مشخصات مقاله | |
ترجمه عنوان مقاله | آنالیز تقارن لی برای یک معادله سهمی وار Monge-Ampère در نظریه سرمایه گذاری بهینه |
عنوان انگلیسی مقاله | Lie symmetry analysis for a parabolic Monge–Ampère equation in the optimal investment theory |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 14 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله | مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus – master journals – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) | 1.632 (2017) |
شاخص H_index | 100 (2019) |
شاخص SJR | 0.938 (2019) |
رشته های مرتبط | اقتصاد، ریاضی |
گرایش های مرتبط | اقتصاد مالی |
نوع ارائه مقاله | ژورنال |
مجله / کنفرانس | مجله ریاضیات محاسباتی و کاربردی – Journal of Computational and Applied Mathematics |
دانشگاه | School of Mathematics and Statistics – Beijing Institute of Technology – China |
کلمات کلیدی | معادله Parabolic Monge-Ampere؛ تجزیه و تحلیل متقارن؛ `کاهش تقارن؛ راه حل های غیر قابل پیش بینی |
کلمات کلیدی انگلیسی | The parabolic Monge-Ampere equation; Lie symmetry analysis; ` Symmetry reductions; Invariant solutions |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.cam.2018.07.035 |
کد محصول | E9350 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1 Introduction 2 The model arise from optimal investment of mathematical finance theory 3 Lie symmetry 4 Symmetry reductions and invariant solutions 5 Conclusions References |
بخشی از متن مقاله: |
Introduction In recent years, there are many researches use Lie symmetry analysis to partial differential equations (PDEs) which arising from physics, chemistry , economics and other fields [1–7]. The investigation of exact analytical solutions of PDEs play an important role for a long time. Lie symmetry analysis is one of the most effective methods for finding the exact analytical solutions of differential equations, and many authors used this method to find the analytical solutions of PDEs [8– 12]. Lie symmetry analysis method was originally developed in the 19th century by the Norwegian mathematician Sophus Lie and developed in differential equations since Bluman and Cole proposed similarity theory for differential equations in 1970s [3, 7]. Over the last forty years, there was a considerable development in PDEs which arise in mathematical finance [13–19]. It was worth pointing out that Bordag and Chmakova’s pioneering paper studied the evaluation of an option hedge-cost under relaxation of the price-taking assumption by Lie symmetry analysis method. In particular, they found some analytical solutions to a nonlinear Black-Scholes equation which incorporates the feedback-effect of a large trader in case of market illiquidity and showed that the typical solution would have a payoff which approximates a strangle, then used these solutions to test numerical schemes for solving a nonlinear Black-Scholes equation [16]. In this paper, we consider the following parabolic Monge-Ampere equation in ` the optimal investment theory [17]: usuyy + ryuyuyy − θu 2 y = 0, (1.1) where r, θ > 0 are constants. Existence of solutions to initial value problem for this equation were showed in [18]. The rest of the paper is organized as follows. In Section 2, we recall the model Eq.(1.1) arise from optimal investment of mathematical finance theory. In Section 3, vector fields and optimal system are given by employing Lie symmetry analysis method. In Section 4, the similarity variables and analytical solutions of Eq.(1.1) are obtained by using optimal system. Finally, conclusions are presented at the end of the paper. |