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Abstract

The negative impact of obesity on reproductive success is well documented but the stages at which development of the
conceptus is compromised and the mechanisms responsible for the developmental failure still remain unclear. Recent
findings suggest that mitochondria may be a contributing factor. However to date no studies have directly addressed the
consequences of maternal obesity on mitochondria in early embryogenesis. Using an established murine model of
maternal diet induced obesity and a live cell dynamic fluorescence imaging techniques coupled with molecular biology we
have investigated the underlying mechanisms of obesity-induced reduced fertility. Our study is the first to show that
maternal obesity prior to conception is associated with altered mitochondria in mouse oocytes and zygotes. Specifically,
maternal diet-induced obesity in mice led to an increase in mitochondrial potential, mitochondrial DNA content and
biogenesis. Generation of reactive oxygen species (ROS) was raised while glutathione was depleted and the redox state
became more oxidised, suggestive of oxidative stress. These altered mitochondrial properties were associated with
significant developmental impairment as shown by the increased number of obese mothers who failed to support
blastocyst formation compared to lean dams. We propose that compromised oocyte and early embryo mitochondrial
metabolism, resulting from excessive nutrient exposure prior to and during conception, may underlie poor reproductive
outcomes frequently reported in obese women.

Citation: Igosheva N, Abramov AY, Poston L, Eckert JJ, Fleming TP, et al. (2010) Maternal Diet-Induced Obesity Alters Mitochondrial Activity and Redox Status in
Mouse Oocytes and Zygotes. PLoS ONE 5(4): e10074. doi:10.1371/journal.pone.0010074

Editor: Thorkild I.A. Sorensen, Institute of Preventive Medicine, Denmark

Received December 10, 2009; Accepted March 17, 2010; Published April 9, 2010

Copyright: � 2010 Igosheva et al. This is an open-access article distributed under the terms of the Creative Commons Attribution License, which permits
unrestricted use, distribution, and reproduction in any medium, provided the original author and source are credited.

Funding: This work was supported by Biotechnology and Biological Sciences Research Council (grants BB/C518273/1; F007450) and by Tommys Charity, UK. The
funders had no role in study design, data collection and analysis, decision to publish, or preparation of the manuscript.

Competing Interests: The authors have declared that no competing interests exist.

* E-mail: ni4@sanger.ac.uk

Introduction

Obesity and related metabolic disorders are a major health issue

worldwide. With increasing prevalence in all populations and age

groups, the proportion of women of reproductive age who are

obese is rising [1]. Evidence is growing that excessive body fat has

a detrimental effect on female fertility and pregnancy [2]. Obese

women take longer to conceive and have a higher risk of

miscarriage compared to lean women [3].Obesity also impairs the

immediate outcome of assisted reproductive technologies suggest-

ing that maternal body mass index (BMI) may influence the

potential for fertilisation and viability of early embryos [4]. Since

the earliest stages of embryo development are primarily controlled

by the oocyte, it is likely that a sub-optimal environment within the

ovary and/or oviduct accounts for these poor reproductive

outcomes.

As recently reviewed [5], understanding of the effects of

maternal obesity on the structure and metabolism in oocytes and

pre-implantation embryos is very limited. It has been proposed

that a high plane of nutrition might lead to excessive enrichment of

the reproductive milieu [6]. This in turn may induce alterations in

oocyte metabolism and impede embryonic development. Indeed

several studies have shown that abnormally high or low rates of

metabolism may compromise oocyte and embryo development

[7,8]. Mitochondria are likely candidates for compromised

metabolism in the embryo; these organelles are exclusively

maternal in origin, and thus a deleterious influence of maternal

BMI on mitochondria in the oocyte would strongly influence

embryonic metabolism. Mitochondria also perform numerous

regulatory functions during oocyte maturation [9], fertilization,

initiation and progression of preimplantation embryos [10]. As

energy producer, the central and most important function of

mitochondria is the synthesis of adenosine triphosphate (ATP) by

oxidative phosphorylation, a mechanism coupling the oxidation of

nutrients and reducing equivalents (NAD(P)H, FADH2) with the

phosphorylation of adenosine diphosphate. Both cytosolic and

mitochondrial sources of NAD(P)H along with mitochondrial

FADH2 stimulate the mitochondrial electron transport chain to

pump H out of the mitochondrial matrix thereby hyperpolarising

the inner mitochondrial membrane and generating the proton-

motive force used to generate ATP. Electron donors NAD(P)H

and FADH2 besides being used for energy production set the

intracellular redox state. NADH oxidation in the mitochondria

will produce ROS whereas NADPH oxidation (in the cytosol and

mitochondria) serves to rejuvenate the antioxidant defence by

reducing peroxiredoxins, thioredoxin and oxidised glutathione.
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Mitochondrial functions have, therefore, a dual impact on the

intracellular redox state via regeneration antioxidant systems and

via ROS production [11].

Mitochondria not only supply cells with their ATP, but are also

the source of cellular guanosine-59-triphosphate (GTP) as well as

site of amino acid synthesis and reservoir of cell calcium. Thus,

changes in mitochondrial activity can alter cell function in

dramatic way. The importance of mitochondria in oocyte quality

and embryo development is highlighted by reports showing that

defects in mitochondrial biogenesis together with insufficient

mitochondrial mass are associated with oocyte maturation failure

and abnormal embryo development [12,13]. Both the quality and

quantity of mitochondria are therefore an essential prerequisite for

successful fertilization and embryo development [14].

Studies in vitro have also highlighted the susceptibility of

mitochondria within the oocyte and developing embryo to

environmental stressors and have shown that even low-level

acquired mitochondrial injuries may persist into embryonic life

[15,16]. Potential influences of maternal nutritional status in

obesity are indicated by reports showing that periconceptual

exposure to high energy substrates such as fatty acids [17] and

proteins [18] results in perturbed oocyte and embryo mitochon-

drial metabolism. Hitherto, mitochondrial abnormalities of the

oocyte and early embryo have not been identified as a direct

consequence of maternal obesity. Using an established murine

model of maternal diet induced obesity [19] and a live cell

dynamic fluorescence imaging techniques coupled with molecular

biology we have investigated the effects of maternal obesity on

mitochondria l metabolism and biogenesis in oocytes and pre-

implantation embryos. Our study is the first to show that maternal

obesity during the periconceptional period resulted in an increased

mitochondrial potential, biogenesis and damaging level of ROS in

oocytes and zygotes. These changes were associated with reduced

fertility and impaired embryo viability. Our findings have

identified altered mitochondrial status as one of the probable

mechanisms of obesity-associated reproductive and developmental

failure.

Results

Maternal metabolic profile
At conception, female mice fed an obesogenic diet had a 43%

increase in body weight, 2.5 fold increase in fat pad and a

significantly higher concentration of serum fatty acids (p,0.05)

compared with chow fed controls (Table 1). Although maternal

serum leptin concentrations were similar in obese and lean mice,

the concentration of leptin in the oviductal fluid was significantly

elevated in obese females in comparison with lean females

(p,0.05).

Mitochondrial status in oocytes and zygotes of obese
female mice

Live cell dynamic fluorescence imaging was employed to study

effects of maternal obesity on mitochondrial function in oocytes

and embryos. This technique together with a range of targeted

fluorescent probes permitted comprehensive evaluation of mito-

chondrial function with simultaneous measurement of multiple

mitochondrial variables in a single oocyte and embryo. The

common vital mitochondrial membrane–specific dyes; MitoTrack-

ers and JC1 have been extensively used to study mitochondrial

dynamics and function in oocytes and embryos. However,

prolonged excitation of cells loaded with MitoTrackers may

impair mitochondrial function [20] whereas the JC1 dye appears

sensitive to factors other than inner mitochondrial membrane

potential (Dym) [21] and may inhibit mitochondrial complex 1

[22]. We therefore chose to measure Dym in single oocytes and

embryos using a low toxicity potentiometric fluorescent dye-

tetramethyl rhodamine methyl ester (TMRM; [23]).

Maternal diet-induced obesity led to a dramatic increase in

Dym in oocytes and zygotes. The intensity of mitochondrial

localised TMRM fluorescence in oocytes and zygotes of obese

females increased by 147% (p,0.01) and 74% (p,0.01),

respectively, compared with oocytes and zygotes of lean females

(Figure 1A and 1B). Eggs from obese mice also had a different

Table 1. Maternal weights and metabolic parameters.

