مقاله انگلیسی رایگان در مورد کاوش و تجسم اطلاعات ضد و نقیض – اسپرینگر 2017

 

مشخصات مقاله
ترجمه عنوان مقاله کاوش و تجسم اطلاعات ضد و نقیض
عنوان انگلیسی مقاله Mining and visualising contradictory data
انتشار مقاله سال 2017
تعداد صفحات مقاله انگلیسی  11 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه اسپرینگر
مقاله بیس این مقاله بیس میباشد
نمایه (index) DOAJ – scopus
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
رشته های مرتبط مهندسی صنایع
گرایش های مرتبط  داده کاوی
نوع ارائه مقاله
ژورنال
مجله   کلان داده – Journal of Big Data
دانشگاه  Computer Science Department – University of Nigeria – Abuja Building – Nigeria
کلمات کلیدی  ConTra، مقادیر مجزا از کوما، مجموعه داده، تناقضات، داده های متضاد، مقادیر خروج متقابل
کلمات کلیدی انگلیسی ConTra،Comma separated values،Dataset،Contradictions،Contradictory data،Mutual exclusion values
شناسه دیجیتال – doi
https://doi.org/10.1186/s40537-017-0100-9
کد محصول  E10502
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract

Introduction

Mining and visual analysis of contradictory

data using ConTra Dataset analysis and results

Performance evaluation of ConTra

Conclusion and the way forward

References

 

بخشی از متن مقاله:

Abstract

Big datasets are often stored in fat fles and can contain contradictory data. Contradictory data undermines the soundness of the information from a noisy dataset. Traditional tools such as pie chart and bar chart are overwhelmed when used to visually identify contradictory data in multidimensional attribute-values of a big dataset. This work explains the importance of identifying contradictions in a noisy dataset. It also examines how contradictory data in a large and noisy dataset can be mined and visually analysed. The authors developed ‘ConTra’, an open source application which applies mutual exclusion rule in identifying contradictory data, existing in comma separated values (CSV) dataset. ConTra’s capability to enable the identifcation of contradictory data in diferent sizes of datasets is examined. The results show that ConTra can process large dataset when hosted in servers with fast processors. It is also shown in this work that ConTra is 100% accurate in identifying contradictory data of objects whose attribute values do not conform to the mutual exclusion rule of a dataset in CSV format. Diferent approaches through which ConTra can mine and identify contradictory data are also presented.

Introduction

A noisy dataset can contain contradictory data. Contradictory data is synonymous to incorrect data and it is important that such data be investigated and evaluated when analysing a noisy dataset. Diferent approaches to dealing with contradictory data have been proposed by diferent researchers. For example [1, 2] proposed methods for identifying and removing contradictory data in noisy datasets. However, the removal of contradictory data from a noisy dataset will increase the incompleteness in the dataset thereby reducing the soundness of any information from such set of data. It is therefore important to identify and evaluate contradictory instances when analysing a large and noisy dataset. Tis will improve the soundness of the analysis from such a dataset. Evidently, the analysis of big data is identifed as the next frontier for innovation and advancement of technology [3, 4]. Tere is therefore the need to identify appropriate approaches to dealing with contradictions in a large and noisy dataset. Tere are diferent forms of contradictions. For example, there are contradictions from the use of modal words, structural, subtle lexical contrasts, as well as world knowledge

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا