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Abstract Maintaining skeletal muscle mass and function

is critical for disease prevention, mobility and quality of

life, and whole-body metabolism. Resistance exercise is

known to be a major regulator for promoting muscle pro-

tein synthesis and muscle mass accretion. Manipulation of

exercise intensity, volume, and rest elicit specific muscular

adaptations that can maximize the magnitude of muscle

growth. The stimulus of muscle contraction that occurs

during differing intensities of resistance exercise results in

varying biochemical responses regulating the rate of pro-

tein synthesis, known as mechanotransduction. At the

cellular level, skeletal muscle adaptation appears to be the

result of the cumulative effects of transient changes in gene

expression following acute bouts of exercise. Thus, maxi-

mizing the resistance exercise-induced anabolic response

produces the greatest potential for hypertrophic adaptation

with training. The mechanisms involved in converting

mechanical signals into the molecular events that control

muscle growth are not completely understood; however,

skeletal muscle protein synthesis appears to be regulated by

the multi-protein phosphorylation cascade, mTORC1

(mammalian/mechanistic target of rapamycin complex 1).

The purpose of this review is to examine the physiological

response to resistance exercise, with particular emphasis on

the endocrine response and intramuscular anabolic signal-

ing through mTORC1. It appears that resistance exercise

protocols that maximize muscle fiber recruitment, time-

under-tension, and metabolic stress will contribute to

maximizing intramuscular anabolic signaling; however, the

resistance exercise parameters for maximizing the anabolic

response remain unclear.

Key Points

The endocrine system and intramuscular anabolic

signaling are primary regulators of muscle growth.

Resistance exercise elicits an acute endocrine

response and up-regulation of intramuscular

signaling proteins; however, the resistance exercise

parameters for maximizing the anabolic effect

remain unclear.

1 Introduction

Maintaining skeletal muscle mass and function is critical

for disease prevention [1, 2], mobility and quality of life [3,

4], and whole-body metabolism [5]. Skeletal muscle mass

is also desired by many types of athletes to enhance athletic

performance, increase body size, and improve aesthetic

appearance. The balance between synthesis and breakdown

of muscle proteins governs muscle mass accretion. If pro-

tein synthesis exceeds protein degradation, an increase in

skeletal muscle mass can occur [6]. The rate of protein

synthesis appears to be more dynamic than that of protein
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breakdown, suggesting that growth of skeletal muscle is

primarily dictated by regulation of muscle protein synthesis

[7]. Hypertrophy is reflected by a greater muscle cross-

sectional area (CSA), which may be attributable to

increases in myofibrillar volume of individual muscle

fibers [8–10]. Increases in the number of individual myo-

fibers within a muscle, termed hyperplasia, is also a

potential mechanism contributing to muscle growth; how-

ever, documented reports are primarily in rodents [11].

Muscle protein synthesis and muscle mass accretion are

affected by several factors, including nutritional support,

cytokines, hormones, and growth factors, yet resistance

exercise is known to be a major regulator for promoting

hypertrophy. Resistance exercise can stimulate an increase

in muscle protein synthesis for up to 48 h post-exercise

[12–15], and repeated bouts of resistance exercise (i.e.,

training) can significantly increase muscle CSA and muscle

fiber hypertrophy [16–19]. However, the parameters of a

resistance training program for the regulation of muscle

growth remain unclear [20].

A broad range of resistance exercise intensities, volume,

and rest intervals have been demonstrated to elicit mus-

cular hypertrophy in humans [16–19]. The stimulus of

muscle contraction that occurs during resistance exercise

results in various biochemical responses regulating the rate

of protein synthesis, known as mechanotransduction [21].

At the cellular level, skeletal muscle adaptation appears to

occur from the cumulative effects of transient changes in

gene expression following acute bouts of exercise [22].

Thus, maximizing the resistance exercise-induced anabolic

response produces the greatest potential for hypertrophic

adaptation with training. The purpose of this review is to

examine the physiological response to resistance exercise,

with particular emphasis on the endocrine system and

intramuscular anabolic signaling through the mammalian/

mechanistic target of rapamycin complex 1 (mTORC1)

pathway.

2 Magnitude of Hypertrophy Following
Resistance Exercise Protocols of Different
Intensities

Controversy exists regarding a training paradigm that will

maximize hypertrophic adaptation. Long-term studies

evaluating the effects of varying exercise intensity on the

magnitude of muscle hypertrophy have yielded incon-

clusive findings. Comparisons of high-intensity versus low-

intensity resistance training programs for up to 12 weeks in

previously untrained subjects have shown no differences in

muscle CSA as measured by magnetic resonance imaging

(MRI) [23–29], computed tomography (CT) [30, 31],

dual-energy x-ray absorptiometry (DEXA) [32], and

ultrasonography [32, 33]. However, Holm et al. [34] found

low-intensity loads (15.5 % 1 repetition maximum [RM])

to be inferior to high-intensity loads (70 % 1 RM) for

evoking increases in quadriceps CSA assessed via MRI.

