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Model or the Wrong Data?

Victor Lapshin

National Research University Higher School of Economics, Moscow, Russia

Abstract

We use the linear programming approach to quantify quote inconsistencies in

risk-free bond markets. We present an algorithm to identify whether an incon-

sistency is probably due to the insufficient framework flexibility, the insufficient

data quality, or the non-homogeneity of the dataset. In the latter case we study

the problem of filtering out some instruments so that the remaining dataset be

homogeneous. We show that the traditional filtering approach performs unac-

ceptably poor and propose new algorithms. We find that the bonds, which get

mispriced the most by a fitting algorithm, surprisingly are not the bonds, which

cause the inconsistencies.

Keywords: quote inconsistency, data filtering, risk-free bonds, linear

inequality system, approximate algorithm

2000 MSC: 91G80, 68W25, 90C90, 90-04, 90B99

1. Introduction

The notion of arbitrage plays a key role in the financial theory. Many, if

not all asset pricing frameworks include a no-arbitrage supposition. However,

when applied to the real data, some frameworks often result in arbitrage oppor-

tunities. This does not necessarily imply the existence of real-world arbitrage

opportunities. Theoretical arbitrage opportunities (which we call inconsisten-

cies in the paper to avoid the word ‘arbitrage’) may be caused by various factors,

real examples of which will follow in the main body of the paper.

1. Insufficient framework flexibility. The framework might lack important
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features like taxation, transaction costs or other hindrances. Or it could

just be not accurate enough for this particular dataset.

2. Non-homogeneous data. The framework could be OK, but our assump-

tions about the data might be wrong. One particular case of assump-

tion violation which we consider in this article is non-homogeneity of the

dataset – the framework assumes that the dataset contains similar financial

instruments, whereas in fact some of the instruments are fundamentally

different and should not be part of this dataset.

3. Insufficient data quality. The data itself can be of poor quality – it might

contain outliers, obsolete values, etc. This might result in the framework

indicating that there are arbitrage opportunities while it is really the effect

of data errors.

4. Real-world arbitrage opportunities in the market. This might happen

eventually, but taxation, transaction costs, timing issues and other fac-

tors make it hard to identify for sure, especially only from historical data

without a direct market access. It is also very easily confused with other

cases mentioned above. In this paper we don’t consider real-world arbi-

trage opportunities, as we are building an analytical tool for developing

and validating pricing models, not a trading tool. We do not wish to make

unfounded claims about real-world arbitrage opportunities. Our approach

is able to detect real-world arbitrage opportunities among other inconsis-

tencies. However, before claiming that a particular inconsistency is an

arbitrage opportunity one has to account for taxes, transaction costs and

other imperfections. This is too formidable a task for now, so we don’t

consider real-world arbitrage opportunities in this paper.

We study the inconsistencies in the government bond markets. We propose

a simple approach to quantify the inconsistencies in the observed bond quotes

with respect to a chosen pricing framework. We say that the bid and ask quotes

of several bonds are consistent if within this pricing framework we can fit the

data so that the predicted prices of all the bonds in the dataset lie between

the observed bid and ask quotes of the respective bonds. The bid-ask spread

is generally considered as a measure of observation errors in the price data,

so we just require that the framework should be sufficiently flexible given the

2



Page 3 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

observation errors. To quantify the inconsistencies, we employ the notion of the

tightness factor. The tightness factor is 2 if the bid-ask spreads of all bonds in

the dataset have to be twice as large in order for the quotes to be consistent.

This factor is 0.25 if the bid-ask spreads can be shrunk to be 4 times as narrow

without losing consistency.

We also propose a way to distinguish between the possible inconsistency

causes mentioned above. Data quality issues can be identified via analyzing

the inconsistency patterns, because bad quotes usually happen at random. To

distinguish between insufficient framework flexibility and non-homogeneity of

the data, we solve the filtering problem – we filter out some instruments in a

quasi-optimal way. If over time the same instruments tend to get filtered out,

there is evidence that these instruments might be different in some way and

should not be a part of this dataset at all. Of course, the ultimate decision

should be made by a human. On the other hand, an erratic exclusion pattern is

a strong indication that the framework is just not flexible enough for the dataset

in question.

It turns out that the filtering problem mentioned above is not trivial, so

we propose several algorithms and compare them with each other and with a

traditional filtering algorithm using the real data. The experiments demonstrate

the unacceptably poor performance of the traditional algorithm, which consists

in excluding the most mispriced bonds one by one.

The main contribution of the paper is methodological. We propose a means

to quantify the inconsistencies in bond quotes in an interpretable way and an

algorithm to identify the probable cause of these inconsistencies via optimal

filtering.

The presence of arbitrage in financial markets has been the subject of con-

tinuous research for many decades. The results depend greatly on the exact

definition of arbitrage, i.e. on financial instruments and operations allowed, as

well as on the financial market in question.

Our approach is after [5], but with several crucial extensions and modifica-

tions. The same modifications are attempted in [6], but in a slightly different

way. Our approach is different in some details, but mainly in the presence of a

financial interpretation. However, the main difference from the cited papers is

3
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that within approximately the same framework, we concentrate not on spotting

the inconsistencies, but on what to do next – on quantifying them and identify-

ing their probable cause. We propose an approach for filtering them out in an

optimal way; for this, we study and compare several algorithms. We also use a

richer dataset.

In [12] the authors proved that the no-arbitrage condition is equivalent to the

existence of a positive pricing operator in a rather general setting. The notion

of arbitrage bounds on the discount factors was introduced in [16] – a necessary

condition for the existence of a pricing operator in the case of a risk-free bond

market.

Empirical literature on arbitrage opportunities in stock and derivative mar-

kets is abundant, however fixed income markets have received far lesser atten-

tion. The US bond market was studied in [14]; they found that the US bond

market assigns different values for coinciding cash flow patterns depending on

the exact instruments making up the cash flow pattern. Among recent papers,

[4] found the same anomaly in the UK bond market. However, there are few

papers devoted to quantifying the arbitrage. Among these – [8, 5]. The primal-

dual approach to bond market arbitrage with transaction costs dates back to

[20, 13]. A more general primal-dual stochastic programming approach to arbi-

trage can be found in [18].

