding expected penalty costs of the particular product and supplier selection

for that product. Finally, we sum over all products.
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2.1 All-Units Discount

The MILP formulation is given through

min TEC = PC + SMC + ETP (7)

s.t. Qmin
pi · xpi ≤ qpi ≤ Qmax

pi · xpi, ∀ p ∈ P, i ∈ N, (8)

qpi = kpi ·Qpi, ∀ p ∈ P, i ∈ N, (9)∑
i∈N

qpi = Dp, ∀ p ∈ P, (10)

xpi ≤ xi, ∀ p ∈ P, i ∈ N, (11)

Qpij · xpij ≤ qpij < Qpi,j+1 · xpij, ∀ p ∈ P, i ∈ N, j ∈ J, (12)∑
j∈J

qpij = qpi, ∀ p ∈ P, i ∈ N, (13)

∑
j∈J

xpij = xpi, ∀ p ∈ P, i ∈ N, (14)

Q̃ib · x̃ib ≤
∑
p∈P

Cp · q̃pib < Q̃i,b+1 · x̃ib, ∀ i ∈ N, b ∈ B, (15)

∑
b∈B

q̃pib = qpi, ∀ p ∈ P, i ∈ N, (16)

∑
b∈B

x̃ib = xi, ∀ i ∈ N, (17)

∑
b∈B

qpijb = qpij, ∀ p ∈ P, i ∈ N, j ∈ J, (18)

∑
j∈J

qpijb = q̃pib, ∀ p ∈ P, i ∈ N, b ∈ B, (19)

zp =
∑
i∈N

ai · xpi, ∀p ∈ P, (20)

zp − cpm ≤M · upm, ∀ p ∈ P, m ∈ B(N), (21)

zp − cpm ≥ −M · ūpm ∀ p ∈ P,m ∈ B(N), (22)

bpm = 1− (upm + ūpm), ∀ p ∈ P, m ∈ B(N), (23)

upm + ūpm ≤ 1, ∀ p ∈ P, m ∈ B(N), (24)∑
m∈B(N)

bpm = 1, ∀ p ∈ P, (25)

bpm, upm, ūpm, xpij, xpi, x̃ib, xi ∈ {0, 1}, ∀ p ∈ P, i ∈ N, j ∈ J, b ∈ B, m ∈ B(N),

(26)
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qpijb, qpij, q̃pib, qpi, kpi ∈ N, ∀ p ∈ P, i ∈ N, j ∈ J, b ∈ B, (27)

zp ≥ 0, ∀ p ∈ P. (28)

Constraint (8) ensures that the quantity qpi of product p ordered from supplier i, if

selected, is larger than the minimum quantity and does not exceed the supplier's capacity.

(9) ensures that qpi is a multiple of the lot size given by supplier i, (10) requires the

demand for all products to be exactly met. Note that the demand for product p has to

be a linear combination of the lot sizes of the selected suppliers, otherwise constraints

(9) and (10) might cause an infeasibility. This is trivially satis�ed for all demands if the

lot size is one. (11) makes sure that, if a supplier is selected for at least one product

p, supplier management costs for this supplier arise. (12)-(14) determine the quantity

discount at supplier i for product p. The quantity qpij is only positive if supplier i is

selected for product p and discount level j is attained. (15)-(17) determine the business

volume discount at supplier i using the same logic. For b̄ = supB and j̄ = sup J , we de�ne

Q̃i,b̄+1 =
∑

p∈P Cp ·Dp, ∀ i, and Qpi,j̄+1 = Qmax
pi . Note that sets B and J are de�ned such

that Q̃i,1 = 0, Qpi,1 = 0, where there might be either no discounts in the �rst interval, i.e.

dpi,1,1 = 0 ∀ p, i, or di�erences in base prices among suppliers modeled through positive

discount levels dpi,1,1 > 0 for some suppliers. (18)-(19) determine the quantity of product

p that is ordered at supplier i at discount levels j and b. q̃pib and qpij are positive for a

maximum of one b and j, respectively. Together, these constraints ensure that supplier i

delivers product p at exactly one discount level combination of b and j.

In Table 1, we introduced auxiliary parameters that are explained in the following.

One of the crucial elements of the MILP model is the use of preprocessing to avoid non-

linearities. In order to determine the ETP, we computed the expected penalty for every

supplier selection of every product, Vpm. Now we have to make sure that the respective

value of ETP in the objective function for the chosen sets of suppliers is added. That is,

we only add one Vpm for every product p in equation (6), since we only have one selection

per product. In other words, bpm = 1 for exactly one selection m. Constraints (20)-(25)

make sure that we have exactly one positive decision variable bpm for each product p. In

order to achieve this, the parameters ai are assigned to suppliers i ∈ N and parameters
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cpm are assigned to selections Tpm ∈ P(N) such that

cpm =
∑

i∈Tpm

ai.

ai must be chosen such that cpm1 6= cpm2 , ∀ m1,m2 ∈ B(N), m1 6= m2, e.g. ai = 1
2i−1 . The

constraints ensure that zp from (20) equals cpm for exactly one selection m ∈ B(N), and

for this selection m, the binary decision variable bpm is set to one.