Similarly, low-intensity loads were also shown to be infe-

rior to high-intensity loads for increasing muscle fiber

hypertrophy as assessed via histochemistry from muscle

biopsies [35, 36]. Other investigations, however, have

indicated that lower-intensity loads (40–80 % 1 RM) pro-

duce greater gains in muscle fiber CSA than high-intensity

loads (90 % 1 RM) [37, 38].

Defining an intensity load recommendation for

enhancing muscle hypertrophy is difficult due to the

inconsistency of findings. Additionally, the contradictory

nature of these findings may be attributed to the different

assessment methods (i.e., MRI, CT, ultrasonography vs.

muscle histochemistry), experimental designs (i.e.,

within- vs. between-subject designs), activated muscula-

ture (i.e., single- vs. multi-joint movements), rest intervals

utilized, and protocol parameters (i.e., equated vs. non-

equated volume). A number of researchers equate volume

to account for the potentially greater dose response

associated with hypertrophic adaptation [39]. Further-

more, these studies are collectively limited as observa-

tions of early-phase hypertrophic adaptations among

untrained subjects. Greater training experience has been

shown to attenuate post-exercise anabolic responses,

including muscle protein synthesis rates [40–42] and

intracellular anabolic signaling [42–45]. Therefore, these

findings cannot be generalized to a well-trained popula-

tion. Schoenfeld et al. [46] recently assessed the magni-

tude of hypertrophy following 8 weeks of a hypertrophy-

style resistance training program versus a volume-equated

strength-style program in resistance-trained men and

found no significant differences in muscle thickness of the

biceps brachii assessed via ultrasonography. In a subse-

quent study by the same research team, muscle thickness

of the elbow flexors, elbow extensors, and quadriceps

femoris assessed via ultrasonography was not signifi-

cantly different following 8 weeks of low-load

(25–35 RM) versus high- load resistance training

(8–12 RM) in resistance-trained men [47]. In conjunction

with training intensity, factors including muscle fiber

recruitment [48], time-under-tension [49], and metabolic

stress [50] have all been suggested to influence intra-

muscular anabolic signaling. Furthermore, muscular

adaptation following regimented resistance training is

highly variable between individuals [51–54]. Several

factors appear to influence muscle remodeling and the

magnitude of hypertrophy, including nutritional support,

muscle fiber-type distribution, and genetic predisposition

[20, 55]. An additional concern when examining diver-

gent resistance exercise protocols in trained individuals is

672 A. M. Gonzalez et al.

123

Author's personal copy



the novelty of the stimulus, as muscle adaptations may be

enhanced when unaccustomed program variables are uti-

lized [56].

The intensity of training necessary to stimulate muscle

growth has been suggested to be greater than 60 % of an

individual’s 1 RM [57, 58], while others have suggested that

maximal growth occurs at training intensities between 80

and 95 % of 1 RM [59]. However, recent research has

shown that training intensities as low as 30 % of 1 RM can

be equally as effective at stimulating muscle protein syn-

thesis and muscle hypertrophy when performed to volitional

fatigue in previously untrained men [24, 25, 60]. Moreover,

a majority of the scientific evidence supporting a greater

anabolic response following a high-volume, moderate-in-

tensity training protocol (i.e., designed to elicit muscle

hypertrophy) has emerged from acute investigations indi-

cating a superior endocrine response compared to other

training paradigms [61–67]. However, the mechanisms of

exercise-mediated muscle hypertrophy have been suggested

to be solely an intrinsic process, which is not influenced by

transient changes in circulating hormones [54, 68–70]. Thus,

the acute activation of intrinsically located signaling proteins

and the acute elevation of muscle protein synthesis may be

more reflective of the potential to increase muscle mass with

resistance training [69]. Whether a high-volume, moderate-

intensity training protocol activates intramuscular anabolic

signaling to a greater degree than other training paradigms

remains to be determined.

3 Role of Mammalian/Mechanistic Target
of Rapamycin Complex 1 (mTORC1) in Skeletal
Muscle Adaptation to Resistance Exercise

One of the most widely recognized mechanisms for regu-

lating muscle mass involves mechanical tension [71].

