مقاله انگلیسی رایگان در مورد باتری های قابل شارژ مبتنی بر آنیون بین لایه ای – الزویر ۲۰۱۹

مقاله انگلیسی رایگان در مورد باتری های قابل شارژ مبتنی بر آنیون بین لایه ای – الزویر ۲۰۱۹

 

مشخصات مقاله
ترجمه عنوان مقاله باتری های قابل شارژ مبتنی بر آنیون بین لایه ای کاتد های گرافیتی
عنوان انگلیسی مقاله Rechargeable batteries based on anion intercalation graphite cathodes
انتشار مقاله سال ۲۰۱۹
تعداد صفحات مقاله انگلیسی ۶۸ صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله مقاله مروری (review article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) scopus – master journals
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
شاخص H_index ۲۱ در سال ۲۰۱۹
شاخص SJR ۵٫۲۰۸ در سال ۲۰۱۹
رشته های مرتبط شیمی و مهندسی برق
گرایش های مرتبط شیمی کاتالیست، مهندسی الکترونیک و شیمی فیزیک
نوع ارائه مقاله ژورنال
مجله / کنفرانس مواد ذخیره انرژی – Energy Storage Materials
دانشگاه Functional Thin Films Research Centre – Chinese Academy of Sciences – China
کلمات کلیدی تقویت آنیون، باتری های یونی آلومینیومی؛ باتری های یونی دوتایی، کاتدهای گرافیتی
کلمات کلیدی انگلیسی Anion intercalation, Aluminum ion batteries; Dual ion batteries; Graphite cathodes
شناسه دیجیتال – doi
https://doi.org/10.1016/j.ensm.2018.04.023
کد محصول E9419
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
۱٫ Introduction
۲٫ Structure of graphitic cathode and characterization of anion intercalation compounds
۳٫ The application of anion intercalation cathode in aluminum ion batteries
۴٫ The application of anion intercalation cathode in dual-ion batteries
۵٫ Conclusion and perspective
References

بخشی از متن مقاله:
Abstract

Owing to the low cost, abundance and high working voltage, graphite cathodes have attracted tremendous attention in rechargeable batteries, especially in aluminum ion batteries (AIBs) and dual-ion batteries (DIBs). In this review, firstly, a general introduction is given to distinguish the working mechanism of graphite from the conventional metal oxide used as cathode in batteries. Secondly, the characterization methods of anion intercalated compounds, theoretical simulation of anion intercalation behavior into the graphitic cathode and the kinetic study of anion diffusion in graphite are discussed. Then, progresses and challenges of AIBs with different types of graphite cathode materials are presented. Next, typical DIBs systems with graphite cathode, a variety of anodes and electrolytes are introduced in detail. Finally, a conclusion for battery systems with anion intercalation graphite cathodes is draw, and a perspective is outlined to address the existing technical barriers that need to be overcome in future research direction.

Introduction

Background

A rechargeable battery is an electrochemical device that can store electrical energy as chemical energy in its anode and cathode during the charging process, and releases the energy as electrical output during the discharging process [1-3]. An ideal rechargeable battery is expected to have high energy density, high power density, long cycle life, excellent environmental compatibility and low cost [4-15]. Metal ion batteries (MIBs), including lithium ion batteries (LIBs), sodium ion batteries (SIBs) and potassium ion batteries (PIBs) et al. are typical rechargeable batteries, which rely on the metal ions shuttling between the anode and cathode to realize charging and discharging. Among them, LIBs, which possess the merits of long cycle life, high energy and power density and no memory effect, have dominated the battery market of portable electronics and electric vehicles for around two decades and are as well widely used in grid-scale energy storage [5, 16-20]. Despite currently enormous successes in portable electronics and electric vehicles (EVs), LIBs are limited in meeting the growing demand for higher energy and power densities [21-40]. In another aspect, LIBs are plagued by the shortage and high cost of resource metals (Li, Co, Ni etc.) needed in the battery manufacture, and the corresponding environmental pollution of abandoned batteries [17, 41, 42]. Therefore, searching for novel electrode materials, especially cathode materials that of resource-abundant and easily recyclable properties, is in great demand [1]. Graphite is a unique layered structure composed of graphene layers stacked together by the van der Waals force. Since its interlayer space are highly tunable, graphite can accommodate a variety of ions and molecules to form graphite intercalation compounds (GICs), which display applications in electrical, electrochemical and chemical industries because of their unique physicochemical properties. For instance, the reversible intercalation/de-intercalation of metal ions (Li+ , Na+ and K+ et al.) into/from the graphite makes it widely used as anodes for MIBs. Although comparatively less developed, graphite, which have also exhibited the reversible intercalation and de-intercalation of anions such as hexafluorophosphate anion (PF6 – ), bis(trifluoromethanesulfonyl)imide anion (TFSI- ) [43-48], is becoming a promising cathode materials in dual-ion batteries (DIBs), hybrid electrochemical capacitors (ECs) [49, 50] and aluminum ion batteries (AIBs). Among these, DIBs and AIBs are gaining more attention since they have obvious advantages over conventional MIBs: 1) lower cost and resource abundance compared to conventional metal oxide cathode in MIBs; 2) higher voltage, which benefits for a higher energy density [51, 52].

ثبت دیدگاه