2.2 Incremental Discount

When it comes to incremental discounts, di�erent quantity discounts apply to di�erent

shares of the purchased quantity (as opposed to all-units discounts, where one discount

applies to the entire quantity). Taking this into consideration, we have to determine which

discount applies to which share. To do so, we introduce new decision variables, additional

constraints and an additional summand in the objective function. Constraints (29) - (32)

ensure that if qpij̃b ≥ Qpij̃, the indicator δpijb is set to one for all j ∈ {2, ..., j̃}. wpijb gives

the quantity of product p ordered from supplier i at volume discount level b with lower

quantity discount than dpij̃b. ε is a �xed small positive real number.

q̃pib −Qpij ≥ −M · (1− δpijb), ∀ p ∈ P, i ∈ N, j ∈ J\{1}, b ∈ B, (29)

q̃pib −Qpij + ε ≤M · δpijb, ∀ p ∈ P, i ∈ N, j ∈ J\{1}, b ∈ B, (30)

wpijb = (Qpij − 1) · δpijb, ∀ p ∈ P, i ∈ N, j ∈ J\{1}, b ∈ B, (31)

δpijb ∈ {0, 1}, ∀ p ∈ P, i ∈ N, j ∈ J\{1}, (32)

wpijb ≥ 0, ∀ p ∈ P, i ∈ N, j ∈ J\{1}, b ∈ B. (33)

The term IN is added to the objective function and accounts for the additional costs as

compared to all-units discounts.

IN =
∑
p∈P

Cp

∑
i∈N

∑
j∈J\{1}

∑
b∈B

wpijb · (dpijb − dpi,j−1,b). (34)

9



  

2.3 Compensation Costs

The assumption made by Meena and Sarmah (2013) that other suppliers compensate for

a supplier failure at the same price, including discounts, seems somewhat disputable. In

the following, we present an approach for adjusting the model to higher compensation

costs. Recall that Cpi = Cp · (1 − dpi,1) is the base price for product p at supplier i.

We solve the following transportation problem (TPP) for all selections Tpm\A with p ∈

P, m ∈ B(N), A ∈ P(Tpm). The TPP does an optimal allocation of orders for the given

(remaining) number of suppliers. It is part of the preprocessing and uses an additional

arti�cial supplier N+1, to whom the lost demands are allocated at a cost of Cp,N+1 = Lp.

min CTpm\A =
∑

i∈Tpm\A∪{N+1}

Cpi · qpi (35)

s.t.
∑

i∈Tpm\A∪{N+1}

qpi = Dp, (36)

qpi ≤ Qmax
pi , ∀ i ∈ Tpm\A ∪ {N + 1} (37)

qpi ∈ N, ∀ i ∈ Tpm\A ∪ {N + 1}. (38)

We set Qmax
p,N+1 = Dp. The objective (35) minimizes the total price paid under the selection

Tpm\A. Constraints (36)-(38) ensure that all demand is met, all suppliers only deliver up

to their capacities and order quantities are non-negative integers. In (39), we subtract the

optimal costs from the TPP without supplier failure from those with supplier failure. This

di�erence serves as the combined failure and compensation cost of supplier selection Tpm.

rA
pm = CTpm\A − CTpm . (39)

We replace the term Vpm in (6) by the expected penalty and compensation costs of product

p and selection m

Ṽpm =
∑

A∈P(Tpm)

P(A) · rA
pm. (40)

As we do not consider discounts in the TPP, Ṽpm does not include exact compensation

costs. Instead, it serves as a close approximation. In particular, it is more realistic than

the initial assumption of no compensation costs at all. The computation time for one TPP

10



  

is less than 0.1 seconds.

3 Numerical Results

3.1 Discussion of Meena and Sarmah (2013)

We consider the numerical study by Meena and Sarmah (2013) and compare their results

with our exact approach. Their problem has a single product, all-units quantity discounts,

and supplier failure risk. All of our computations are conducted using Xpress-MP 7.9 on

an Intel(R) Core(TM) i7-3770, 3.4 GHz processor with 16 GB RAM.

3.1.1 Order Allocation

Meena and Sarmah (2013) consider only the order allocation part of the problem, i.e.

they focus on �nding the optimal allocation for a given set of suppliers. They use a

genetic algorithm to �nd solutions that are not always optimal. In Table 2, we list the

parameters of their base case and three instances from their sensitivity analysis where their

order allocation was suboptimal. (In Meena and Sarmah (2013), these are the instances

3 and 6 in Table 5 and instance 4 in Table 6.) In these three instances, the problem is

to �nd the best allocation among the 3 predetermined suppliers 8, 9 and 10. We have

C = 10, F = 20, L = 15, p∗ = 0.01, Qmin
i = 10, Qi = 1 ∀i. As there is only one product,

we need no product index p. Large deviations of their results from the optimal allocation,

as observed in instances 2 and 3 of Meena and Sarmah (2013), cause a large increase in

total costs.