Resistance exercise initiates a multifaceted series of events

converting the stimulus of muscle contraction into bio-

chemical responses regulating the rate of protein synthesis,

known as mechanotransduction [21]. The mechanisms

involved in converting mechanical signals into the molecu-

lar events that control muscle growth are not completely

understood; however, phosphorylation of intramuscular

signaling molecules appears to play an important role in

skeletal muscle adaptation to resistance exercise [21]. Pro-

tein phosphorylation is a reversible post-translational mod-

ification causing conformational changes in protein structure

accompanied by an increase or decrease in enzymatic

activity [72]. Skeletal muscle protein synthesis appears to be

regulated by the multi-protein phosphorylation cascade,

mTORC1 [73–75]. Upon activation, phosphorylation of

upstream (i.e., insulin receptor substrate 1 [IRS1], protein

kinase B [Akt], tumor sclerosis complex 2 [TSC2]) and

downstream (i.e., mammalian/mechanistic target of rapa-

mycin [mTOR], ribosomal S6 kinase 1 [p70S6k], RPS6

[ribosomal protein S6]) effectors of mTORC1 signal to

promote anabolic and inhibit catabolic cellular functions,

providing a biochemical mechanism for controlling pro-

cesses related to cell differentiation and muscle remodeling

(Fig. 1) [75]. The protein kinase mTOR serves as a critical

protein that confers signaling to p70S6k and several other

downstream signaling molecules that regulate protein syn-

thesis and skeletal muscle mass [21, 75].

The mTORC1 complex plays an important regulatory

role during the process of skeletal muscle hypertrophy

[76]. mTORC1 is involved in many cell processes,

including the regulation of cell size, mRNA translation,

biogenesis of mitochondria and ribosomes, and autophagy

[77]. At the cellular level, mTORC1 functions as a critical

regulator of translation initiation, the rate-limiting step in

protein synthesis [72, 75]. It appears that the phosphory-

lation of signaling molecules in response to resistance

exercise is a prerequisite for increasing translation initi-

ation and muscle protein synthesis. The inhibition of

mTOR via rapamycin treatment has been consistently

demonstrated to blunt increases in muscle protein syn-

thesis [78–80] and prevent skeletal muscle hypertrophy,

which normally occurs following prolonged resistance

training [76, 81]. In humans, rapamycin treatment has

been shown to block the acute exercise-induced increase

in muscle protein synthesis in addition to blunting several

downstream components of the mTORC1 signaling

pathway, including p70S6k [73, 80]. Further, the magni-

tude of p70S6k phosphorylation has been shown to be a

proxy marker of myofibrillar protein synthesis rates [82,

83], and also corresponds with resistance training-induced

muscle hypertrophy [54, 84–86]. Collectively, these

observations suggest that mTOR acts as the primary

regulator of intracellular anabolic signaling via phos-

phorylation of p70S6k and several other downstream

signaling molecules that regulate protein synthesis and

skeletal muscle mass [73–75, 87]. Although the exact

mechanism underlying increased mTORC1 activation

following resistance exercise remains relatively elusive,

mechanical loading has been suggested to promote

mTORC1 activation by increasing the activity of Rheb

(Ras homolog enriched in brain) and increasing the

abundance of phosphatidic acid (PA) [88].

mTORC1 activity is regulated by the modulation of

tumor suppressor tuberous sclerosis complex 1/2 (TSC 1/2)

activity [77]. TSC 1/2 negatively regulates mTORC1

activity by converting Rheb into its inactive guanosine

diphosphate (GDP)-bound state [89]. Tumor sclerosis

complex 2 (TSC2) acts as the guanosine triphosphatase

(GTPase)-activating enzyme that keeps Rheb in the GDP-

bound state [90]. TSC2 phosphorylation inactivates the
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GTPase-activating enzyme activity of TSC2, repressing the

hydrolysis of Rheb–GTP (guanosine triphosphate) [91].

When Rheb is in its active GTP-bound state, it translocates

to the lysosome, allowing mTORC1 activity to continue

[91, 92]. Jacobs et al. [93] showed that TSC2 localizes with

Rheb at rest; however, following resistance exercise, TSC2

phosphorylation corresponds with the movement of TSC2

away from Rheb. In summary, resistance exercise-induced

activation of mTORC1 requires the TSC2 complex (a

negative regulator of Rheb) to be sequestered away from

Rheb (Fig. 2). However, it remains unclear what mediates

TSC2 phosphorylation following resistance exercise [88].

While insulin and growth factors phosphorylate TSC2

through Akt, resistance exercise-induced activation of

mTORC1 appears to be Akt-independent [94]. Several

studies have shown that Akt phosphorylation either does

not change [43, 45, 49] or decreases [95, 96] following

resistance exercise, despite downstream activation of

mTORC1.

