مشخصات مقاله | |
ترجمه عنوان مقاله | مدل های چندگانه تطبیقی قوی مبتنی بر سیستم های غیر خطی کنترل فازی |
عنوان انگلیسی مقاله | Robust adaptive multiple models based fuzzy control of nonlinear systems |
انتشار | مقاله سال 2016 |
تعداد صفحات مقاله انگلیسی | 10 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | scopus – master journals – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
3.241 در سال 2017 |
شاخص H_index | 100 در سال 2018 |
شاخص SJR | 1.073 در سال 2018 |
رشته های مرتبط | مهندسی برق – مهندسی کامپیوتر |
گرایش های مرتبط | مهندسی کنترل – هوش مصنوعی |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | Neurocomputing |
دانشگاه | Department of Electrical and Computer Engineering, Democritus University of Thrace, 67100 Xanthi, Greece |
کلمات کلیدی | کنترل تطبیقی، مدل های چندگانه، مقاوم بودن، کنترل سوئیچینگ، مدل های فازی T-S |
کلمات کلیدی انگلیسی | Adaptive control, Multiple models, Robustness, Switching control, T–S fuzzy models |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.neucom.2015.09.047 |
کد محصول | E11755 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Outline Abstract Keywords 1. Introduction 2. Problem formulation 3. Controller architecture: adaptive T–S multiple models and switching mechanism 4. T–S identification models and fuzzy controller design 5. Adaptation rules and robust stability analysis 6. Simulation studies 7. Conclusions References Vitae |
بخشی از متن مقاله: |
Abstract A new robust adaptive multiple models based fuzzy control scheme for a class of unknown nonlinear systems is proposed in this paper. The nonlinear system is expressed by using the Takagi–Sugeno (T–S) method, and some identification adaptive T–S models along with their corresponding controllers, are used in order to control efficiently the unknown system. The modeling error that is produced due to the use of the T–S plant model can cause instability problems if it is not taken into account in the adaptation rules. In this paper, in order to solve this problem, we design a control scheme that is based on updating rules that utilize the σ-modification method. Every T–S controller is updated indirectly by using the robust updating rules and the final control signal is determined by using a performance index and a switching rule. By using the Lyapunov stability theory it is shown that σ-modification based rules can ensure the robustness of the system and define a bound for the steady state identification error. The main objectives of the robust controller are: (i) to ensure that the real plant system will remain stable despite the existence of modeling errors and (ii) to ensure that the real plant will track with a high accuracy the state trajectory of a given reference model. The effectiveness of the proposed method is demonstrated by computer simulations on a well known benchmark problem. Introduction Robustness issues are very crucial in control systems design, especially in cases when fuzzy or neural networks (NNs) theory tools are used to mathematically express an unknown nonlinear plant [1] along with adaptive control techniques which are used to control the plant. The necessity for using fuzzy or NNs theory in system modeling is imperative when the system’s nonlinearities impose difficulties to the controller design procedure. One of the most popular fuzzy models is the T–S formulation [2]. The main advantage of this method is that it uses linear submodels which are fuzzy blended and finally produce the nonlinear fuzzy model. These linear models are easily controlled by using linear control techniques and finally another fuzzy blending of the subcontrollers produces the final nonlinear controller of the system. Another characteristic of T–S representation is the “universal function approximation” property which offers the possibility to approximate any nonlinear function to any degree of accuracy [3]. |