Solving the problem introduced by Meena and Sarmah (2013) requires only a small

special case of our model with little complexity, no preprocessing e�ort (as the supplier

selection is already given) and negligible computation time. As exact solutions can be

obtained that easily, we propose to always apply our exact approach, rather than the

heuristic. The relative improvements in Table 2 are up to 4%. Using other examples may

increase these improvements even further.
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Table 2. Cases where Meena and Sarmah (2013) �nd suboptimal results.

D = 100 Base case parameters
Supplier i Qmax

i pi Qi,1 Qi,2 Qi,3 di,1 di,2 di,3

1 70 0.13 30 45 60 0.11 0.22 0.31
2 93 0.09 40 55 70 0.07 0.19 0.29
3 110 0.15 35 45 50 0.09 0.18 0.33
4 90 0.17 50 60 80 0.14 0.19 0.25
5 105 0.12 30 40 45 0.10 0.15 0.27
6 80 0.19 37 52 60 0.17 0.21 0.30
7 95 0.05 30 45 55 0.13 0.23 0.35
8 115 0.14 45 50 65 0.10 0.29 0.37
9 100 0.11 40 55 60 0.15 0.25 0.35
10 140 0.16 50 60 70 0.20 0.27 0.46

D = 150 qi (MS) qi (OPT)
8 0.05 0.09 0.12 15 15
9 base case base case 0.23 0.26 0.28 60 65
10 0.22 0.24 0.26 75 70

TEC 1249.9 1248.58

D = 300
8 0.05 0.09 0.12 90 65
9 base case base case 0.23 0.26 0.28 90 100
10 0.22 0.24 0.26 120 135

TEC 2880.9 2839.44

D = 200
8 120 0.14 50 70 90 100 70
9 90 0.11 70 80 100 base case 80 20
10 110 0.16 60 90 100 20 110

TEC 1595.9 1533.15
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3.1.2 Supplier Selection and Order Allocation

We now apply supplier selection and order allocation simultaneously to the basic problem

presented by Meena and Sarmah (2013) with 10 suppliers and 3 quantity discount levels.

We �nd that the optimal solution is to order 10 units at supplier 7 and 90 units at supplier

10, with an objective value of 664.17. For this extended, simultaneous problem, the MILP

needs 435 Simplex iterations, 97 integer nodes and 17.8 seconds of computation time with

default solver settings.

Table 3. Selection and allocation for given number of suppliers.
No. Selection Allocation Obj. MIP nodes Time (s)
1 10 812.6 1 0.2
2 (7,10) q10 = 90 664.17 1 6.4
3 (7,9,10) q10 = 80 709.55 17 5.3
4 (5,7,9,10) q10 = 70 773.6 117 8.5
5 (3,5,7,9,10) q7 = 60 905.0 0 3.8
6 (2,3,5,7,8,9) q3 = 50 970.0 1 2.7
7 (3,5,6,7,8,9,10) q6 = 40 1087.0 7 4.1
8 (1,2,3,4,5,6,7,8) q7 = 30 1136.0 1 1
9 (1,3,4,5,6,7,8,9,10) q10 = 20 1195.0 0 0.1
10 (1,2,3,4,5,6,7,8,9,10) 1215.0 1 0.1

In order to compare the impact of di�erent numbers of suppliers on the total costs,

we �x the number of suppliers in the MILP. Table 3 shows the resulting selection and

allocation decisions. Having few suppliers, e.g. only one, economies of scale arise from

quantity discounts. However, this comes at the price of a higher failure risk. If you hedge

against failure risk by selecting more suppliers, the economies of scale decrease. Figure 1

depicts this trade-o� based on the optimal selections from Table 3. The decreasing line

represents ETP, measured on the right scale, and the increasing line represents the sum

of PC and SMC, measured on the left scale.

From this �gure, it becomes clear that 2, 3, or 4 suppliers yield lower total costs than

having only one supplier. This means that, in this problem, hedging disruption risk has a

higher priority than realizing economies of scale.
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Figure 1. Economies of scale vs. failure risk.

3.2 Full Factorial Design

3.2.1 Data

As we want to evaluate our MILP model for multi-product cases that include business

volume discounts, we conduct a numerical study under a full factorial design. We use

10 suppliers, which gives us 1, 024 possible supplier selections. Increasing the number of

suppliers to 15 would lead to 32, 768 possible supplier selections, which is the number of

binary variables per product required to determine ETP. Nevertheless, having a prese-

lected pool of 10 suppliers before doing the �nal optimization of selection and allocation

seems reasonable.

We have �xed the capacity for each supplier and each product as given in Table 4 and

vary the parameters as follows.

|P | ∈ {10, 15}, |J | ∈ {2, 4, 7}, |B| ∈ {0, 3, 5},

D ∈ {D1, D2},P ∈ {P1,P2}, L ∈ {50, 100}, F ∈ {50, 100},

where D1 and D2 are deterministic demand vectors for all products. Demands and base

prices (in monetary units) for the products are given in Table 4. We generated the data

similar to Stadtler (2007).