An additional mTORC1 activator associated with

resistance exercise-induced muscle hypertrophy involves

the lipid second messenger known as PA [97]. Exogenous

administration of PA, or an over-expression of enzymes

that produce PA, results in an increase in mTORC1 acti-

vation [98–100]. Similarly, limiting PA production atten-

uates mTORC1 activity [97]. It has been suggested that PA

mediates mTORC1 activation by competing with the

FKBP12 (FK506 binding protein 12)–rapamycin complex

for binding to the FKBP12–rapamycin-binding (FRB)

domain of mTOR [101, 102]. PA may also promote

mTORC1 activation as a primary effector of Rheb [103].

GTP-bound Rheb has been shown to activate phospholi-

pase D (PLD), an enzyme that generates PA from phos-

phatidylcholine [103]. PA can be synthesized by various

classes of enzymes, such as PLD, diacylglycerol kinase f
(DGKf), and lysophosphatidic acid acyltransferases

(LPAAT) [74, 98, 104, 105]. Joy et al. [106] found that

stimulating myoblast cells with PA in vitro increased

Fig. 1 Simplistic overview of

the influence of muscle

contraction and growth factors

on mTORC1 signaling and the

regulation of muscle growth.

Broken arrows indicate

‘remains unclear’. Akt protein

kinase B, DAG diacylglycerol,

DGKf diacylglycerol kinase f,
IRS1 insulin receptor

substrate 1, LPA

lysophosphatidic acid, LPAAT

lysophosphatidic acid

acyltransferases, mTOR

mammalian/mechanistic target

of rapamycin, mTORC1

mammalian/mechanistic target

of rapamycin complex 1,

p70S6k ribosomal S6 kinase 1,

PA phosphatidic acid, PC

phosphatidyl choline, PDK1

3-phosphoinositide-dependent

protein kinase-1, PI3K

phosphatidylinositol-3 kinase,

PIP2 phosphoinositol (4,5)-

bisphosphate, PIP3

phosphoinositol (3,4,5)-

trisphosphate, PLD

phospholipase D, Rheb Ras

homolog enriched in brain,

RPS6 ribosomal protein S6,

TSC1 tuberous sclerosis

complex 1, TSC2 tuberous

sclerosis complex 2
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mTORC1 signaling, and trained subjects supplementing

with PA significantly improved skeletal muscle hypertro-

phy following 8 weeks of resistance training. Thus, evi-

dence suggests that PA is a direct regulator of resistance

exercise-induced mTORC1 signaling promoting muscle

hypertrophy.

4 Growth Factor Activation of mTORC1

Within the mTORC1 signaling pathway, growth factors

including insulin and insulin-like growth factor (IGF)-1

bind to their respective receptors, which promote the

inhibition of Rheb in an Akt-dependent pathway, resulting

in an increase in mTORC1 activity [91]. When insulin/

IGF-1 bind to their receptors at the muscle membrane, the

receptor autophosphorylates, creating a docking site for

IRS1 [107]. IRS1 moves to the plasma membrane, which

subsequently recruits phosphatidylinositol-3 kinase (PI3K)

[107]. PI3K phosphorylates the membrane phospholipid

phosphoinositol (4,5)-bisphosphate (PIP2), resulting in

phosphoinositol (3,4,5)-trisphosphate (PIP3) [108]. PIP3

causes the co-localization of Akt and 3-phosphoinositide-

dependent protein kinase-1 (PDK-1) to the membrane,

resulting in Akt phosphorylation [109]. Subsequently,

TSC2 is phosphorylated by Akt, resulting in relocalization

away from Rheb [91, 110]. Akt also inhibits PRAS40

(proline-rich Akt substrate of 40 kDa), a negative regulator

of mTORC1 signaling [111]. In summary, similar to

resistance exercise-induced mTORC1 activation, insulin

and growth factors appear to activate mTORC1 via phos-

phorylation of TSC2. However, insulin and growth factors

appear to activate mTORC1 through Akt, while resistance

exercise induces an Akt-independent activation of

mTORC1.

5 Association Between Circulating Hormones,
mTORC1 Signaling, and Muscle Growth

The endocrine system plays an integral role in the regula-

tion of muscle mass. Hormones including testosterone,

growth hormone (GH), insulin, IGF-1 and cortisol influ-

ence muscle growth and development throughout life, and

states of hormonal excess or deficiency alter the balance

between skeletal muscle anabolism and catabolism [112,

113]. While the fundamental roles of hormones are

imperative for developmental growth and maintenance of

skeletal muscle throughout a lifetime, the impact of phys-

iological fluctuations (i.e., non-pharmacological-based

changes) in anabolic hormones has been debated [114].