The remainder of the article is organized as follows. Section 2 formulates

the pricing framework and the tightness factor, which is the key methodological

element of the proposed approach. Section 3 presents the approximate filter-

ing algorithms, which are also necessary for the approach. Section 4 tests the

algorithms on the real data and justifies the choice of one of them for practi-

cal purposes. Section 5 presents the algorithm to classify inconsistencies and

includes real-world examples of almost every inconsistency type mentioned in

the algorithm. Section 6 discusses methodological applications to tasks such as

data filtering and model validation.

2. The framework

In what follows, we talk about ‘the framework’. We distinguish between

a bond pricing framework (e.g. discounted cash flows with no credit risk and
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perfect liquidity) and a term structure fitting model within this framework, e.g.

Nelson-Siegel or smoothing splines. The discounted cash flows framework, which

we describe below in detail, is popular, but it is not always applicable. In [15] the

author shows that defaultable coupon bonds should not be in general considered

as portfolios of defaultable zero-coupon bonds and provides conditions as to

when this representation holds. As examples of alternative frameworks, one

could consider including nonzero credit risk and/or bond liquidity into account.

Note that we don’t fix the exact term structure fitting model within the

framework, i.e. we consider the most general case possible. Our approach could

thus be termed ‘model-free’.

We illustrate our approach on the most simple and widespread bond pricing

framework – discounted cash flows. However, it is easily applicable to other

pricing frameworks, such as assuming nonzero default risk taking bond liquidity

into account. However, for illustration purposes we use the simplest alternative,

which is discounted cash flows only.

In order to show the origin and the intuition behind the proposed notions,

we briefly repeat the derivation of the discounted cash flows pricing framework

while highlighting the role played by the bid-ask spreads. We sincerely hope

that this brief excursion to the arbitrage – pricing duality will help applying our

approach to more advanced frameworks along the same lines.

The discounted cash flows pricing framework is based on the no-arbitrage

principle and the unlimited short selling assumption together with the ability to

hold cash without interest. We now recall the notions of arbitrage and sequential

arbitrage from [5] and references therein with a slightly modified notation to

better suit our exposition.

Consider N traded bonds indexed by k = 1, 2, ..., N with the corresponding

present prices Pk. Let Fi,k be the cash flow promised by the k-th bond at

time ti, i = 1, 2, ..., n. Without loss of generality we may consider ti to be the

same for all bonds by introducing zero cash flows when necessary. We assume

that ti are already expressed in year fractions using the day count conventions

applicable.

We also assume that the promised future cash flows are viewed and priced by

the market as guaranteed. This is usually the case for government bonds – even
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if they are not truly risk-free, the market is usually generally inclined to regard

them as such. Another important assumption which we make is no trading

restrictions. By the usual financial argument, if an arbitrage deal requiring

short-selling a bond existed, a market participant having that particular bond

in stock would be able to engage in this arbitrage – this would constitute a

simple and easily feasible portfolio rebalancing for this participant.

Definition 1. A market model is said to be arbitrage-free (respectively, sequen-

tial arbitrage-free) if for any portfolio vector w such that FTw � 0 (AFTw � 0),

where x � y means x ≥ y element-wise, but x 6= y, and

A =


1 0 0 ... 0

1 1 0 ... 0

...

1 1 1 ... 1

 ,

we have −PTw < 0.

This defines arbitrage (resp. sequential arbitrage) as taking a position, which

does not require any funds: −PTw is the initial net outcome of taking the

position (negative when paying), which generates non-negative cash flows (resp.

whose negative cash flows can be absorbed by previous positive cash flows).

We modify this definition to include the bid-ask spreads into consideration.

Definition 2. A market model is said to be arbitrage-free (respectively, sequen-

tial arbitrage-free) if for any portfolio described by the vector of long positions

wlong and the vector of short positions wshort such that FT (wlong −wshort) � 0

(AFT (wlong − wshort) � 0), we have −aTwlong + bTwshort < 0, where a and b

are the vectors of ask and bid quotes of the corresponding bonds.

As it turns out, this slight modification offers a significant simplification

in the primal-dual approach to arbitrage of [5]. In what follows we consider

sequential arbitrage. Moreover, we modify its definition slightly to conform to

the financial intuition (this corresponds to the sequential arbitrage portfolio of

the second type in [5]):

Definition 3. A market model is said to be sequential arbitrage-free if for any

number ξ ≥ 0 and any portfolio described by the vector of long positions wlong
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and the vector of short positions wshort such that AFT (wlong − wshort) � −ξ1,

we have −aTwlong + bTwshort < ξ. Here 1 is the vector of ones.

The only innovation in definition 3 is that the arbitrageur is now allowed

to hold cash amount ξ gained from the initial position taking, to cover future

negative cash flows, whereas by definition 2 the arbitrageur must invest all

proceedings from taking short positions into market instruments.

For example, the following scheme is an arbitrage by definition 3, but is

not by the definition 2. Consider a single bond, which pays 1 at time t = 1

(F = 1) and is now traded at both bid and ask quotes of 2 (a = b = 2). Since

we only have one time moment, A = 1 and the ‘sequential arbitrage’ part of

definition 2 is redundant and coincides with the first part. To verify definition

2, we need to prove that for any numbers wlong ≥ 0 and wshort ≥ 0 such that

FT (wlong − wshort) = 1 · (wlong − wshort) > 0 we have −aTwlong + bTwshort =

2 · (wshort−wlong) < 0. This is of course true. Therefore, this market situation

is not an arbitrage in terms of definition 2.

However, definition 3 classifies this as an arbitrage opportunity, because

there exist ξ = 1.5 ≥ 0, wlong = 0, wshort = 1 such that AFT (wlong−wshort) =

1 · (−1) ≥ −1.5 and −aTwlong + bTwshort = 2 ≥ 1.5.