In D1, demands vary strongly among products (µ = 60, σ = 37), while in D2, demands

are rather homogeneous (µ = 63, σ = 9). We assume supplier failures to be independent
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Table 4. Capacity, failure probability, demand and prices.
i 1 2 3 4 5 6 7 8 9 10
P1(i) 0.05 0.1 0.15 0.02 0.07 0.12 0.04 0.08 0.14 0.1
P2(i) 0.1 0.2 0.3 0.04 0.14 0.24 0.08 0.16 0.28 0.2
p Qmax

pi D1 D2 Cp

1 167 62 111 81 99 101 111 68 135 74 111 74 21
2 111 81 84 80 77 122 96 63 38 78 54 60 15
3 95 111 191 135 93 90 105 51 80 102 127 60 20
4 98 48 83 159 53 89 99 96 60 78 106 77 8
5 93 92 113 80 138 129 60 54 75 71 92 55 13
6 45 242 138 102 137 17 99 173 168 170 11 60 19
7 135 51 138 179 128 152 69 92 119 69 46 69 8
8 146 54 57 69 27 170 120 41 167 29 27 61 14
9 101 95 120 119 66 104 98 134 98 155 65 74 10
10 66 108 51 56 105 174 71 122 95 51 34 70 8
11 74 152 113 53 123 60 42 84 215 117 49 63 9
12 60 146 59 96 48 84 93 99 149 128 97 52 5
13 41 162 44 93 63 111 113 171 92 39 29 66 22
14 120 135 119 21 72 92 138 66 125 59 14 46 12
15 123 102 111 95 62 119 93 141 59 86 41 62 12

and the corresponding failure probabilities per supplier to be given through P1 and P2

(see Table 4). In particular, the failure probabilities under P2 are twice as high as under

P1. We vary the number of products between 10 and 15. By 10 products we mean the

�rst 10 products. The price breaks and quantity discounts are given in Tables A.1-A.2

in the Appendix. The business volume levels (in monetary units) and the corresponding

relative discounts are given in Table 5 and kept similar to those presented by Xia and Wu

(2007). We vary between 2, 4 and 7 quantity discount intervals and between 0, 3 and 5

business volume discount intervals. For both discount types, there is no discount in the

�rst interval, i.e. the base price of a product is the same for all suppliers. The instances

with more quantity or business volume intervals are extensions of the instances with fewer

intervals, i.e. |J | = 4 means the �rst four intervals of the seven given in Tables A.1-A.2

are available. According to Munson and Jackson (2015), the maximum quantity discount

is usually below 20%. For two and four quantity discount intervals, we stick to this value;

for seven intervals, we allow for larger maximum discounts.

All suppliers allow for any order size within their capacity, i.e. Qpi = 1 for all products

as long as the order size exceeds the minimum order quantity, which is set to Qmin
pi = 5

for all suppliers and products. The probability of a super-event hitting all suppliers is
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Table 5. Business volume levels and discounts.
b 1 2 3 4 5

Q̃ib 0 2000 4000 6000 8000

d̃ib 0 0.05 0.15 0.2 0.25

set to p∗ = 0.01. The penalty cost Lp per lost sale is identical for all products and is

varied between 50 and 100. So are the supplier management costs. In order to remain

in the setting of Meena and Sarmah (2013), we focus on the problem with costs for lost

demands but without compensation costs.

3.2.2 Results

We ran all 288 instances for four hours. 58% of the instances were solved to optimality,

74% of the instances have a gap of less than 2%. The average number of visited MIP

nodes is 31,000.

Supplier structure. For most products, there is one main supplier while the other sup-

pliers serve as backup. While the main supplier delivers most of the units of an item, a

backup supplier often only delivers the minimum quantity; her main function is to serve

as insurance against a failure of the main supplier. However, mostly due to volume dis-

counts, we sometimes see orders that are equally split among suppliers. This helps both

suppliers towards attaining their respective discount levels.

Quantity discounts. Varying the number of quantity discount levels between two, four

and seven, we observe a strong sensitivity of the total costs to these changes. If you have

more quantity discounts, a decrease in the total costs is natural; however, the decrease

from two to four intervals is about 14%, whereas the decrease from two to seven intervals

is about 35%. i.e. quite signi�cant. This e�ect is shown in Figure 2 (1). The explanation is

that for a higher number of discount intervals (and thus, in this study, higher attainable

discounts), the buyer's decision tends towards realizing economies of scale and reducing

the focus on risk management. This is shown in Figure 2 (2), which depicts the propor-

tion of expected total penalty costs in the total costs for the di�erent numbers of discount

intervals. For a higher number of intervals, the proportion of the expected total penalty

costs grows. In Figure 3 (1), where we look at the sensitivity of the number of suppliers

used per product to changes in the number of intervals, the e�ects underline the afore-
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Figure 3. (1) Av. no. of suppliers/product. | (2) Av. total costs of demands.

mentioned �ndings. If we have more discount intervals, fewer suppliers are used, which

increases the overall risk of su�ering from supplier failure. In Figure 3 (2), we compare

the two demand cases and �nd that the second demand pattern D2 can bene�t more if

two to four intervals are o�ered, while the �rst demand pattern D1 bene�ts more if seven

intervals are o�ered. The second demand pattern has a lower variation and fewer products

with low demands, i.e. more products reach higher discount levels in the �rst two cases.