Resting hormonal concentrations appear to be unaltered

Fig. 2 Simplistic overview

mTORC1 activation (curved

arrow) via phosphorylation of

TSC2. GTP guanosine

triphosphate, mTOR

mammalian/mechanistic target

of rapamycin, mTORC1

mammalian/mechanistic target

of rapamycin complex 1,

P phosphorylation, p70S6k

ribosomal S6 kinase 1, Rheb

Ras homolog enriched in brain,

TSC2 tuberous sclerosis

complex 2

Intramuscular Anabolic Signaling and Endocrine Response Following Resistance Exercise 675

123

Author's personal copy



following resistance training programs of up to 24 weeks

[115, 116]; therefore, there has been considerable specu-

lation about the role of the post-exercise endocrine

response in mediating increases in muscle size [117].

Systemic elevations of circulating hormones presumably

increase the likelihood of interaction with receptors located

within the muscle tissue and have been speculated to

contribute to muscle growth consequent to resistance

training [117]. However, in humans, elevations of the

anabolic hormones do not appear to be necessary for

muscle hypertrophy [118], intramuscular signaling [70,

119], or muscle protein synthesis [70], leading to the

supposition that the mechanisms of muscle hypertrophy are

intrinsically specific to the activated skeletal tissue [69].

Exogenous supra-physiological doses of testosterone have

shown to significantly increase muscle protein synthesis

and lean body mass [120, 121], especially when combined

with resistance training [122, 123]. Additionally, admin-

istration of exogenous testosterone supplementation to

restore normal physiological values in androgen-deficient

older men is associated with significant increases in muscle

mass [124–129]. However, others have suggested that

physiological fluctuations of hormones are not required for

resistance exercise-induced skeletal muscle hypertrophy

[88]. These hormones, including testosterone, GH, insulin,

IGF-1, and cortisol, have been suggested to be far more

important for developmental growth rather than exercise-

induced muscle growth [88].

Transient hormonal elevations appear to play a per-

missive, rather than stimulatory, role in the regulation of

muscle protein synthesis [130]. Over-expression of Rheb in

skeletal muscle stimulates a PI3K/Akt-independent acti-

vation of mTORC1 that is sufficient to induce muscle

hypertrophy [131]. Although it has been suggested that

growth factor activation of the PI3K/Akt axis is also suf-

ficient for skeletal muscle growth, these mechanisms do not

appear to be necessary for maximizing mTORC1 activation

or the hypertrophic response that occurs in response to

resistance exercise [21, 88]. Resistance exercise and

growth factors share the same final step in mTORC1

activation (via phosphorylation of TSC2) (Fig. 2) [88].

Since the end result of both resistance exercise and growth

factors is the movement of TSC2 away from Rheb via

different upstream kinases, resistance exercise and growth

factor exposure may not offer a synergistic effect.

6 Influence of Acute Endocrine and Intramuscular
Signaling Response on Muscle Growth

Substantial evidence indicates that resistance exercise

protocols of high volume (3–6 sets; 8–12 repetitions),

moderate intensity (60–85 % 1 RM), and short rest

intervals (30–90 s), which activate a large muscle mass,

elicit the greatest acute elevations in testosterone and GH

[61–67, 132–139]. Studies investigating the acute hor-

monal response following different heavy-resistance exer-

cise protocols are presented in Table 1. Several studies

have also investigated the association between acute

exercise-induced hormone responses and changes in mus-

cle size following a structured resistance training program

(Table 2). McCall et al. [115] found a significant correla-

tion (r = 0.70–0.71; p\ 0.05) between acute exercise-in-

duced GH elevations and the degree of both type I and

type II muscle fiber hypertrophy following 15 weeks of

resistance training in 11 recreationally trained men. Ahti-

ainen et al. [116] reported a significant correlation

(r = 0.76; p\ 0.05) between changes in the acute testos-

terone response and the degree of muscle hypertrophy

following 21 weeks of resistance training in 16 men (eight

strength athletes and eight non-athletes). However, both of

these studies had a relatively small number of subjects,

thereby limiting the ability to draw meaningful conclu-

sions. In a more recent study examining a larger cohort of

56 untrained men, West and Phillips [140] reported that the

acute systemic hormonal response of GH and cortisol were

weakly correlated (r = 0.28–0.36; p\ 0.05) with resis-

tance training-induced changes in muscle fiber CSA

explaining 8 and 12 % of the variance, respectively.

