مشخصات مقاله | |
ترجمه عنوان مقاله | مدل مخفی مارکوف با مشاهدات خود همبستگی برای پیش بینی عمر مفید باقی مانده و سیاست نگهداری بهینه |
عنوان انگلیسی مقاله | Hidden Markov model with auto-correlated observations for remaining useful life prediction and optimal maintenance policy |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 14 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus – master journals – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.139 در سال 2017 |
شاخص H_index | 112 در سال 2018 |
شاخص SJR | 1.665 در سال 2018 |
رشته های مرتبط | مهندسی صنایع |
گرایش های مرتبط | برنامه ریزی و تحلیل سیستم ها |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | Reliability Engineering & System Safety |
دانشگاه | State Key Laboratory of Mechanical System and Vibration, Department of Industrial Engineering & Management, Shanghai Jiao Tong University, Shanghai, China |
کلمات کلیدی | پیش بینی عمر مفید باقی مانده، نگهداری و تعمیرات پیشگیرانه، مدل های مخفی مارکوف، مشاهدات خودکار همبستگی |
کلمات کلیدی انگلیسی | Remaining useful life prediction, Preventive maintenance, Hidden Markov models, Auto-correlated observations |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.ress.2017.09.002 |
کد محصول | E11747 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Outline Highlights Abstract Keywords 1. Introduction 2. Degradation modeling 3. Two methods for remaining useful life prediction 4. Case study 5. Optimal maintenance policy 6. Conclusion Acknowledgments Appendix Disclosure statement References |
بخشی از متن مقاله: |
Abstract In this paper, a hidden Markov model with auto-correlated observations (HMM-AO) is developed to handle the degradation modeling of manufacturing systems. Unlike the standard hidden Markov models (HMMs), the current observation in the HMM-AO model not only depends on the corresponding hidden system state, but also on the previous observations. A novel algorithm using the expectation maximum is presented to estimate the unknown parameters. Furthermore, missing data and noise that accumulate over time are also considered by modifying the proposed model. Then two remaining useful life prediction methods based on the HMM-AO model are developed. Predictive values of more accuracy can be obtained, since the autocorrelation of observations has been considered and the temporal evolution of degradation processes has been described properly. A case study is illustrated to highlight the advantages of HMM-AO and demonstrate the accuracy and efficiency of the prediction methods. Furthermore, an improved maintenance policy is developed based on the results of remaining useful life prediction. Finally, a comparison with a conventional condition-based maintenance policy is provided to prove the performance of this proposed policy. Introduction Maintenance policies play important roles in improving the effectiveness of production systems’ operation. In recent years, maintenance strategies combining data-driven reliability models with observed data of condition monitoring has gained more and more attention [1–3]. Diagnosis and prognosis are two important aspects in the framework of maintenance and have been largely researched [4]. The former focuses on the fault detection [5], while the latter devotes to evaluate the current health state of the system as well as to predict its remaining useful life (RUL). An accurate prediction of the RUL could help develop a more economical and effective maintenance policy. |