However, also having fewer high demands, the second demand pattern has fewer chances

for fully exploiting discount levels �ve to seven � if they exist � than the �rst demand

pattern.

Business volume discounts. Looking at Figure 4 (1), we �nd that the number of business

volume discounts has a huge e�ect on the total costs, which is in line with the expectations.

However, the e�ect is somewhat smaller than the e�ect obtained from quantity discounts,

which is due to volume discounts being lower than quantity discounts. In Figure 4 (2),

we see that D1 bene�ts more from business volume discounts than D2 in all cases. In

particular, when having �ve business volume discount levels, the demand structure of D1
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allows for a better use of business volume discounts than D2. Larger discount levels lead to

a stronger focus on economies of scale and to more risk, i.e. the above analysis of quantity

discounts also applies to volume discounts.
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Figure 4. (1) Change of the total costs. | (2) Av. total costs per demand.

Penalty costs/Failure probabilities. If we double the penalty costs from 50 to 100, we

see an increase in the total costs of about 400 monetary units on average (Fig. 5 (1)). If

we double the failure probabilities from P1 to P2, the increase of the total costs is only

100 monetary units (Fig. 5 (2)). In particular, if we double failure probabilities instead of

penalty costs, the increase in the total costs is much lower.
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Figure 5. (1) Change of the total costs (L). | (2) Change of the total costs (P).

Risk mitigation strategies. We observe two di�erent strategies when risk (through L or

P) is increasing: (a) The buyer adds additional backup suppliers for several products as

insurance against a failure by the main supplier. (b) The buyer does a complete realloca-

tion and uses a less risky but more expensive main supplier. While (a) dilutes economies

of scale, (b) reduces the sheer number of suppliers and focuses more strongly on economies

of scale; however, with (b) one no longer has the cheapest main supplier. E�ect (b) can
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be observed more often when penalty costs are increased, which explains the higher total

costs in those instances compared to an increased failure probability.

Changing the number of products from 10 to 15 increases computation times signi�-

cantly. Varying supplier management costs between 50 and 100 does not lead to di�erent

decisions. This is no surprise since economies of scale from quantity and volume discounts

carry larger incentives for focusing on only a few suppliers. For incremental quantity

discounts, the total price reduction in the same numerical setup is lower, therefore the

sensitivity to the number of quantity discount levels decreases. Computation times in-

crease due to an increased number of binary variables.

4 Conclusion

We considered the problem of simultaneous supplier selection and order allocation under

quantity and business volume discounts and supplier failure risk. We formulated a mixed-

integer linear program that solves realistic problem sizes. Considering the results of a

previously published heuristic, we showed potential for improvement and derived the

optimal solutions. In a numerical study, we further gained insights into the sensitivity

of the optimal decisions with respect to input parameters as, e.g., penalty costs, failure

probabilities, or the number of discount levels. We studied changes in total expected costs

and expected total penalty costs and analyzed the trade-o� between economies of scale

and failure risk, �nding di�erent supplier selection strategies for an increasing risk.

There are several approaches one might wish to consider for further research. One is

to extend the problem at hand and include multiple time periods. Another idea would be

to extend the problem to random demand. As we consider a risk-neutral decision maker,

another interesting research task would be to incorporate the decision maker's attitude

towards risk.
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i Qpi,1 Qpi,2 Qpi,3 Qpi,4 Qpi,5 Qpi,6 Qpi,7 dpi,1 dpi,2 dpi,3 dpi,4 dpi,5 dpi,6 dpi,7
p = 1
1 0 22 42 63 78 87 101 0 0.07 0.1 0.17 0.28 0.35 0.38