In order to quantify the arbitrage, we consider the following optimization

problem 

−aTwlong + bTwshort − ξ → max,

−AFT (wlong − wshort)− ξ1 ≤ 0,

δT (wlong + wshort) = 1,

wlong, wshort, ξ ≥ 0,

(1)

the decision variables being (wlong, wshort, ξ), and 1 being the vector of ones.

It corresponds to finding the initial portfolio, which includes holding ξ in cash,

such that its initial financial outcome is maximal and its promised negative

cash flows are absorbed by the preceding payments and the cash held. The

normalizing condition δT (wlong + wshort) = 1 is needed because without it the

optimal value of this problem is either 0 (in case of no arbitrage) or ∞ (if even

a slightest arbitrage opportunity exists, it may be scaled up infinitely).

There are no restrictions on the normalizing vector δ, provided that δ > 0,
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but we’ll see later that it has a financial interpretation.

The dual problem to (1) is

γ → min,

−FAT c+ γδ ≥ −a,

FAT c+ γδ ≥ b,

−1T c ≥ −1,

c ≥ 0

with the dual decision variables being c and γ. Substituting new variables

d = AT c and reverting the signs, we come to the following problem
γ → min,

b− γδ ≤ Fd ≤ a+ γδ,

1 ≥ d1 ≥ d2 ≥ ... ≥ dn ≥ 0.

(2)

This problem also has a clear financial interpretation: the decision variables

d are the discount factors corresponding to the moments in time t. The introduc-

tion of ξ was necessary to guarantee 1 ≥ d1. We are minimizing the maximum

mispricing cost γ given that δ measures the cost of mispricing different bonds:

small δk makes the optimal program replicate the price of the k-th bond closer

to the bid-ask bounds. We can thus interpret δk as the observation error for the

price of the k-th bond. So the most intuitive proxy for the price observation

error is the bid-ask spread itself, since the fair price should lie between bid and

ask quotes. We could let δ = a − b, but for the later convenience we choose

δ = 1
2 (a− b), which only affects the numerical values of γ.

Note that if some bonds have zero bid-ask spreads, then the corresponding

elements of δ will be zero. It does not automatically result in the problem being

infeasible, but it makes it harder and in general increases the value of γ, because

the prices of bonds with zero bid-ask spreads have to be replicated exactly in any

case with this choice of δ, even if other bonds are allowed pricing discrepancies

of ±γ · 12 (a− b).

If this is not the desired effect of if one has better prior knowledge of data

credibility or the associated transactional costs, it can easily be incorporated by

modifying δ. For example, one could search for minimal proportional transaction
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cost level eliminating the arbitrage in the data. δ would represent the relative

transaction costs for various bonds in this case. In this example, δ = δ01 +

1
2 (a − b) could be interpreted as transactional costs δ0 per transaction for one

bond in addition to the bid-ask spread.

Another very powerful interpretation of δ arises for δ = 1
2 (a−b). We now con-

sider the quote data unreliable (this can happen if the quotes are non-commiting

or asynchronous) and seek to measure the credibility of the price data by the

effective bid-ask spread (that is, the spread allowing for the no-arbitrage condi-

tion to hold). So in this approach, instead of questioning the market efficiency

we question the numerical data.

In this case, the optimal value γ∗ has the following nice interpretation –

1 + γ∗ is the factor by which one should widen the bid-ask spreads in order to

ensure consistency of the dataset. Throughout the rest of the paper, we call

this quantity the tightness factor and denote it by θ. θ ≤ 1 means the dataset is

consistent (one can even tighten the bid-ask spreads if θ < 1) and θ > 1 means

the bid-ask spreads are too tight and need to be widened in order to get rid of

the inconsistencies. The tightness factor has been introduced in [22] within a

different (and more complicated) pricing framework. However our approach to

it allows for more intuition.

The tightness factor may also provide a valuable insight to the data quality

and market efficiency, as it turns out that θ > 1 is quite a common situation

for some markets. This of course does not mean that there are arbitrage oppor-

tunities, but suggests the need for either some preliminary data treatment or a

more flexible pricing framework.

This paper deals with the following problem: given that the quotes are

inconsistent, find the probable cause of it. To do so, we first search for the exact

bonds ‘responsible’ for the inconsistency, i.e. identify the mispriced bonds. We

state it as follows: given that θ > 1, find the minimal set of bonds which, when

excluded from the dataset, makes θ ≤ 1.

3. NP-equivalence and approximate algorithms

In the previous section, we have quantified the quote inconsistency via the

tightness factor – the smallest widening of bid-ask spreads necessary. Doing

9
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so is one way of pre-processing the data to ensure its consistency. However,

there is another way – we can filter out some instruments from the dataset in

order for the remaining to be consistent. The problem is choosing which exact

instruments should be filtered out. Presumably, we’d like to throw away as little

data as we possibly can, so the problem becomes to remove the least possible

number of bonds from the dataset to make it consistent.

In this section we show that this problem is NP-equivalent. To do so, we first

transform this problem slightly. Note that θ > 1 is equivalent to the infeasibility

of the following set of constraints:
b ≤ FAT c ≤ a,

1T c ≤ 1,

c ≥ 0,

(3)

where ci = di−1 − di assuming d0 = 1. Now the problem states: remove the

minimum number of double inequalities from the system (3) so that it become

feasible. This problem looks like the known problem of finding the maximum

feasible subsystem, which has been shown to be NP-hard in [21, 7]. In [2] it

was shown that this property still holds for systems of homegeneous inequalities

(both strict and not). Similar approximate algorithms were studied in [2, 3, 1].

[19] described an exact solution of a similar problem through integer program-

ming subproblems, which was used in [10] to construct another approximate

algorithm. Chinneck [9] proposed another approximate algorithm. A more de-

tailed exposition of the history of this problem may be found in [11]. It also

bears a certain resemblance to the problem of finding the maximum zero of a

boolean function [17].