Parameter
Control
females

Obese
females Significance

Body weight (g) 22.961.2 32.861.3 P,0.001 (10)

Fat pads weight (g) 0.9160.01 2.3260.01 P,0.01 (10)

Serum glucose (mmol/L) 6.6860.81 8.9960.95 P.0.05 (10)

Serum FFA (mmol/L) 0.6760.06 0.8960.08 P,0.05 (10)

Serum triglycerides (mmol/L) 0.9360.08 0.9460.09 P.0.05 (10)

Serum leptin (pg/ml) 11726270 14926170 P.0.05 (8)

Oviductal leptin (pg/ml) 10676293 19166221 P,0.05 (7)

Oviductal glucose (mmol/l) 6.1160.72 10.9062.01 P.0.05 (7)

Data expressed as mean 6 SEM. All serum measurements were fasting. Values
in parentheses indicate n/group.
doi:10.1371/journal.pone.0010074.t001

Figure 1. Maternal diet-induced obesity leads to increased
mitochondrial activity in the oocytes and zygotes. The
measurements of inner mitochondrial membrane potential (Dym) were
made using confocal imaging of TMRM fluorescence. The signal
intensity was quantified per pixel in a confocal slice after thresholding
to remove background signal. (A) – oocytes and (B) zygotes derived
from lean (n = 15 cells/group) and obese females (n = 15 cells/group).
Relative intensity of TMRM fluorescence is expressed as a percentage of
the signal from oocytes of lean mice. (C) Representative confocal
images of mitochondria distribution in oocytes from lean and obese
mice. * p,0.05. Data are mean 6 SEM.
doi:10.1371/journal.pone.0010074.g001
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pattern of mitochondrial distribution as visualised by the

distribution of TMRM staining (Figure 1C and 1D). Mitochondria

were distributed evenly throughout the ooplasm of the eggs from

lean females. In contrast, mitochondria in eggs from obese females

had a discontinuous distribution with high density clusters

localised to the cortical ooplasm and surrounding the nucleus.

Since the organisation of mitochondria within cells is important for

the signalling events associated with fertilisation [10], this

abnormal localisation of mitochondria may be detrimental for

the preimplantation embryo. Indeed, a similar aggregated

mitochondrial structure was identified in preimplantation embryos

undergoing arrest [24].

An increase in Dym may have a number of origins including a

higher supply of substrates and increased mitochondrial respira-

tory activity or inhibition of ATP synthase activity [25]. To

differentiate between different mechanisms we analysed the redox

state in oocytes and zygotes, measured as the autofluorescence

signal derived from NAD(P)H or FAD2+ [23]. Confocal laser-

scanning microscopy (CLSM) revealed that the NAD(P)H in

oocytes and zygotes from obese mice was more oxidised than in

eggs from lean mice (oocytes - 36%63 vs 55%64, p,0.05;

zygotes – 27%62 vs 86%65, p,0.05 on a scale that runs from

0% for full oxidation to 100% for full reduction) (Figure 2A).

Imaging FAD2+ autofluorescence also revealed that flavoproteins

were more oxidised in oocytes and zygotes from obese females

compared to eggs from lean females (oocytes – 74%66 vs 41%63,

p,0.05, zygotes- 56%64 vs 40%64, p,0.05: note that for this

signal, 100% is fully oxidised and 0%, fully reduced) (Figure 2B).

These changes indicate increased oxidation of the pyridine

nucleotide and flavoprotein pools [23] and suggest a shift in the

intracellular redox status towards oxidation in the eggs from obese

mice.

Studies in mitochondria respiratory chain function in vivo [26]

and in vitro [11,23] have shown that the redox state of the pyridine

nucleotide and flavoprotein pools reflects the balance between the

rate of reduction by substrate utilization and the rate of oxidation

by mitochondrial respiration. The shift of the redox balance

towards a net reduced state occurs as a consequence of up-

regulated substrate processing and inhibition of respiration,

whereas an increase in mitochondrial respiratory rate favours

the shift of the redox potential towards the oxidised state.

Therefore it is conceivable that oxidised state of the pyridine

nucleotide and flavoprotein pools in oocytes and zygotes from

obese females may be attributable to increased mitochondrial

respiratory chain activity.