2 0 27 48 71 78 89 96 0 0.04 0.12 0.19 0.29 0.36 0.36

3 0 21 40 66 83 83 95 0 0.03 0.15 0.19 0.29 0.34 0.37

4 0 23 44 66 78 93 101 0 0.02 0.13 0.21 0.3 0.33 0.38

5 0 23 46 72 77 88 98 0 0.05 0.15 0.21 0.29 0.34 0.38

6 0 25 47 69 83 87 98 0 0.06 0.14 0.22 0.3 0.36 0.37

7 0 21 43 72 75 94 102 0 0.04 0.13 0.19 0.27 0.35 0.41

8 0 26 47 64 80 88 104 0 0.02 0.1 0.18 0.29 0.34 0.39

9 0 27 49 62 83 86 98 0 0.03 0.13 0.17 0.25 0.35 0.41

10 0 13 20 34 38 43 46 0 0.02 0.09 0.22 0.24 0.36 0.38

p = 2
1 0 13 19 31 36 41 51 0 0.03 0.13 0.18 0.32 0.34 0.41

2 0 9 21 32 35 45 50 0 0.04 0.13 0.19 0.26 0.34 0.36

3 0 12 22 34 36 43 48 0 0.04 0.14 0.2 0.29 0.33 0.39

4 0 11 20 31 37 41 49 0 0.04 0.15 0.18 0.32 0.32 0.4

5 0 13 22 35 39 45 50 0 0.06 0.16 0.21 0.25 0.33 0.37

6 0 11 20 33 40 44 46 0 0.04 0.14 0.2 0.26 0.32 0.41

7 0 12 21 31 36 41 50 0 0.07 0.13 0.17 0.27 0.34 0.4

8 0 12 22 34 39 45 50 0 0.05 0.15 0.22 0.31 0.32 0.4

9 0 10 24 33 40 41 48 0 0.07 0.13 0.17 0.27 0.36 0.39

10 0 26 55 71 91 105 119 0 0.02 0.08 0.18 0.26 0.35 0.4

p = 3
1 0 23 56 73 88 102 114 0 0.05 0.09 0.18 0.25 0.32 0.38

2 0 21 54 81 91 100 115 0 0.03 0.15 0.2 0.27 0.32 0.37

3 0 24 49 72 85 105 117 0 0.05 0.12 0.17 0.27 0.33 0.38

4 0 31 48 71 90 98 120 0 0.05 0.15 0.19 0.25 0.34 0.39

5 0 22 53 77 91 106 115 0 0.01 0.1 0.17 0.27 0.33 0.4

6 0 24 56 74 90 106 116 0 0.03 0.12 0.17 0.25 0.32 0.37

7 0 23 56 75 87 106 115 0 0.02 0.13 0.22 0.29 0.35 0.38

8 0 20 45 80 87 100 120 0 0.05 0.08 0.18 0.24 0.33 0.4

9 0 26 51 81 85 100 119 0 0.06 0.13 0.21 0.29 0.35 0.39

10 0 18 47 65 76 90 97 0 0.03 0.11 0.24 0.3 0.34 0.41

p = 4
1 0 18 43 59 76 88 101 0 0.06 0.08 0.19 0.26 0.34 0.37

2 0 18 43 62 77 82 92 0 0.05 0.12 0.22 0.28 0.32 0.4

3 0 24 39 64 78 90 94 0 0.01 0.1 0.22 0.29 0.32 0.39

4 0 18 43 62 74 80 93 0 0.05 0.09 0.19 0.24 0.32 0.37

5 0 26 43 65 71 84 93 0 0.03 0.1 0.21 0.28 0.34 0.38

6 0 23 39 62 73 84 92 0 0.06 0.09 0.17 0.29 0.33 0.38

7 0 18 42 60 78 84 90 0 0.01 0.1 0.23 0.26 0.35 0.39

8 0 25 43 68 71 81 95 0 0.04 0.08 0.17 0.31 0.35 0.4

9 0 26 39 65 72 84 93 0 0.04 0.13 0.18 0.32 0.36 0.37

10 0 22 38 53 65 77 82 0 0.04 0.1 0.22 0.31 0.34 0.4

p = 5
1 0 19 33 57 63 74 83 0 0.06 0.12 0.2 0.28 0.33 0.4

2 0 22 41 58 69 73 81 0 0.03 0.14 0.22 0.26 0.33 0.38

