مشخصات مقاله | |
ترجمه عنوان مقاله | یک روش جدید برای پیش بینی بارندگی با استفاده از الگوریتم KNN بهبود یافته |
عنوان انگلیسی مقاله | A novel approach for precipitation forecast via improved K-nearest neighbor algorithm |
انتشار | مقاله سال 2017 |
تعداد صفحات مقاله انگلیسی | 7 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus – master journals – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
3.358 در سال 2017 |
شاخص H_index | 64 در سال 2018 |
شاخص SJR | 1.167 در سال 2018 |
رشته های مرتبط | مهندسی کامپیوتر – جغرافیا |
گرایش های مرتبط | الگوریتم و محاسبات – آب و هواشناسی |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | Advanced Engineering Informatics |
دانشگاه | Beijing Meteorological Information Center, 44 Zizhu Road, Haidian District, Beijing 100089, PR China |
کلمات کلیدی | الگوریتم KNN، الگوریتم KNN بهبود یافته، بارش، پیش بینی بارش |
کلمات کلیدی انگلیسی | KNN algorithm, Improved KNN algorithm, Precipitation, Precipitation forecast |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.aei.2017.05.003 |
کد محصول | E11696 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Outline Abstract Keywords 1. Introduction 2. Related work 3. Our improved KNN algorithm 4. Improved KNN algorithm based precipitation forecast for Beijing area 5. Experiments and results 6. Conclusions Acknowledgments References |
بخشی از متن مقاله: |
Abstract The prediction method plays crucial roles in accurate precipitation forecasts. Recently, machine learning has been widely used for forecasting precipitation, and the K-nearest neighbor (KNN) algorithm, one of machine learning techniques, showed good performance. In this paper, we propose an improved KNN algorithm, which offers robustness against different choices of the neighborhood size k, particularly in the case of the irregular class distribution of the precipitation dataset. Then, based our improved KNN algorithm, a new precipitation forecast approach is put forward. Extensive experimental results demonstrate that the effectiveness of our proposed precipitation forecast approach based on improved KNN algorithm. Introduction Precipitation plays crucial roles in climate because it not only is vital for agriculture, forestry and the energy industry but also provides stable habitats for great varieties of species [1–4]. Nevertheless, heavy rains in a short time usually result in natural disasters such as flash floods, mud-rock flows, urban waterlogging and landslides, which causes tremendous losses in lives and properties of people [5,6]. And for this reason, reliable precipitation forecast is highly important and essentially needed. Unfortunately, the precipitation forecast is a major challenge in meteorology due to formation mechanism of precipitation, not completely understood so far, involves a rather complex physics [7–9]. And currently the precipitation forecast is far from being satisfactory [10]. Accordingly, the interest in precipitation forecasts has grown significantly in recent years [11–14]. |