Although cortisol, a catabolic hormone, was weakly cor-

related with changes in lean body mass (r = 0.29;

p\ 0.05), no significant correlations were observed

between GH, testosterone, and IGF-1 and changes in lean

body mass [140]. Additionally, the variability within the

gains of muscle hypertrophy seen in ‘high responders’ and

‘low responders’ could not be explained by the acute

hormone response [140]. However, these investigations are

based on limited blood sampling timepoints following an

acute bout of resistance training. Furthermore, Wilkinson

et al. [118] observed significant gains in hypertrophy in the

absence of systemic changes in GH, testosterone, and IGF-

1 [118]. Thus, the effect of changes in the acute anabolic

hormonal response to resistance exercise on muscle growth

is still not well-understood.

Mitchell et al. [54] examined post-exercise changes in

anabolic hormone concentrations (testosterone, GH, and

IGF-1) and intramuscular signaling and their association

with muscle fiber hypertrophy following 16 weeks of

training. Post-exercise increases in these circulating hor-

mones following the initial bout of resistance exercise did

not appear to be related to training-induced hypertrophy,

whereas acute increases in p70S6k phosphorylation and

androgen receptor (AR) protein content following the initial

bout of resistance exercise were highly associated

(r = 0.54–0.60; p\ 0.05) with resistance training-induced

hypertrophy [54]. The magnitude of p70S6k
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phosphorylation has shown to be associated with myofib-

rillar protein synthesis rates (r = 0.31–0.34; p\ 0.05) [82,

83], and its acute phosphorylation following resistance

exercise has been reported to correlate with muscle hyper-

trophy following training in both rodents (r = 0.998;

p\ 0.05) [84] and untrained men (r = 0.53–0.89; p\ 0.05)

[85, 86]. However, not all studies have found such a rela-

tionship [24]. Still, correlations between transient changes in

muscular and systemic markers of anabolism following

acute bouts of exercise and training-induced muscle hyper-

trophy are not evidence of a causative role for cellular

adaptations in the trained muscle [141].

The hormone-receptor complex regulates gene expres-

sion and transcription factors that may promote an increase

in net muscle protein balance [129, 142]. Thus, the number

and sensitivity of receptors in the activated skeletal muscle,

along with systemic elevations of the circulating hormone,

may mediate the anabolic effects of hormones including

testosterone. An up-regulation of either AR protein content

and/or AR mRNA expression has been observed following

resistance exercise [54, 143–148], and acute increases in

AR protein content appear to correspond with subsequent

increases in myofibrillar protein [143] and exercise-in-

duced hypertrophy [54]. However, others report no chan-

ges, or decreases, in AR expression following resistance

exercise [149, 150]. Moreover, AR expression appears to

have a bi-phasic response with an initial down-regulation

following a bout of resistance exercise followed by an up-

regulation several hours after exercise [151]. Additionally,

it has been demonstrated that AR expression can vary

between different muscles and muscle fiber types [147].

Further, Inoue et al. [152] showed that down-regulation of

AR expression (via an AR antagonist) suppressed the

hypertrophic response in exercised rats. Alternatively,

chemically induced testosterone suppression (via goserelin)

did not blunt AR expression or hypertrophy in young men,

despite a 10- to 20-fold lower resting concentration and a

blocked exercise-induced testosterone response [153].

Enhanced hormone-receptor interaction following resis-

tance exercise may up-regulate the expression of various

muscle-specific genes promoting hypertrophy. However,

further research has demonstrated that an IGF-1 receptor

may not be necessary for resistance exercise-induced

mTORC1 signaling and muscle growth [154]. Using a

transgenic mouse model, Spangenburg and colleagues

[154] reported that both Akt and p70S6k activation can be

induced independently of a functioning IGF-1 receptor.

The extent to which anabolic hormones mediate their

effects directly through the hormone-receptor complex

warrants further investigation.

The relationship between transient increases in hor-

monal concentrations and intramuscular anabolic signaling

and muscle growth has also been an area of interest of

several investigations (Table 3). Acute intramuscular ana-

bolic signaling and exercise-induced hypertrophy have

been examined under different hormonal environments in

untrained individuals [68, 70, 119, 155]. Experimental

trials eliciting a high hormonal response have not been

shown to enhance markers of mTORC1 signaling in the

vastus lateralis [119] or biceps brachii [70] compared with

trials that did not elicit an increase in hormonal concen-

trations. Furthermore, the experimental trial eliciting a

transient increase in the circulating concentration of ana-

bolic hormones did not enhance muscle protein synthesis in

the biceps brachii [70]. In a subsequent study, untrained

men performed a 15-week elbow flexor resistance training

program, with one arm being grouped into a low hormonal

environment and the other into a high hormonal environ-

ment for the duration of the study. Results showed no

difference between conditions in training-induced muscle

hypertrophy of the biceps brachii [68]. However, other

investigators provide conflicting evidence. Rønnestad and

Table 2 Research investigating the association between acute exercise-induced hormone responses and changes in muscle size following a

structured resistance training program

Study Participants Study

length

(weeks)

Results

McCall et al.