Unfortunately, our problem differs in details – it only allows elimination of

double inequalities, but not the normalizing constraint or the positivity con-

straints, so these results for a general system are inapplicable; thus, a separate

proof is in order. It is however not very enlightening, so we leave it in the

appendix. Having proven that the exact solution is very hard to find, we may

now resort to searching for an approximate solution.

We analyze the ‘traditional’ industry standard algorithm for this task and

propose two other algorithms. We argue that a reasonable approximate algo-

10
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rithm must have a clear financial intuition behind it. Our algorithms are all

greedy algorithms (iterative, making a locally optimal choice on each iteration),

eliminating bonds from the dataset one by one until the remaining set becomes

consistent. The difference lies in the heuristics used to determine the next bond

to eliminate. These heuristics have to have a clear financial interpretation in

order for the algorithm to be acceptable to the management or to the general

public.

Algorithm 1. (Traditional filtering approach) This is the obvious algorithm

of choice for the data filtering problem and a de-facto industry standard for

filtering the data. At each stage we fit some term structure model M (e.g. a

Nelson-Siegel model) to the bond price data. After that we eliminate the bond k∗

which is mispriced the most by the fit. In order for the algorithm to be consistent

with our setting, the fitting and the choice of the most mispriced bond have to

be carried out relative to the bid-ask spreads of the bonds:

d∗(·) = arg min
d(·)∈M

N∑
k=1

(
1

ak − bk

[
n∑
i=0

Fi,kd(ti)− Pk

])2

;

k∗ = arg max
k

1

ak − bk

∣∣∣∣∣
n∑
i=0

Fi,kd
∗(ti)− Pk

∣∣∣∣∣ .
Algorithm 2. (Arbitrage filtering approach) At each stage we solve the primal

problem (1) to get the arbitrage portfolio loadings wshort, wlong and exclude the

bond which has the largest weight in the arbitrage portfolio:

k∗ = arg max
k

(
wshortk + wlongk

)
.

We also record all bonds having comparably large weights (say, 90% of the maxi-

mum) for the candidate search algorithm below and for plotting the inconsistency

pattern.

Algorithm 3. (The steepest descent) At each stage we try excluding every bond

and choose the one which, when excluded, decreases the tightness factor the most.

To speed this search up, note that we only need to consider the bonds belonging

to the arbitrage portfolio or, in the dual setting (2), for which the bid-ask bounds

on the model prices are binding. We also record all bonds corresponding to com-

parably large decrease in the tightness factor for the candidate search algorithm

below and for plotting the inconsistency pattern.

11
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Note that the algorithm 2 works in the primal space of arbitrage portfolios.

The traditional algorithm 1 works in the dual space of discount factors and bond

prices. Finaly, the algorithm 3 is primal/dual insensitive (since the optimal

values for the primal and the dual problems are equal), instead it looks one step

ahead at each iteration.

It turns out that the algorithm 3 often ends up with several elimination

candidates. This happens because when two bond quotes are conflicting, after

any one of them is removed the other ceases to impose binding constraints.

For the clearness, we choose the one with the largest weight in the arbitrage

portfolio like in the algorithm 2.

To assess the performance of the algorithms, we conduct a direct exhaustive

search to find the true minimum number of bonds to be removed (this took

a class of 25 relatively modern PCs about a week). Motivated by a heuristic

insight, we also consider the two limited-domain search algorithms.

Algorithm 4. (Restricted search) Perform exhaustive search, but only among

the bonds picked on all steps by algorithms 2 or 3 above.

Algorithm 5. (Candidate search) Perform exhaustive search, but only among

the bonds considered on all steps by the algorithm 3 (all bonds, whose removal

at some stage lead to the same decrease in the tightness factor).

4. Testing approximate algorithms

In this section we compare our approximate algorithms using real data on

bond quotes. Bonds are usually traded over the counter (OTC) in developed

markets, which makes the bid/ask quote data hard to aggregate and interpret.

However, bonds are exchange-traded in a few countries, among which are Russia

and China. Chinese data turned out to be quite unreliable (bid quotes exceeding

ask quotes unfortunately were normal for this dataset) and therefore unfit for

our purpose. We also do the calculations on government bonds of some major

euro zone sovereign borrowers: Austria, Belgium, Finland, France, Germany,

Greece, Ireland, Italy, the Netherlands, Slovakia, Spain, and Portugal.

Russian bonds data is provided by Cbonds.info, a parter with the Moscow

Exchange, and covers the period from January 2008 to March 2015. Euro zone

12
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bonds data is provided by Markit and comprises quotes of bonds making up the

iBoxx index – these are the most liquid sovereign bonds denominated in EUR.

It spans the period from January 2007 to December 2011, except for Greece

(to June 2010) and Portugal (to July 2011). Both datasets include daily bid

and ask quotes as well as all necessary bond specifications such as cash flow

timetables.

Table 1 shows the percentage of days with inconsistencies along with the

mean and maximum values of the tightness factor only for inconsistent days.

Table 1: Basic inconsistency statistics.

Dataset Inconsistent days In % Mean TF Max TF

Austria 0 (0%) n/a 0.00

Belgium 154 (12%) 1.37 2.74

Finland 0 (0%) n/a 0.00

France 36 (3%) 2.13 3.02

Germany 202 (16%) 1.83 15.99

Greece 71 (8%) 1.29 5.46

Ireland 0 (0%) n/a 0.27

Italy 1266 (99%) 6.95 34.24

The Netherlands 31 (2%) 1.11 1.32

Portugal 0 (0%) n/a 0.91

Russia 209 (10%) 6.58 158.04

Slovakia 0 (0%) n/a 0.00

Spain 3 (0%) 3.40 7.85

Since no inconsistencies are found for Austria, Finland, Ireland, Portugal,

and Slovakia, we exclude these datasets from the subsequent analysis. These

datasets are perfectly consistent with the discounted cash flow pricing frame-

work. Judging by the tightness factor, we are expecting the most interesting

results from German, Italian and Russian datasets.

Once again we should note that an inconsistency is not necessarily a real-

world arbitrage (one could hardly expect as much in a highly liquid German

bond market). But theoretical arbitrage opportunities expose that a framework

with such assumptions should not be used for this data. As we already men-
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Table 2: Basic optimal solution statistics.