3 0 23 38 56 64 73 85 0 0.06 0.12 0.19 0.3 0.34 0.38

4 0 19 33 56 65 76 82 0 0.04 0.12 0.18 0.26 0.35 0.39

5 0 15 39 56 66 75 85 0 0.01 0.12 0.16 0.32 0.33 0.4

6 0 22 36 60 66 75 83 0 0.02 0.09 0.21 0.29 0.34 0.4

7 0 19 33 56 62 70 85 0 0.05 0.12 0.19 0.29 0.35 0.4

8 0 22 34 56 61 73 87 0 0.04 0.15 0.2 0.25 0.36 0.38

9 0 18 34 59 62 74 83 0 0.02 0.15 0.21 0.25 0.33 0.38

10 0 3 5 7 8 8 10 0 0.03 0.1 0.16 0.26 0.35 0.41

p = 6
1 0 2 4 6 8 9 10 0 0.05 0.1 0.19 0.31 0.34 0.39

2 0 3 4 6 8 8 10 0 0.02 0.13 0.22 0.31 0.34 0.4

3 0 2 5 6 8 9 10 0 0.05 0.13 0.22 0.3 0.36 0.37

4 0 2 4 7 8 9 10 0 0.02 0.11 0.17 0.3 0.34 0.39

5 0 2 5 7 8 9 10 0 0.07 0.1 0.17 0.26 0.33 0.39

6 0 3 4 7 8 9 10 0 0.03 0.16 0.17 0.29 0.35 0.41

7 0 2 4 6 8 9 10 0 0.06 0.09 0.16 0.3 0.34 0.36

8 0 2 4 6 7 9 10 0 0.02 0.09 0.19 0.27 0.33 0.39

9 0 2 4 6 8 9 9 0 0.03 0.09 0.21 0.32 0.35 0.39

10 0 11 21 28 34 39 43 0 0.02 0.09 0.22 0.25 0.36 0.36

p = 7
1 0 7 17 29 31 35 40 0 0.04 0.13 0.2 0.27 0.36 0.41

2 0 11 17 29 34 36 43 0 0.05 0.13 0.17 0.28 0.33 0.4

3 0 8 20 29 32 37 42 0 0.04 0.08 0.21 0.24 0.33 0.38

4 0 9 16 29 32 38 39 0 0.04 0.15 0.17 0.3 0.32 0.4

5 0 11 16 29 31 38 43 0 0.05 0.14 0.17 0.28 0.34 0.37

6 0 11 18 26 34 36 43 0 0.05 0.14 0.17 0.28 0.32 0.39

7 0 8 20 28 33 35 41 0 0.05 0.09 0.17 0.31 0.34 0.37

8 0 10 21 26 32 35 43 0 0.05 0.15 0.17 0.31 0.36 0.38

9 0 11 16 29 33 36 40 0 0.07 0.15 0.18 0.3 0.34 0.4

10 0 6 12 15 19 21 25 0 0.02 0.16 0.19 0.27 0.33 0.37

p = 8
1 0 7 11 16 18 20 23 0 0.05 0.15 0.19 0.28 0.33 0.38

2 0 6 11 17 19 22 25 0 0.02 0.14 0.18 0.3 0.34 0.38

3 0 5 12 15 18 21 25 0 0.02 0.12 0.18 0.25 0.36 0.38

4 0 5 11 15 18 23 23 0 0.05 0.09 0.23 0.25 0.32 0.4

5 0 5 11 17 20 21 25 0 0.04 0.11 0.22 0.26 0.34 0.41

6 0 5 10 15 20 23 25 0 0.04 0.09 0.2 0.28 0.35 0.37

7 0 5 10 17 19 22 26 0 0.05 0.08 0.17 0.32 0.32 0.37

8 0 7 12 17 19 22 24 0 0.06 0.16 0.18 0.3 0.35 0.4

9 0 6 11 15 18 22 25 0 0.03 0.1 0.17 0.26 0.36 0.38

10 0 14 28 41 42 49 58 0 0.05 0.1 0.23 0.26 0.33 0.41

Table A.1. Price breaks and discount levels (1).
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i Qpi,1 Qpi,2 Qpi,3 Qpi,4 Qpi,5 Qpi,6 Qpi,7 dpi,1 dpi,2 dpi,3 dpi,4 dpi,5 dpi,6 dpi,7
p = 9
1 0 10 24 37 45 51 58 0 0.03 0.11 0.22 0.31 0.33 0.41