[115]

11 recreationally trained

men

12 Significant correlation between acute GH elevation and the degree of type I

(r = 0.70) and type II (r = 0.71) muscle fiber hypertrophy

Ahtiainen

et al. [116]

8 physically active men;

8 strength athletes

21 Significant correlation between acute testosterone elevation and change in muscle

CSA (r = 0.76)

West and

Phillips

[140]

56 recreationally active

men

12 Significant correlation between acute GH elevation and the degree of type I fiber

hypertrophy (r = 0.36). Significant correlation between acute cortisol elevation

and the degree of type II fiber hypertrophy (r = 0.35) and changes in lean body

mass (r = 0.29)

Mitchell et al.

[54]

23 recreationally active

men

16 No correlation between acute testosterone, GH, or IGF-1 elevation and muscle

hypertrophy

CSA cross-sectional area, GH growth hormone, IGF-1 insulin-like growth factor-1
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colleagues [155] utilized a similar 11-week research design

and demonstrated that the increased concentrations of

serum testosterone and GH occurring prior to performing

elbow flexor exercises yielded greater increases in CSA of

the elbow flexors than elbow flexor exercises performed in

a low hormonal environment. The authors hypothesized

that their findings may be related to the exercise order. This

contrasts with others who suggest that changes in the post-

exercise circulating concentrations of testosterone, GH,

and IGF-1, and the subsequent interaction within skeletal

muscle, is not influenced by the order of the resistance

exercises [156]. Evidence to date appears to suggest that

exposing activated skeletal muscle to a transient elevation

in circulating hormones does not enhance intramuscular

signaling.

7 Effect of Resistance Exercise Variables
on Activation of mTORC1

Resistance exercise evokes a robust activation of mTORC1

signaling in untrained and recreationally active men in both

fed [157–161] and fasted states [73, 85, 162–164]. Resis-

tance exercise-induced mTORC1 activation has also been

observed in experienced, resistance-trained men [45, 165,

166], yet the training design (i.e., manipulation of acute

training variables: intensity, volume, and rest) for maxi-

mizing the anabolic response remains unclear.

Multiple-set resistance exercise elicits greater intra-

muscular anabolic signaling than single-set exercise, indi-

cating that exercise volume can influence the muscle

protein signaling response to exercise [83, 167]. Low-

versus high-intensity unilateral leg extensions performed to

volitional fatigue have yielded inconclusive results [24,

60]. Burd et al. [60] reported that low-intensity resistance

exercise (30 % 1 RM) was more effective than higher-in-

tensity loads (90 % 1 RM) for inducing mTORC1

signaling 4 h post-exercise in recreationally active men. In

contrast, Mitchell et al. [24] found high-intensity loads

(80 % 1 RM) to be more effective than lower-intensity

loads (30 % 1 RM) for inducing mTORC1 signaling 1 h

post-exercise in untrained men. Regardless, following

10 weeks of training, no differences between the two dif-

ferent training protocols were observed in the magnitude of

muscle hypertrophy [24]. The mTORC1 signaling response

has also shown to be greater following a high volume

(5 9 10 RM) than a lower volume but higher-intensity

(15 9 1 RM) bilateral leg press exercise [168]. The lack of

any clear relationship between training program design and

the intramuscular anabolic signaling response suggests that

additional factors such as muscle fiber recruitment [48],

time-under-tension [49], and metabolic stress [50] may

have contributing roles in stimulating the anabolic signal-

ing molecules.

Exercise-induced metabolic stress may also play a role

in acute activation of mTORC1 signaling. Metabolic stress

results from exercise that primarily relies on anaerobic

glycolysis as its major energy provider. Lactate directly

affects muscle cells in vitro by increasing satellite cell

activity as well as mTOR and p70S6k phosphorylation

[169]. Elevations in blood lactate have also been demon-

strated to be weakly associated (r = 0.38; p\ 0.05) with

intramuscular anabolic signaling following resistance

exercise in trained men [50]. Lactate production may

contribute to increased mTORC1 signaling [170]; however,

the mechanisms by which metabolic stress influences

anabolic signaling are not fully elucidated and warrant

further investigation.