Dataset Inconsistent days Mean N Max N

Belgium 154 1.00 1

France 36 1.00 1

Germany 202 1.02 2

Greece 71 1.01 2

Italy 1266 2.23 5

The Netherlands 31 1.00 1

Russia 209 1.12 3

tioned in the introduction, there are several possible explanations for it, which

will be discussed later in greater detail.

Table 2 shows the statistics for N – the exact minimum number of bonds to

be eliminated, conditioned on it being greater than 0.

Table 3 shows the performance statistics of all methods on the least con-

sistent dataset – Italian. It reports the number of dates for which each of the

algorithms could not find the optimal N , and only for these dates it also reports

the mean and the maximum excess N . Results on the remaining datasets are

reported in the appendix.

Table 3: Performance statistics for approximate algorithms. Dataset: Italy.

Algorithm Non-optimal

days

In % Mean excess N Max excess N

Traditional (No 1) 1253 (99%) 8.36 37

Arbitrage (No 2) 707 (56%) 1.35 4

Steepest Descent (No 3) 262 (21%) 1.19 4

Restricted Search (No 4) 44 (3%) 1.05 2

Candidate Search (No 5) 14 (1%) 1.00 1

As we can see, the traditional filtering algorithm 1 is virtually incapable of

identifying the bonds to be filtered out. So regardless of this algorithm’s ap-

pealing financial interpretation, it is obvious that the bonds which get mispriced

by the term structure fitting algorithm are not the bonds, which are actually

introducing the inconsistencies.

14
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We also see that the steepest descent algorithm 3 on average performs better

than the arbitrage algorithm 2. However, there are several exception dates when

it actually performs worse.

It should also be noted that both restricted search algorithms 4 and 5, while

able to find the exact solution in the ‘lightweight’ settings (see the appendix for

the reports on the remaining datasets), could not always reach the optimum in

the Italian case. This means that the approximate algorithms 3 and 2 don’t

necessarily even consider all the bonds constituting the optimal solution.

4.1. Comparison with previous findings

An anonymous referee noted that our results seem to contradict some of the

previously documented findings, especially on the German market. However,

we argue that in fact there is no contradiction, because in our framework (we

actually share the same framework with [6]) the results greatly depend on the

exact dataset used and on the details of data preprocessing. To illustrate this,

we compare the setting of our work with the one of [6], which deals with a

similar problem for approximately the same dataset.

Table 4 presents a brief comparison of the data and the results; we only list

the differences crucial for the German market to save the space.

As we can see, the two studies differ significantly in both the instruments

in the dataset and the preprocessing. Therefore it is not surprising that the

percentage of the inconsistencies spotted differ significantly. We expect this to

be the case in comparisons with other studies too.

Let us now turn to the main objective of the paper – identifying the probable

cause for the inconsistencies. The algorithms described above will play a crucial

role in this task.

5. Possible causes for inconsistency

We start this section by listing the possible reasons for the dataset to be

inconsistent. These are all well-known causes. We continue with presenting

some informal tests to choose the most probable one from this list.
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Table 4: Comparison with [6]: datasets and results.

Criterion In [6] In this paper

Data provider Reuters Markit

Bonds selection

criteria

Drop the bond if its price

is exactly the same as the

day before (a liquidity

proxy)

The bonds constituting

the Markit iBoxx (EUR)

index (the inclusion crite-

ria are based on liquidity)

Nature of the

data

Contributor quotes,

Reuters’ own composite

valuation service

Contributor quotes

Data prepro-

cessing by ven-

dor

Drop the highest and the

lowest values and then

average the rest

A complicated algorithm1

Data prepro-

cessing by au-

thors

Manual outlier removal None

Arbitrage spot-

ted in

About 75% of trading

days

About 15% of trading

days

5.1. List of possible causes

1. Data errors. It is not uncommon even for commercial data sources to

eventually contain wrong data, either because of technical problems or

due to human errors. Data errors are by definition random, relatively rare

and usually don’t depend on the data.

On the other hand, if data errors tend to happen often and/or in pre-

dictable patterns, e.g. for some instruments the data is less reliable than

for other, then the issue should probably not be classified as ‘data errors’.

Predictable patterns for data errors can (and often should) be incorpo-

rated within a model. For example, we could introduce more aggressive

filtering or search for a feature which correlates with the observed errors

to correct the pricing model.

1See Markit Bond Price Consolidation Rules at https://products.markit.com/indices/
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2. A heterogeneous dataset. Data selection problems resulting in hetero-

geneous datasets and inconsistencies may come in various subtypes. We

discuss some of them below.

(a) ‘Outsider’ bonds. The dataset may be non-homogeneous with sev-

eral ‘outsider’ bonds in it. These bonds are usually few and were not

meant to be included in this dataset (either a priori or after additional

consideration). For example, we could have thought that including a

single callable bond in the dataset would not harm, but if in reality

this bond turned out to be sufficiently different, then we have a clear

case of an ‘outsider’ bond.

(b) Heterogeneous market. In this case the ‘outsiders’ are sufficiently

numerous and may be considered constituting a separate distinct part

of the market with its own different pricing rules. More exactly, there

is a specific instrument feature allowing us to split the dataset into

two or more consistent parts. For example, in many countries gov-

ernment bonds are priced differently than corporate bonds even with

comparable level of risk due to taxation differences or regulatory pref-

erence. Therefore, a dataset consisting of government and corporate

bonds, even with comparable credit risk and liquidity, would still be

heterogeneous. The ’taxation regime’ feature of the bonds in the

dataset would generate a splitting criterion.

3. Insufficient framework flexibility. The flexibility of the framework

should ideally be appropriate for the data. An inconsistency does not

necessarily mean that the framework is bad. It just means that this par-

ticular framework is not flexible enough to allow models which explain this

particular data. One should distinguish between two kinds of insufficient

flexibility (we thank an anonymous referee for pointing this out).