2 0 11 28 39 49 52 60 0 0.06 0.12 0.2 0.31 0.35 0.39

3 0 15 24 36 43 53 61 0 0.06 0.13 0.19 0.29 0.36 0.4

4 0 15 28 37 47 55 56 0 0.03 0.08 0.17 0.26 0.34 0.38

5 0 10 23 39 46 55 60 0 0.05 0.15 0.21 0.25 0.36 0.39

6 0 13 27 41 46 49 59 0 0.04 0.12 0.24 0.31 0.33 0.41

7 0 11 26 37 45 53 61 0 0.04 0.15 0.17 0.29 0.35 0.39

8 0 16 25 41 46 53 56 0 0.06 0.11 0.18 0.32 0.33 0.41

9 0 12 24 40 45 52 57 0 0.03 0.12 0.19 0.24 0.34 0.4

10 0 5 15 19 24 27 30 0 0.03 0.08 0.17 0.29 0.33 0.38

p = 10
1 0 7 15 21 25 26 30 0 0.02 0.09 0.21 0.26 0.35 0.39

2 0 8 14 19 23 26 29 0 0.07 0.13 0.19 0.31 0.34 0.4

3 0 6 12 19 25 26 30 0 0.05 0.11 0.24 0.26 0.35 0.37

4 0 6 14 19 23 29 31 0 0.04 0.15 0.19 0.28 0.35 0.38

5 0 6 13 22 23 28 30 0 0.05 0.09 0.21 0.27 0.32 0.41

6 0 7 15 22 24 27 31 0 0.04 0.16 0.17 0.31 0.36 0.38

7 0 8 13 19 25 28 31 0 0.05 0.12 0.19 0.29 0.34 0.39

8 0 7 14 20 24 28 32 0 0.04 0.14 0.17 0.26 0.35 0.41

9 0 6 14 19 22 28 29 0 0.05 0.16 0.22 0.27 0.35 0.41

10 0 10 17 32 35 39 45 0 0.04 0.1 0.23 0.25 0.35 0.39

p = 11
1 0 10 21 28 33 39 44 0 0.07 0.11 0.19 0.29 0.33 0.37

2 0 8 21 30 35 39 42 0 0.02 0.12 0.21 0.29 0.34 0.36

3 0 10 19 29 34 41 45 0 0.02 0.14 0.18 0.25 0.34 0.39

4 0 8 18 27 36 38 45 0 0.02 0.15 0.2 0.25 0.36 0.39

5 0 10 19 31 35 41 45 0 0.01 0.09 0.23 0.28 0.35 0.41

6 0 11 21 29 34 37 43 0 0.03 0.09 0.21 0.31 0.36 0.4

7 0 10 21 31 33 38 44 0 0.04 0.11 0.19 0.28 0.34 0.39

8 0 10 20 27 34 41 45 0 0.03 0.08 0.18 0.24 0.34 0.39

9 0 8 22 28 36 38 46 0 0.06 0.12 0.2 0.24 0.35 0.37

10 0 15 37 62 63 76 89 0 0.05 0.11 0.19 0.3 0.32 0.41

p = 12
1 0 16 35 59 69 74 91 0 0.06 0.09 0.19 0.28 0.36 0.39

2 0 21 40 56 64 74 89 0 0.07 0.1 0.2 0.27 0.34 0.36

3 0 22 36 56 67 76 92 0 0.07 0.15 0.22 0.3 0.32 0.39

4 0 24 42 58 68 76 92 0 0.02 0.13 0.19 0.27 0.35 0.39

5 0 16 41 62 63 80 85 0 0.02 0.12 0.19 0.28 0.33 0.36

6 0 18 38 62 64 77 89 0 0.05 0.15 0.17 0.3 0.33 0.4

7 0 21 34 58 72 77 90 0 0.02 0.09 0.16 0.31 0.34 0.38

8 0 18 35 59 68 74 87 0 0.04 0.14 0.18 0.27 0.33 0.37

9 0 23 37 60 67 81 91 0 0.04 0.14 0.19 0.29 0.33 0.37

10 0 5 12 17 19 25 25 0 0.06 0.12 0.21 0.32 0.34 0.38

p = 13
1 0 5 11 18 20 25 27 0 0.04 0.09 0.24 0.25 0.34 0.37

2 0 4 11 17 20 25 27 0 0.03 0.13 0.23 0.29 0.34 0.39

3 0 5 12 17 20 22 25 0 0.05 0.1 0.2 0.27 0.34 0.36

4 0 6 13 19 19 25 25 0 0.05 0.09 0.18 0.26 0.33 0.37

5 0 6 13 19 19 23 25 0 0.04 0.1 0.22 0.26 0.33 0.37

6 0 5 12 18 19 22 25 0 0.03 0.15 0.22 0.3 0.32 0.4

7 0 5 13 18 22 23 26 0 0.02 0.09 0.22 0.32 0.33 0.38

8 0 4 13 19 21 24 26 0 0.05 0.1 0.22 0.25 0.35 0.4

9 0 7 10 17 21 24 26 0 0.03 0.08 0.17 0.3 0.33 0.39

10 0 3 5 9 10 12 13 0 0.01 0.12 0.21 0.26 0.35 0.4

p = 14
1 0 3 5 9 10 11 12 0 0.06 0.08 0.2 0.32 0.35 0.37

2 0 3 6 9 10 11 13 0 0.02 0.15 0.18 0.3 0.35 0.41

3 0 2 5 9 10 12 13 0 0.04 0.1 0.17 0.27 0.35 0.4

4 0 2 5 9 10 11 13 0 0.05 0.09 0.23 0.3 0.33 0.36

5 0 2 6 8 10 12 13 0 0.03 0.1 0.17 0.28 0.33 0.38

6 0 2 5 8 10 11 12 0 0.05 0.12 0.17 0.3 0.34 0.38

7 0 3 6 9 10 11 13 0 0.03 0.09 0.21 0.27 0.33 0.39

8 0 2 6 8 9 11 12 0 0.05 0.16 0.23 0.25 0.35 0.37

9 0 3 6 8 10 11 13 0 0.05 0.11 0.2 0.29 0.35 0.39

10 0 9 14 24 28 31 37 0 0.04 0.1 0.22 0.31 0.34 0.39

p = 15
1 0 7 15 23 30 34 37 0 0.01 0.08 0.17 0.26 0.33 0.39

2 0 9 14 25 31 31 38 0 0.03 0.1 0.24 0.27 0.35 0.38

3 0 8 15 25 29 31 37 0 0.04 0.08 0.2 0.3 0.33 0.36

4 0 10 14 24 27 32 39 0 0.03 0.12 0.21 0.24 0.34 0.39

5 0 7 17 26 27 31 39 0 0.02 0.14 0.16 0.32 0.34 0.38

6 0 6 16 26 29 34 39 0 0.06 0.13 0.22 0.3 0.34 0.37

7 0 7 15 24 28 34 36 0 0.04 0.09 0.22 0.28 0.36 0.38

8 0 6 15 25 28 32 36 0 0.06 0.09 0.17 0.25 0.35 0.38

9 0 10 15 24 29 31 38 0 0.03 0.14 0.2 0.28 0.36 0.39

10 0 9 22 35 38 45 50 0 0.06 0.15 0.19 0.28 0.33 0.4

Table A.2. Price breaks and discount levels (2).
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 Supplier selection and order allocation under supplier failure risk 

 Model includes quantity and business volume discounts 

 Exact model: Solves realistic problem sizes to optimality 

 Improves previously published heuristic from 2013 by 4% 

 

Highlights