In order to evaluate the level of oxidative stress and antioxidant

defence in oocytes and zygotes we measured rates of intracellular

ROS generation using dihydroethidium (HEt), a non-fluorescent

derivative of ethidium which is oxidised to a fluorescent product

by superoxide. In oocytes and zygotes of obese mice the rate of

ROS production was significantly increased by 2.1 (p,0.05) and

1.6 (p,0.05) fold respectively compared to the eggs of lean mice

(Figures 3A and 3B). We measured levels of the antioxidant

glutathione (GSH) using the monochlorobimane (MCB) which

forms a fluorescent adduct following an enzyme catalysed reaction

with GSH. In parallel with the increase in the oxidative load, GSH

was depleted in oocytes and zygotes from obese females when

compared with eggs from lean females (oocytes – 80%67 vs

100%66, p,0.05; zygotes- 68%64 vs 93%66, p, 0.05)

(Figures 3C and 3D).

Alterations in the rates of intracellular ROS generation are

associated with changes in mitochondrial abundance and mtDNA

copy number. Oxidative stress damages bases as well as causing

single or double-strand breaks in mtDNA which are mutagenic

and can inhibit mtDNA replication [27]. However, excessive ROS

generation has been associated with an increase in mtDNA copy

number in aging tissues as a result of a feedback response which

compensates for defective mitochondria bearing impaired respi-

ratory chain or mutated mtDNA [28].

To test the hypothesis that maternal obesity-associated oxidative

stress in oocytes and zygotes may affect mitochondrial biogenesis

we measured mtDNA copy number and expression of key genes

involved in the regulation of the replication and transcription of

the mitochondrial genome. mtDNA copy number was significantly

increased in oocytes from obese compared to lean mice

(Figure 4A), and the expression of nuclear genes encoding mtDNA

transcription factors - mtTFAM and NRF1 - was also elevated in

oocytes from obese females suggesting upregulation of mitochon-

drial biogenesis (Figure 4B and 4C). Interestingly, mtDNA copy

number, TFAM and NRF 1 expression were not altered in zygotes

from obese mice.

Effects of maternal obesity on pre-implantation embryos
No significant differences were detected in the number of

zygotes between lean and obese females. However, the ability of

zygotes to develop to the blastocyst stage was reduced in obese

mice (Table 2). Thus, the number of obese females who failed to

produce blastocysts 4 days after mating was higher in comparison

Figure 2. Maternal diet-induced obesity is associated with an
oxidised intracellular redox state in oocytes and zygotes. The
redox state of single oocytes and zygotes from lean (n = 15 cells/group)
and obese (n = 15 cells/group) mice was estimated through measure-
ments of NAD(P)H and FAD2+ autofluorescence intensity. The resting
redox state is defined as a ratio of the maximally oxidised (response to
1 mM FCCP) and maximally reduced (response to 1 mM NaCN) signals.
The fluorescence signals are normalised between 100 and 0. For
NAD(P)H autofluorescence (A): 0 - maximally oxidised state; 100 –
maximally reduced state. This scale is reversed for FAD2+ fluorescence
(B). 0 – maximally reduced state; 100 – maximally oxidised state.
* p,0.05 relative lean group. Data are mean 6 SEM.
doi:10.1371/journal.pone.0010074.g002
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with controls (5 vs 2). In three of 5 obese mice no blastocyst were

found in either uterus and oviduct whereas in two obese females a

small number of arrested fragmented embryos at various stages of

development was recovered from the oviduct. In the remaining 6

obese (54%) females blastocyst development per mouse was similar

to that in lean females. Differential nuclear labeling did not reveal

any differences in the number of cells within trophectoderm and

inner cell mass lineages of blastocysts from obese and lean mice

(Table 2).

Discussion

The negative impact of obesity on reproductive success is well

documented [5] but the stages at which development of the

conceptus is compromised and the mechanisms responsible for the

developmental failure remain unclear. Using our established

model we have identified altered mitochondrial activity as one of

the probable mechanisms of obesity-associated reproductive and

developmental failure.

We report that blastocyst development was reduced in maternal

diet-induced obesity and was associated with altered mitochondrial

distribution and striking hyperpolarisation of the mitochondrial

membrane, oxidised redox state and oxidative stress in both

oocytes and zygotes. Regulation of all of these parameters is

required for normal development [13]. We also report increased

mitochondrial biogenesis in oocytes as evidenced by high mtDNA

copy number and up-regulation of NRF1 and TFAM transcripts.