(a) An insufficiently precise fitting model within a sufficiently

flexible pricing framework. An example could be using a 4-

parameter Nelson-Siegel model to fit the term structure of interest

rates where a 6-parameter Svensson model would be appropriate or

using a spline with too few knots (given that the model with higher

download/products/guides/Markit iBoxx EUR Bond Price Consolidation Rules.pdf
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number of knots works just fine). In this case, the framework is

flexible enough, but the chosen fitting model is too restrictive. We

don’t consider this case in our paper, because we don’t work with

term structure fitting models here, we only consider general pricing

frameworks.

(b) An insufficiently flexible bond pricing framework. This is the

case where our pricing framework is missing an important instrument

feature, which does not enter the pricing equation, but does in fact

significantly influence the market prices. As a consequence, no fitting

model within this framework is able to fit the prices, because this

feature is lost. For example, we could be ignoring credit risk or bond

liquidity in pricing, e.g. considering ‘off the run’ and ‘on the run’

bonds together without reflecting this difference in the pricing.

5.2. A guide to classifying the inconsistencies

One cannot strictly prove that any of our explanations reflect the true sit-

uation, but they are at least plausible and offer a wide range of inconsistency

interpretations. Here we propose a simple guide to better inform the choice.

Note that this guide is not meant as an automated procedure. It should rather

be regarded as a decision support algorithm.

We start by introducing the inconsistency pattern of a panel dataset. Figure

1 shows an example of an inconsistency pattern. The vertical axis marks the

bond ID number, and the horizontal marks the date. A point (x, y) means that

the bond y is considered for exclusion from the dataset on the date x at some

point. Patterns are expected to show up as long horizontal lines (not necessarily

continuous) meaning that the same bond is getting attention over and over again

on multiple dates.

[Figure 1 about here.]

As we can see, the primal algorithm 2 exhibits more stability by choosing the

same bonds every time, while the steepest descent algorithm 3 produces more

chaotic results. Therefore in what follows we consider only the output of the

more stable primal algorithm, because for our purpose stability is a desired

property.
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The inconsistency pattern is the key tool in identifying the probable cause.

The identification algorithm begins with characterizing the pattern to one of

the types below.

• Occasional groups of vertically aligned dots. This behaviour is in-

dicative of data errors or major market turmoils. To make the distinction,

one has to closely inspect the numerical data and the market situation for

each specific date corresponding to each of the vertically aligned groups.

In either case, a simple solution would be dropping these dates from the

dataset entirely.

• Occasional seemingly random dots. This is indicative of either in-

dividual data errors or insufficient framework flexibility. To make the

distinction, look at the values for the tightness factor:

– High values (greater than 2–3, but easily over 10) are indicative of

data errors. A simple solution would be to drop this particular quote

for this particular day.

– Low values (about 1–2) could be indicative of moderate data qual-

ity, possibly due to low liquidity. It could also mean insufficient

framework flexibility; in that case the dots would probably be a little

more numerous. A simple solution would be to ignore these incon-

sistencies or (if the use case permits doing so) alter the input data,

e.g. widen the bid-ask spreads.

• Long horizontal lines (usually almost continuous, but not necessarily).

There are several possible explanations for this, but in any case there is

always an easy solution of dropping some of the highlighted bonds from

the dataset. Note that if two bonds produce long lines in an inconsistency

pattern, actually only one of them needs to be removed from the dataset,

because when for example two similar bonds have conflicting quotes, re-

moving either one gets rid of the conflict automatically rendering the other

one perfectly consistent. Therefore, all highlighted bonds must be studied,

but some of them are expected to be ‘normal’ while others are expected

to differ.
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– Data errors or program errors. Inspect the bond description for

these bonds. The description might be wrong or might be imported

or used with errors. This happens surprisingly often.

– ‘Outsider’ bonds. Think hard whether there is any reason to ex-

clude some of these bonds from the dataset, whether they are in any

sense different from the majority of the remaining bonds. Note that

some of the ‘outsider’ bonds might not get spotted by this approach,

especially if the dataset is not large. This is because ‘outsider’ bonds

can only be spotted by our approach if there is sufficient amount of

‘normal’ bonds to contradict them. If for example all bonds in the

dataset are short-term and the only long-term bond is somehow dif-

ferent, there is a large change that it won’t cause any inconsistencies,

simply because it is the only long-term bond, so there is nothing to

contradict.

• Short horizontal lines or random dots aligned horizontally. This

is the least straightforward case. The next step would be to identify the

‘suspicious’ bonds, i.e. those which get highlighted often enough. To do

so, count the percentage of days on which each bond was highlighted,

sort them by that percentage and consider the top of the list. Search

for a feature which could separate the majority (certainly, not all) of the

bonds at the top of the list from the majority (not necessarily all) of the

remaining ones. Don’t forget to check the ‘on the run’ feature, which in

our experience seems to explain most of the short lines.

– There is such a feature. The choice is now arbitrary. You can

either say that the framework is not flexible enough, because that fea-

ture should really be incorporated into the pricing equation. Or you

can say that your dataset must be comprised of the bonds selected

(among other things) by that feature – this is especially useful when

the required generalization of the pricing framework is not obvious

and requires separate research.

– Such a feature is not found. Unfortunately, this does not mean

that there is no such feature. It might not be in plain sight. Or it

20



Page 21 of 40

Acc
ep

te
d 

M
an

us
cr

ip
t

could be dynamic and change over time (such as a bond being ’on

the run’). It could also lie in a completely other dimension, which

is considered by the market, but is not included in the framework

(e.g. eligibility for pension funds’ investments or Sharia compliance).

If the feature is still not found, we can offer possible explanations

based on the values of the tightness factor.

∗ Relatively low tightness factor. This may be indicative of

hidden costs (e.g. transaction costs). The approximate size of

these costs relative to the bid-ask spread is given by the tightness

factor.

