مشخصات مقاله | |
ترجمه عنوان مقاله | یک رویکرد یکپارچه برای تشخیص سرقت ادبی ذاتی |
عنوان انگلیسی مقاله | An integrated approach for intrinsic plagiarism detection |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 26 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
7.007 در سال 2018 |
شاخص H_index | 93 در سال 2019 |
شاخص SJR | 0.835 در سال 2018 |
شناسه ISSN | 0167-739X |
شاخص Quartile (چارک) | Q1 در سال 2018 |
رشته های مرتبط | مهندسی کامپیوتر |
گرایش های مرتبط | امنیت اطلاعات |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | سیستم های کامپیوتری نسل آینده-Future Generation Computer Systems |
دانشگاه | Faculty of Engineering, Environment & Computing, School of Computing, Electronics and Maths, Coventry University, United Kingdom |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.future.2017.11.023 |
کد محصول | E12093 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1. Introduction 2. Previous work 3. Background 4. Proposed approach 5. Evaluation of the results 6. Conclusion References |
بخشی از متن مقاله: |
Abstract
Employing effective plagiarism detection methods are seen to be essential in the next generation web. In this paper, we present a novel approach for plagiarism detection without reference collections. The proposed approach relies on using some statistical properties of the most common words, and the Latent Semantic Analysis that is applied to extract the most common words usage patterns. This method aims to generate a model of author’s “style” by revealing a set of certain features of authorship. The model generation procedure focuses on just one author, as an attempt to summarise the aspects of an author’s style in a definitive and clear-cut manner. The feature set of the intrinsic model were based on the frequency of the most common words, their relative frequencies in the book series, and the deviation of these frequencies across all books for a particular author. The approach has been evaluated using the leave-one-out-cross-validation method on the CEN (Corpus of English Novel) data set. Results have indicated that, by integrating deep latent semantic and stylometric analyses, hidden changes can be identified when a reference collection does not exist. The results have also shown that our Multi-Layer Perceptron based approach statistically outperforms Bayesian Network, Support Vector Machine and Random Forest models, by accurately predicting the author classes with an overall accuracy of 97%. |