Acute activation of mTORC1 signaling may also be

influenced by mode of contraction. Eccentric-only resis-

tance exercise has been suggested to provide a stronger

anabolic stimulus than concentric-only resistance exercise

[171–174], and eccentric contractions have been demon-

strated to produce a more rapid rise in myofibrillar muscle

Table 3 Research investigating the relationship between transient increases in hormonal concentrations and intramuscular anabolic signaling

and muscle growth

Study Participants Study length Results

Acute

Spiering et al. [119] 7 physically active men 2 trials No additive effect from elevated circulating hormones on

intramuscular anabolic signaling

West et al. [70] 8 recreationally active men 2 trials No additive effect from elevated circulating hormones on

intramuscular anabolic signaling or muscle protein synthesis

Prolonged

West et al. [68] 12 untrained men 15 weeks No additive effect from elevated circulating hormones on whole-

muscle, type I, or type II CSA

Rønnestad et al. [155] 11 untrained men 11 weeks Significant increase in muscle CSA as a result of elevated circulating

hormones

CSA cross-sectional area
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protein synthesis than concentric only contractions [171,

172]. In addition, maximal eccentric contractions have also

been demonstrated to significantly activate p70S6k and

RPS6 up to 2 h into recovery, while maximal concentric

and submaximal eccentric contractions failed to induce

changes in Akt, mTOR, p70S6k, or RPS6 phosphorylation

status [173]. Additional support was recently provided by

Rahbek et al. [174], who demonstrated that maximal

eccentric contractions triggered a greater acute anabolic

signaling response than concentric contractions. However,

despite the greater anabolic signaling response, no differ-

ences were noted in myofibrillar protein synthesis rates or

in exercise-induced hypertrophy following 12 weeks of

high-volume resistance training [174]. Increases in muscle

size following 9 weeks of unilateral resistance training

have also been shown to be unrelated to muscle contraction

type when matched for both exercise intensity and total

external work [175]. Thus, eccentric contractions, which

emphasize greater tension and stretching of the muscle,

may yield a greater acute anabolic response, yet whether it

translates into greater muscle hypertrophy with training

remains questionable.

It is important to note that the anabolic response fol-

lowing resistance exercise appears to be highly variable

between individuals [43, 52, 53, 176]. A number of factors

influence the muscle remodeling process following resis-

tance exercise, including nutritional intake and genetic

predisposition [88, 177]. Nevertheless, several studies have

suggested that training status can also impact resistance

exercise-induced intramuscular anabolic signaling. Coffey

et al. [43] reported that prior training history blunts the

anabolic signaling responses involved in the adaptation to

resistance exercise. Chronic resistance training in rats also

attenuates p70S6k phosphorylation following an acute

exercise bout [178]. Similarly, in humans, the duration of

protein synthesis following a bout of resistance exercise was

reduced following 8 weeks of resistance training [42].

Additionally, our laboratory recently demonstrated that

highly trained, stronger individuals have an attenuated acute

anabolic response following a high-volume resistance

exercise protocol [45]. Thus, a potential lower adaptive

ability among highly trained individuals may, in part,

account for the diminished hypertrophic adaptation among

experienced, resistance-trained individuals [179, 180].

8 Conclusion

Despite the plethora of information regarding the impact of

resistance exercise on muscle hypertrophy, the mechanisms

involved in converting mechanical signals into the

molecular events that control muscle growth are not com-

pletely understood. However, skeletal muscle adaptation

appears to be the result of the cumulative effects of tran-

sient changes in gene expression following acute bouts of

exercise [22]. Specifically, skeletal muscle protein syn-

thesis appears to be regulated by the multi-protein phos-

phorylation cascade mTORC1; thus, maximizing resistance

exercise-induced mTORC1 signaling should yield the

greatest potential for hypertrophic adaptation with training

[54, 84–86]. A majority of the research to date shows that

mTORC1 signaling is not influenced by transient eleva-

tions in circulating hormones [54, 68–70]; hence, the

design of a resistance training program based on a hor-

monal response may be futile. However, resistance exer-

cise-induced mTORC1 activation appears to be a

multifaceted process, which is influenced by a number of

factors. The resistance exercise parameters for maximizing

the anabolic response remain unclear, and it is unknown

whether different resistance exercise paradigms used by

strength and power athletes differentially stimulate intra-

muscular anabolic signaling. Resistance exercise protocols

that maximize muscle fiber recruitment, time-under-ten-

sion, and metabolic stress appear to contribute to intra-

muscular anabolic signaling; however, there does not

appear to be a minimal threshold or optimal training

scheme per se for maximizing muscle hypertrophy.
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