مشخصات مقاله | |
ترجمه عنوان مقاله | تشخیص خطاهای استاتیک، پویا و مرکب در موتورهای همگام مگنت دائمی |
عنوان انگلیسی مقاله | Static-, Dynamic-, and Mixed-Eccentricity Fault Diagnoses in Permanent-Magnet Synchronous Motors |
انتشار | مقاله سال 2009 |
تعداد صفحات مقاله انگلیسی | 13 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه IEEE |
نوع نگارش مقاله |
مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | JCR – master journal list |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
7.050 در سال 2017 |
رشته های مرتبط | مهندسی برق – مهندسی کامپیوتر |
گرایش های مرتبط | الکترونیک قدرت – برق قدرت – هوش مصنوعی |
نوع ارائه مقاله |
ژورنال یا کنفرانس |
مجله / کنفرانس | Transactions on Industrial Electronics |
دانشگاه | School of Electrical and Computer Engineering, University of Tehran, Tehran, Iran |
کلمات کلیدی | دامنه نوسان اجزای جانبی (ASBC)، شبکه عصبی مصنوعی (ANN)، برون مرکزی پویا (DE) و برون مرکزی ترکیبی، تشخیص خطا، نویز گاوسی، تشخیص الگو، مغناطیس دائمی (PM)، موتور همزمان (PMSM)، استاتیک، روش اجزاء محدود (FE) گام زمانی (FEM) (TSFEM) |
کلمات کلیدی انگلیسی | —Amplitude of sideband components (ASBC), artificial neural network (ANN), dynamic eccentricity (DE) and mixed eccentricity (ME), fault diagnosis, Gaussian noise, pattern recognition, permanent-magnet (PM) synchronous motor (PMSM), static, time-stepping finite-element (FE) method (FEM) (TSFEM |
شناسه دیجیتال – doi |
https://doi.org/10.1109/TIE.2009.2029577 |
کد محصول | E11666 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract I.Introduction II.Time-Stepping FE Modeling III.Experimental Setup IV.SE, DE, and ME Fault Diagnoses V.Load Effects on the Proposed Index VI.Theoretical Analysis of the Introduced Index VII.Analysis of the Proposed Indices for Estimating the Type and Degree of Eccentricity VIII.Eccentricity Severity Estimation IX.Discrimination between Eccentricity and Other Faults Using the Introduced Index X.Conclusion |
بخشی از متن مقاله: |
Abstract Mixed-eccentricity (ME) fault diagnosis has not been so far documented for permanent-magnet (PM) synchronous motors (PMSMs). This paper investigates how the static eccentricity (SE), dynamic eccentricity (DE), and ME in three-phase PMSMs can be detected. A novel index for noninvasive diagnosis of these eccentricities is introduced for a faulty PMSM. The nominated index is the amplitude of sideband components with a particular frequency pattern which is extracted from the spectrum of stator current. Using this index makes it possible to determine the occurrence, as well as the type and percentage, of eccentricity precisely. Meanwhile, the current spectrum of the faulty PMSM during a large span is inspected, and the ability of the proposed index is exhibited to detect eccentricity in faulty PMSMs with different loads. A novel theoretical scrutiny based on a magnetic field analysis is presented to prove the introduced index and generalize the illustrated fault recognition method. To show the merit of this index in the eccentricity detection and estimation of its severity, first, the correlation between the index and the SE and DE degrees is determined. Then, the type of the eccentricity is determined by a k-nearest neighbor classifier. At the next step, a three-layer artificial neural network is employed to estimate the eccentricity degree and its type. After all, a white Gaussian noise is added to the simulated current, and the robustness of the proposed index is analyzed with respect to the noise variance. In this paper, the PMSM under magnetic fault (demagnetization) and electrical faults (short and open circuits) is modeled, and the current spectrum of the faulty PMSM under demagnetization, short circuit, and open circuit faults is analyzed. It is demonstrated that the proposed index, due to eccentricity fault, is not generated in the current spectrum due to magnetic and electrical faults. Indeed, it is exposed that the introduced index is only created due to eccentricity fault and it is not sensitive to other faults. To model the PMSM eccentricities, a time-stepping finite-element method, which takes into account all geometrical and physical characteristics of the machine components, nonuniform permeance of the air gap, and nonuniform characteristics of the PM material, is employed. This model facilitates the access to the demanded signals in order to have accurate processing. A comparison of simulation and experimental results validate the proposed index. |