It is currently unclear what mechanisms underlie such large

differences in Dy between control oocytes and embryos and those

derived from obese females. Nor it is entirely clear how these

differences are established and maintained. Studies in mitochon-

dria in somatic cells [29] and embryos [30,31] have shown that the

magnitude of Dym is related to the level of mitochondrial

respiration so the differences in mitochondrial respiratory activity

may account for the hyperpolarisation observed. The increased

oxidation of reducing equivalents - NAD(P)H and FADH2 in

oocytes and zygotes from obese females have also provided

indirect evidence for activation of mitochondrial respiratory

Figure 3. Maternal diet induced obesity increases rates of ROS generation and depletes glutathione in oocytes and zygotes.
Cytosolic ROS production in oocytes and zygotes was measured by rate of oxidation of HEt. The traces represent changes of HEt fluorescence in
oocytes (A) and zygotes (B) from lean (n = 15 cells/group) and obese (n = 15 cells/group) mice as a function of time. These data are summarised in
histograms (C, D), in which the mean rates of ROS production are shown as the mean rate of HEt fluorescence change per minute. Results are
expressed as percentage changes from HEt fluorescence in lean oocytes. Intracellular glutathione staining with MCB in oocytes (E) and zygotes (F)
recovered from lean and obese female mice. Relative intensity of MCB fluorescence is expressed as a percentage of the signal from oocytes of lean
mice. (G) Representative confocal images of GSH staining in oocytes. *p,0.05, ** p,0.01. Data are mean 6 SEM.
doi:10.1371/journal.pone.0010074.g003
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activity. Carbohydrates and fatty acids are the principal substrates

for mitochondrial oxidation and an increased availability of these

energy substrates is a well known mechanism of up-regulation of

mitochondrial respiration [32].The presence of excessive fuel

within the obese reproductive environment may therefore increase

substrate influx through the metabolic mitochondrial pathway,

leading to activation of mitochondrial respiratory activity which is

reflected in a hyperpolarised state of the mitochondrial membrane.

Whether oocytes and embryos that show intense mitochondrial

hyperpolarisation also have abnormally higher ATP content

remain to be determined.

While the increase in Dym in mouse oocytes and zygotes of

obese mice may be due to increased energy substrate load to

mitochondria [33], others have suggested that mitochondrial

hyperpolarisation might be associated with early molecular events

that precede developmental impairment and the induction of cell

death [31]. Recently, Schienke et al. [34] has also reported

reduced differentiation potential in mouse embryonic stem cells

with a high Dym and overall rate of mitochondrial metabolism.

Maternal diet-induced obesity was associated with increased

oxidation of NAD(P)H in both oocytes and zygotes. NAD(P)H has

direct antioxidant properties and also ensures regeneration of

GSH, a developmentally critical antioxidant molecule [35].

Therefore, NAD(P)H down-regulation and reduced antioxidant

capacity may contribute to oxidative stress in the oocytes and

zygotes from obese females, as observed through direct measure-

ments of ROS production and GSH concentration in the eggs.

Unlike somatic cells, preimplantation embryos cannot synthesize

GSH de novo [36] and may therefore be very sensitive to ROS,

even at low concentrations [7].

ROS can be toxic when in excess but may also play a regulatory

role in the control of mitochondria activity, particularly in

mitochondrial biogenesis [37]. In cell lines carrying different

common mouse mtDNA haplotypes a direct correlation between

ROS generation and mtDNA content has been shown [38]. This is

in agreement with our observation that oocytes from obese females

producing more ROS had a higher mtDNA copy number than

oocytes from lean mice. Expression of the nuclear genes involved in

mitochondrial biogenesis, specifically PGC-1, NRF-1 and mtTFA are

up-regulated in some human cell types [39] and in rat hepatocytes

[40] in response to oxidative stress. Hence, the increased mtDNA

copy number as well as NRF1 and TFAM mRNA expression in the

oocyte of the obese female may be attributable to an oxidative stress-

mediated increase in the transcription of genes involved in

mitochondrial biogenesis. Surprisingly, increased mitochondrial

biogenesis was present in the oocytes but not the zygotes of the obese

females. Mitochondria replication and the synthesis of maternal

nuclear encoded transcripts associated with mtDNA replication are

ongoing processes in the growing oocyte [10] and therefore can be

susceptible to ROS or nutritional and hormonal factors present in

obese reproductive environment [12]. The normalisation of

mtDNA and mRNAs associated with mtDNA replication after

Figure 4. Mitochondrial biogenesis is up-regulated in oocytes
from obese mice. (A) mtDNA copy number in oocytes from lean (n = 2
oocytes/8 females/group) and obese (n = 2 oocytes/8 females/group)
mice. Relative abundance of TFAM mRNA (B) and NR1mRNA (C) in
oocytes from lean (n = 20 oocytes/8 females/group) and obese (n = 20
oocytes/8 females/group) mice. qPCR was used to determine the
absolute mtDNA copy number and the amount of specific transcripts
relative to the H2AmRNA.* p,0.05. Data are mean 6 SEM.
doi:10.1371/journal.pone.0010074.g004

Table 2. The influence of maternal diet –induced obesity on early embryo development.

Parameter Control females Obese females Significance

Number of females with zygotes 100% (7) 100% (7) P.0.05

Zygote recovered/mouse 7.960.1 (7) 8.961.7 (7) P.0.05

Number of females with blastocysts/mated 82% (9/11) 54% (6/11)

Number of females without blastocycts/mated 1 18% (2/11) 46% (5/11) P,0.02 (11)

Blastocyst recovered/mouse 6.761.2 (7) 7.761.6 (6) P.0.05

Blastocyst total cell number 45.862.1 (7) 44.863.2 (6) P.0.05

ICM cell number 14.361.2(7) 14.160.6 (6) P.0.05

TE cell number 31.761.6 (7) 30.660.8 (6) P.0.05

ICM/TE cell number (%) 24.165.2 (7) 22.261.3 (6) P.0.05

Data expressed as mean 6 SEM. The number of zygotes was determined in the morning after natural mating. Blastocysts were recovered from the uterus on day 4 after
mating. The number of cells per blastocyst and their distribution between the inner cell mass and the trophectoderm were analysed in 3–5 blastocysts per mouse.
Values in parentheses indicate a number of mice/group.
1In both control and in 2 out of 5 obese mothers a small number of fragmented embryos at various stages of development was recovered from the oviducts.
doi:10.1371/journal.pone.0010074.t002
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fertilization may be explained by a combination of our recent

findings [15] and established molecular characteristics of the early

embryo [41]. We have previously reported a period of mtDNA

turnover where both mtDNA synthesis and destruction occur for a

short period after fertilization [15]. This period of mtDNA turnover

may offer a mechanism by which abnormal levels of mtDNA could

be normalised in zygote stage embryos from obese dams.

Additionally, it is well established that all maternally inherited

transcripts are degraded during the 1–2 cell stage prior to the onset

of the main burst of zygotic transcription during the late two cell

stage [41]. Thus the normalisation of nuclear encoded transcripts

associated with mitochondrial biogenesis in zygotes from obese

reflects this documented global maternal mRNA destruction.

In this study a significant impairment in the ability to support

embryo development to the blastocyst stage has been seen in 46%

of the obese mothers. Similar numbers of zygotes were readily

recovered from both groups, however. Thus, the absence of

blastocysts in 46% of obese females is not attributable to

anovulation but more likely due to increased embryonic death

since fragmented embryos were found in the oviducts of 2 out of 5

obese females that failed to produce blastocysts. In support of this

idea, a recent study by Minge et al [42] has reported poor oocyte

quality, reduced blastocyst survival rates and abnormal embryonic

cellular differentiation in obese female mice. In women obesity is

also associated with poor pre-implantation embryo quality and a

reduced rate of embryo survival [5].

We also found that the obesogenic diet increased serum fatty acid

concentration and caused a marked increase in the oviductal leptin

concentration. Leptin is essential for normal pre-implantation

development of mouse embryos [43]. However, exposure to a

higher leptin concentration in vitro [44] and in vivo [45] impairs

embryo development, reducing the rate of blastocyst formation. In

obese women, hyperleptinaemia is associated with poor fertility and

increased risk of early pregnancy loss [46]. Leptin is also crucial to

mitochondrial function. In rodents, leptin increases the expression

of enzymes contributing to fatty acid oxidation [47] and up-

regulates mitochondrial biogenesis through expression of PPARc
coactivator-1a [48]. Hyperlipidemia, also frequently associated with

obesity, increases fatty acids flux into oocytes and embryos which

may increase ROS generation or trigger embryo apoptosis through

mitochondria–dependent pathways [49].

