مشخصات مقاله | |
ترجمه عنوان مقاله | ارزیابی و مدل سازی پیش بینی استفاده از نیرو مبتنی بر یادگیری عمیق |
عنوان انگلیسی مقاله | Deep Learning-Based Power Usage Forecast Modeling and Evaluation |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 7 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
1.257 در سال 2018 |
شاخص H_index | 47 در سال 2019 |
شاخص SJR | 0.281 در سال 2018 |
شناسه ISSN | 1877-0509 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | دارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر، مهندسی فناوری اطلاعات |
گرایش های مرتبط | هوش مصنوعی، اینترنت و شبکه های گسترده |
نوع ارائه مقاله |
ژورنال و کنفرانس |
مجله / کنفرانس | علوم کامپیوتر پروسیدیا-Procedia Computer Science |
دانشگاه | Dept. of Computer and Information Sciences, Towson University, Towson, Maryland, USA 21252 |
کلمات کلیدی | یادگیری عمیق، گرید هوشمند، اینترنت اشیا، سیستم های سایبری فیزیکی |
کلمات کلیدی انگلیسی | Deep Learning, Smart Grid, Internet of Things, Cyber-Physical Systems |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.procs.2019.06.016 |
کد محصول | E12282 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1. Introduction 2. Our Approach 3. Evaluation 4. Conclusion 5. Acknowledgement 6. References |
بخشی از متن مقاله: |
Abstract
The growing Internet of Things (IoT) provides significant resources to be integrated with critical infrastructures to enable cyber-physical systems. More specifically, the deployment of smart meters for electricity usage monitoring in the smart grid can provide granular and detailed information from which power load forecasting can be carried out. However, the accurate prediction of long-term power usage remains a challenging issue. In light of many recent advances, deep learning has the potential to significantly improve the ability to assess data and make predictions, and is already rapidly changing the world we live in. As such, in this paper, we consider the use of deep learning, via Recursive Neural Network (RNN) and Long Short-Term Memory layers, for the long-term prediction of localized power consumption. In particular, we consider the optimization of both data feature sets and neural network models, developing three model-feature combinations to maximize prediction accuracy and minimize error. Through detailed experimental evaluation, our results demonstrate the ability to achieve highly accurate predictions over periods as large as 21 days through the integration of correlated features. Introduction In the context of the smart home and smart grid, the ability to absorb and analyze massive amounts of big data provide for unprecedented levels of command and control for electrical load distribution, industrially and by individual users alike, supporting a new level of situation awareness. Moreover, emerging tools for machine learning have been used to achieve increasingly accurate predictions on continuous time-series data in a variety of applications. As the state-of-the-art to achieve highly accurate data analysis, deep learning applies significant coalitions of computing neurons to approximate dataset distributions. What’s more, deep learning has been applied to abstract problems and exceeded even human capabilities, and has been used to extract meaningful and hidden information from massive datasets [4, 5]. |