∗ Relatively high tightness factor. In this case we are forced

to conclude that market data is not reliable enough. The mar-

ket could be highly illiquid, the data could be faulty. Non-

committing quotes or hidden dealer/broker commissions some-

times also result in this, because that could lead to abnormally

narrow bid-ask spreads, thus making the tightness factor unrea-

sonably high.

Of course, sometimes these patterns overlap. For example, a cross-like in-

consistency pattern would most probably be indicative of one day with data

errors and an ‘outsider’ bond in the dataset.

5.3. Examples

In this sections we give real-life examples for the most interesting of the

classification branches listed in the previous subsection.

Spain

[Figure 2 about here.]

This pattern features several vertically aligned dots on the right and some stray

dots on the left. Upon further examination, the vertically aligned points are

not a result of data errors (our data comes pre-filtered), but rather of a sudden

market movement on 8 Aug 2011. The dots at the left have low tightness factor

values (1.02 and 1.3) and are therefore most likely due to relatively low liquidity

or just bad luck.

Belgium
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[Figure 3 about here.]

This pattern features two relatively long horizontal lines. Therefore, we closely

examine bonds N4 and N27. It turns out that the bond N27 had been issued

very shortly before the dates corresponding to the horizontal line, on 18 Mar

2009. More importantly, its maturity coincides exactly with that of bond N4.

Having two bonds in the same dataset with exactly same maturity date, one of

them being ‘on the run’ (newly issued) is probably not a good idea. Therefore,

our conclusion is that this is the case of an ‘outsider bond’ (unless we wish to

alter our framework to incorporate the ‘on the run’ premium).

Italy

[Figure 4 about here.]

First of all, this pattern features several long lines. Upon closer examination,

we discover that these are mostly caused by several eurobonds, which should

have been filtered out. After we remove them from the dataset, the remaining

bonds have a much clearer inconsistency pattern.

[Figure 5 about here.]

There are now several short lines. Bonds N48 and N64 mature within several

days from each other, but N64 is ‘on the run’ in the end of 2008. Bonds N18 and

N25 mature about a year apart, but the overall time to maturity is more than

15 years, so this might also contribute to the fact that they occasionally conflict

during hard times (note that this contradiction only appears in the end of 2008

and in the end of 2011 – these were the unrestful times for the markets). Finally,

there are vertically grouped dots around January 2012, which corresponds to a

market turmoil at the end of 2011 – beginning of 2012.

Germany

[Figure 6 about here.]

The German inconsistency pattern is unexpectedly full of inconsistencies. Let’s

consider them one by one. Bonds N41 and N42 are inconsistent, but the latter

is ‘on the run’. The same applies to bonds N68 and N87 – N68 is ‘on the run’.

It is also not surprising that there is some inconsistency during the two turmoil

periods: end of 2008 and end of 2011. Bid-ask spreads for German bonds are
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very narrow, so any disbalance is readily picked up by the tightness factor.

Finally, there are two inconsistent bonds, whose inconsistency we are not able

to explain. Bonds N12 and N13 both mature at the same date (1 Jul 2009) and

have similar coupons (4% and 4.5% annually). In all other observable features

they are quite alike. However, there is a simple portfolio (we cross-examined

it by hand) resulting in arbitrage profits being made. Since the corresponding

tightness factors are relatively low (about 1.1 – 1.2), we conclude that this might

be indicative of hidden transaction costs or commissions. These costs can be

roughly estimated as
ask − bid

2
(γ − 1).

In our situation this amounts to about 0.2 basis points, which is a reasonable

value for a hidden cost.

Russia

[Figure 7 about here.]

Russian inconsistency pattern features several long dotted horizontal lines. Upon

further examination of the highlighted bonds, we discover that in every conflict-

ing group of bonds, one of them happens to be amortized. Moreover, if we split

the dataset into two separate datasets: amortized and non-amortized bonds, the

resulting datasets will exhibit significantly higher consistency levels with slight

inconsistencies only in crisis days, which makes us believe that Russian bond

market actually has two pricing mechanisms: one for non-amortized bonds and

another one (more obscure) for amortized bonds. We have been able to confirm

this conclusion in private communications with some market practitioners.

6. Discussion

There are numerous possible reasons for the inconsistencies to arise without

the possibility for the real-world arbitrage, but the main two are data issues

(data errors, dataset inhomogeneity, illiquidity, etc) or framework issues (ex-

cessive simplicity, omitted factors, wrong assumptions, etc). We propose an

approach to quantify the inconsistencies and to determine their probable cause.

One should note that in fact we only test whether the data is consistent

with the chosen pricing framework, so at the first glance there should be no
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formal way of telling which of the two is really wrong (or maybe both). That

is ultimately true, however our approach gives the researcher strong hints as to

where to direct his/her attention in the first place. The inconsistency pattern

introduced in this paper helps develop the intuition necessary. Our approach is

not designed for automated decision making, but it offers several new features

for a human decision maker to consider.

For example, the cases of Russia and Italy above are really quite similar from

the formal point of view. The system raises a ‘red flag’ and a human studies the

highlighted data. In the Italian case the highlighted data is then found to be

mistakenly included in the dataset, so it’s clearly a data selection error. In the

Russian case the highlighted data is rightfully a part of the dataset, but we can

easily devise an interpretable and meaningful criterion to isolate the highlighted

data. Note that instead we could regard this as a framework deficiency – the

framework did not account for the ‘being an amortized bond’ feature and did

not incorporate it in the pricing process, whereas the market clearly did that.

Splitting the market into two subsegments is merely a way to avoid having to

improve the pricing framework by effectively eliminating the feature in question

Inconsistencies can also be used to justify the need for data filtering. Pre-

liminary data treatment is omnipresent in finance, but the need for it is rarely

formally justified. Even less common in empirical studies are justifications of

the necessary amount of filtering. Data filtering is usually conducted via an

ad hoc method with little or no justification to its amount and its necessity in

general. As well known in theory, excessive data filtering can easily alter the

perceived distributions in the data (e.g. by filtering out 35% outliers we can

easily turn a super-heavy-tails Cauchy distribution, which does not even have

a finite expectation, into a nice normal distribution; less severe transformations

require less aggressive filtering – this process is known as von Neumann elimi-

nation). Therefore, justifying the need for data filtering and the exact amount

of filtering to perform is a crucial methodological point.