In conclusion, exposure of oocytes and embryos to an obese

reproductive environment was associated with qualitative and

quantitative changes in mitochondria, oxidised redox state,

increased oxidative load and impaired antioxidant capacities.

Oocytes and embryo with compromised mitochondrial activity

may not be able to exert tight regulation of focal substrate supply

and demand and, as a result, generate ROS at rates that become

developmentally toxic after fertilization [7]. Embryo apoptosis or

arrest may then ensue. Further investigation of mitochondrial

functions in oocytes and embryos are required, particularly with

regard to obesity-related alterations in mitochondrial gene and

protein expression that inappropriately regulate mitochondrial

energy metabolism.

We propose that altered oocyte and early embryo mitochondrial

metabolism, resulting from excessive nutrients exposure prior to

and during conception may be responsible for poor reproductive

outcomes frequently reported in obese women.

Materials and Methods

Experimental animals and diets
This study was conducted in accordance with the UK Home

Office Animal (Scientific Procedures) Act 1986. Six week-old

virgin females C57BL/6J mice (Charles River Laboratories, UK)

were fed either a standard chow diet (7% simple sugars, 3% fat,

50% polysaccharide, 15% protein [w/w] RM1, Special Dietary

Services, n = 10) or highly palatable obesogenic diet (10% simple

sugars, 20% animal lard, 28% polysaccharide, 23% protein [w/

w], Special Dietary Services, n = 10) supplemented with sweetened

condensed milk and micronutrient mineral mix (AIN93G, Special

Dietary Services) [19]. After 6 weeks of diet, all females were

induced to superovulate by consecutive ip injections of 10 IU

pregnant mare’s serum (Dunlops) and 10 IU human chorionic

gonadotrophin (hCG, Dunlops). Prior to embryo collection mice

were culled by cervical dislocation. Blood samples were taken via

cardiac puncture. Abdominal and inguinal fat pads and body

weights were recorded. Twelve hours post hCG fully grown

oocytes were collected by puncturing pre-ovulatory follicles with

sterile needles and treated with hyaluronidase (0.5 mg/ml) to

remove surrounding cumulus cells. Zygotes and blastocysts were

collected after successful mating with males at 24 and 84 h after

post-hCG as described [15].

Oviduct fluid was collected as described in [50] with minor

modifications. Briefly, pregnant female mice (day 4) were culled

and oviducts were ligatured at uterotubal junction with 6-0 black

suture silk. Oviducts with attached ovaries were excised, rinsed in

saline and placed under mineral oil on a watch glass. Ovaries were

separated and the thread was removed at the cut end of the uterus

under the microscope. A curved blunt-end metal capillary

connected to a 1-ml syringe was inserted into infundibulum and

oviducts were carefully flushed with 50 ml of flushing medium (PBS

supplemented with 0.3% polyvinylpyrrolidone). Flushing from

both oviducts was collected and placed into a sterilized 0.5-ml

microcentrifuge tube and centrifuged at 10,0006g for 10 min to

remove cellular debris, and the supernatant was aspirated into

another sterilized 0.5-ml microcentrifuge tube and stored at

280uC until assayed for concentrations of leptin and glucose.

Assessment of mitochondrial morphology and
metabolism

Mitochondria of living oocytes and zygotes were imaged using a

Zeiss 510 uv-Vis CLSM META and a range of targeted

fluorescent probes (Molecular Probes) as described previously

[23,51]. Some measurements were made using a cooled CCD

camera (Orca ER).

The distribution of active mitochondria and Dym were analysed

in eggs incubated with tetramtehyl rhodamine methyl ester

(TMRM; 25 nM) in M2 medium at 37uC for 30 min. The

TMRM is a fluorescent lipophilic cation and accumulates into

mitochondria in response to the negative mitochondrial mem-

brane potential. TMRM was excited using the 543 nm laser line

and fluorescence measured using a 560 long-pass filter.

Measurements of NAD(P)H and FAD2+ autofluorescence

intensity in oocytes and zygotes were used to estimate the

mitochondrial redox potential. The reduced forms of pyridine

nucleotides (NAD(P)H) are excited by ultraviolet light at 351 nm

excitation line of the CLSM and measured between 435–485 nm.

The oxidised form (NAD(P)+) is non-fluorescent. In contrast to

NAD(P)H, it is the reduced form of flavoproteins (FADH2) that is

non-fluorescent. Fluorescence of the oxidised form of flavoproteins

(FAD2+) was excited at 458 nm and emitted fluorescence was

collected throughout the 505–550 nm bandpass filter.

The resting redox state was defined as a function of the

maximally oxidised and maximally reduced signals which were

obtained by adding FCCP (1 mM) to drive the signals to maximal

oxidation followed by addition of 1 mM NaCN which drives the

signals to a maximally reduced state. The fluorescence signals are
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then normalised between 100 (maximal reduction to NAD(P)H

and maximal oxidation to FAD2+) and 0 (maximal oxidation to

NAD(P)+ and maximal reduction to FADH2), giving a value which

is a measure of the resting relative redox state [23].

For measurement of cytosolic ROS production, HEt (2 mM) was

added to M2 medium and remained present throughout the

experiment (15 min). This is a non-fluorescent derivative of the

red fluorescent ethidium, and so an increase in red fluorescence

(excited at 543 nm and measured at .560 nm) gives a measure of

the rate of oxidation of the dye and therefore of the rate of ROS

generation.

In order to measure GSH, cells were incubated with 50 mM

MCB in M2 medium at 37u for 40 min, or until a steady state had

been reached before images were acquired. Non-fluorescent MCB

undergoes a reaction with glutathione catalysed by glutathione-s-

transferase to yield a fluorescent adduct which therefore gives a

measure of GSH content [52]. MCB fluorescence was excited at

351 nm and measured at 430–480 nm.

Fluorescent images were obtained from at least from 3 oocytes/

zygotes from 5 females per diet. Image analysis, differentiation and

exponential curve fitting were performed using Origin 8 software

(OriginLab Corporation).

Quantification of mDNA copy number
Total DNA was extracted from groups of two oocytes and

zygotes (n = 8 females/group) as described [53]. A mtDNA

content was measured by qPCR on Thermal Cycler Corbett

Rotorgene TM 6000 (Corbett research) using QuantiFast SYBR

Green PCR Kit (Qiagen) and primers corresponding to 16S

ribosomal gene. Sample copy number was determined with

mtDNA standard curves using Rotorgene 6000 software.

Gene expression analysis
Poly(A)+ RNA was isolated from snap-frozen oocytes (n = 20

oocytes/8 females/group) and zygotes (n = 10zygotes/8 females/

group) using magnetic oligo(dT) beads (Dynabeads mRNA

DIRECT Kit). cDNA synthesis was performed by random

hexamer priming and the Transcriptor First Strand cDNA

Synthesis Kit (Roche). qPCR took place on a Chromo4

thermocycler (MJ) using the Precision SybrGreen Master Mix

(Primerdesign). Each assay was performed in duplicates using

intron-spanning primers (Operon Biotechnologies GmbH). Sta-

bility of housekeeping genes was validated using geNorm

application and H2afz mRNA was selected for normalization.

Relative mRNA abundance was determined using the compara-

tive deltaCt method. A list of genes investigated and Primer

sequences are shown in Table 3.

Differential nuclear staining
The number of cells per blastocyst and their distribution

between the inner cell mass and the trophectoderm were counted

by differential fluorochrome nuclear labelling [54].

Metabolic Studies
Fasted glucose, fatty acids and triglycerides concentrations were

assessed using autoanalyser (LX20, Beckman Coulter) and the

assay kits (Glucose; UV-hexokinase; nr. GLU 1442640; triglycer-

ides; enzymatic GPO method; nr. TG 445850; total cholesterol;

enzymatic method; nr. CHOL 467825) as described in [19].

Concentrations of leptin were measured by a sandwich ELISA

using paired leptin antibodies (Duoset, R&D Systems Ltd). Serum

and oviduct fluid samples from the mice were diluted 1:20 for the

assay and leptin concentration of samples was calculated from a

standard curve constructed with mouse leptin standards.

Statistics
All results are expressed as mean 6 SEM. Data were analysed

by Student’s t-test after testing for normal distribution using

Graphpad Prism v. 2.01 (Graphpad Software, USA). A value of

p,0.05 was considered significant.
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