Our paper gives an easy and elegant solution to this problem. Filtering

the data until it becomes consistent provides a methodologically sound basis

for determining the necessary amount of filtering. No-arbitrage condition is a

widely accepted criterion of data consistency and soundness.
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With respect to the filtering application it is very important to underline

the result of testing different filtering algorithms on the real data. Interestingly,

the traditional algorithm of eliminating the bond with the highest ratio of the

pricing discrepancy to the bid-ask spread performs prohibitively poor.
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Figure 1: The inconsistency patterns. Dataset: Italy.
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Figure 2: The inconsistency pattern. Dataset: Spain.
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Figure 3: The inconsistency pattern. Dataset: Belgium.
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Italy: the primal algorithm

Figure 4: The inconsistency pattern. Dataset: Italy.
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Italy (filtered): the primal algorithm

Figure 5: The inconsistency pattern. Dataset: Italy (filtered).
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Germany: the primal algorithm

Figure 6: The inconsistency pattern. Dataset: Germany.
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Figure 7: The inconsistency pattern. Dataset: Russia.
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AppendixA. Proof of the NP-equivalency

To prove NP-equivalency we use the following yes/no problem statement:

given k, is there a feasible subsystem of (3) containing k double inequalities?

Theorem 1. The problem of verifying this property is NP-complete.

Proof. It’s obvious that the problem belongs to NP – it suffices to check all

the inequalities, the certificate being the feasible vector c and the indices of the

remaining double inequalities (as usual, we assume that arithmetic operations

are quick enough).

For the ‘complete’ part, we now reduce an arbitrary binary integer program-

ming problem to the form (3). Consider a binary integer programming problem:

find the vector x ∈ {0, 1}n such that Bx ≤ c, where B ∈ {−1, 0, 1}m×n, c ∈ Zm.

We can restate it as follows: is there a feasible subsystem of

Bx ≤ c,

0 ≤ x1 ≤ 0, 1 ≤ x1 ≤ 1,

0 ≤ x2 ≤ 0, 1 ≤ x2 ≤ 1,

...

0 ≤ xn ≤ 0, 1 ≤ xn ≤ 1,

(A.1)

containing all m inequalities of the Bx ≤ c and exactly n double inequalities. If

there is, its solution is also the solution of the original binary integer program-

ming problem and vice versa.

We now transform this system to look like (3). Let y = c − Bx. We can

rewrite (A.1) as µ ≤ Ay ≤ ν,y ≥ 0,

where A,µ, ν should be chosen so that Ac− µ = b, Ac− ν = a,AB = T , where

a ≤ Tx ≤ b is the matrix form of the double inequalities part of (A.1). AB = T

is equivalent to BTAT = TT and it has a solution AT if and only if the rank of

BT is equal to the rank of [BT , TT ]. For the latter it suffices that the rank of

B be n. In general, this is not the case, but we can always augment the initial

binary integer programming problem with a sufficient number of inequalities
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with the corresponding ck large enough for the inequalities to be satisfied for

any x.

We also need one additional modification to introduce the 1T c ≤ 1 con-

straint. Let c = y
n , µ1 = µ

n , ν1 = ν
n . Now the transformed problem is
µ1 ≤ Ac ≤ ν1,

c ≥ 0,

1T c ≤ 1.

The last inequality is not binding due to the nature of the inequalities. We have

thus shown that the binary integer programming problem may be reduced to

our yes/no problem in polynomial time, which finishes the proof.

AppendixB. Filtering results for other datasets

The descriptive statistics for the performance of all five filtering algorithms

on the Italian dataset has been reported in Table 3. This appendix reports the

same for all the other datasets.
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Table B.5: Performance statistics for approximate algorithms. The remaining datasets.

Dataset Algorithm Non-optimal

days

In % Mean

excess N

Max ex-

cess N

Belgium

Traditional (No 1) 105 (68%) 3.31 11

Primal (No 2) 0 (0%) 0 0

Steepest Descent (No 3) 0 (0%) 0 0

Restricted Search (No 4) 0 (0%) 0 0

Candidate Search (No 5) 0 (0%) 0 0

France

Traditional (No 1) 36 (100%) 5.67 12

Primal (No 2) 0 (0%) 0 0

Steepest Descent (No 3) 0 (0%) 0 0

Restricted Search (No 4) 0 (0%) 0 0

Candidate Search (No 5) 0 (0%) 0 0

Greece

Traditional (No 1) 67 (94%) 4.67 9

Primal (No 2) 0 (0%) 0 0

Steepest Descent (No 3) 0 (0%) 0 0

Restricted Search (No 4) 0 (0%) 0 0

Candidate Search (No 5) 0 (0%) 0 0

Germany

Traditional (No 1) 179 (89%) 11.83 26

Primal (No 2) 3 (1%) 1.00 1

Steepest Descent (No 3) 0 (0%) 0 0

Restricted Search (No 4) 0 (0%) 0 0

Candidate Search (No 5) 0 (0%) 0 0

The Netherlands

Traditional (No 1) 5 (16%) 1.20 2

Primal (No 2) 0 (0%) 0 0

Steepest Descent (No 3) 0 (0%) 0 0

Restricted Search (No 4) 0 (0%) 0 0

Candidate Search (No 5) 0 (0%) 0 0

Russia

Traditional (No 1) 136 (65%) 3.57 17

Primal (No 2) 18 (9%) 1.22 2

Steepest Descent (No 3) 2 (1%) 1.00 1

Restricted Search (No 4) 0 (0%) 0 0

Candidate Search (No 5) 0 (0%) 0 0
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We propose a measure of bond quotes inconsistency given a pricing framework. 

Quote inconsistencies may be due to data errors, dataset or framework problems. 

We give a guide to identify the most probable cause for the inconsistencies. 

Filtering out the most mispriced bonds does not help eliminating the inconsistencies. 
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