مشخصات مقاله | |
ترجمه عنوان مقاله | جمع آوری داده های تلفن همراه و کسب انرژی در شبکه های حسگر بی سیم قابل شارژ |
عنوان انگلیسی مقاله | Mobile data gathering and energy harvesting in rechargeable wireless sensor networks |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 46 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
6.774 در سال 2018 |
شاخص H_index | 154 در سال 2019 |
شاخص SJR | 1.620 در سال 2018 |
شناسه ISSN | 0020-0255 |
شاخص Quartile (چارک) | Q1 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | دارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی فناوری اطلاعات، مهندسی فناوری اطلاعات و ارتباطات |
گرایش های مرتبط | شبکه های کامپیوتری، سامانه های شبکه ای، اینترنت و شبکه های گسترده، مخابرات سیار |
نوع ارائه مقاله |
ژورنال |
مجله | علوم اطلاعات – Information Sciences |
دانشگاه | School of Mechanical and Electrical Engineering, Guangzhou University, Guangzhou 510006, PR China |
کلمات کلیدی | شبکه های حسگر بی سیم قابل شارژ (RWSN)، کسب انرژی RF، جمع آوری داده ها، sink موبایل |
کلمات کلیدی انگلیسی | Rechargeable wireless sensor networks (RWSNs)، Data gathering، RF energy harvesting، Mobile sink |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.ins.2019.01.014 |
کد محصول | E11562 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1- Introduction 2- Related work 3- System model 4- Joint data gathering and energy harvesting scheduling 5- Near-optimal buffer-battery-aware scheduling 6- Performance evaluation 7- Conclusion and future work References |
بخشی از متن مقاله: |
Abstract In this paper, we study the joint data gathering and energy harvesting (JoDGE) problem in rechargeable wireless sensor networks (RWSNs) with a mobile sink. In RWSNs, the sensor nodes are equipped with RF circuit to harvest energy from a mobile sink that moves along a pre-defined path, and at the same time, transmit gathered sensor data to the sink. Given that the consumed and harvested energy at a sensor node is proportional and inversely proportional to the square of transmission distance, a far-relay approach is proposed to select the sensor nodes closer to the path to assist the data transmission of the farther sensor nodes. Under the far-relay approach, we formulate a network utility maximization problem (NUM), and propose an optimal scheduling scheme (Opt-JoDGE), which jointly considers the power allocation, relay selection and time slot scheduling policies. By employing the Lyapunov drift theory, a near optimal buffer-battery-aware adaptive scheduling (NO-BBA) scheme is further proposed, in which the run-time status of the data buffer and battery are utilized. Extensive simulation experiments validate the feasibility and performance of JoDGE and NO-BBA. The results show that the performance of NO-BBA is close to that of Opt-JoDGE, especially when a certain delay is tolerable. Introduction One of the challenges in wireless sensor networks (WSNs) is how to gather data from sensors through a resource-constrained wireless network [9]. In WSNs, the sensor nodes periodically sample the physical entities under monitoring, and then transmit the gathered sensor measurements to a sink, which is connected to the rest of the system for data processing and decision making. In order to improve the sustainability, recently, various energy harvesting technologies have been employed in WSNs [2, 14, 17, 19, 22]. This kind of WSNs is referred to as rechargeable WSNs (RWSNs). Extensive research efforts have been devoted on effective data gathering in RWSNs. For example, [14] proposed an energy-efficient cooperative data collection scheme for clustered RWSNs. In [17], an optimal scheduling algorithm was proposed to minimize data packet loss in RWSNs, where the sink is assumed to be a fixed station. In RWSNs with static sinks, the transmissions of sensor data to the sinks may pass through one or multiple relay nodes. Thus the sensor nodes geographically closer to the sink usually have to forward more sensor data. Therefore, they are more likely to become the bottleneck of the network due to heavy relay workload. By contrast, data gathering in RWSNs with mobile sink(s) has been shown to be a promising approach to jointly deal with unbalanced traffic distribution and prolong the network lifetime. The mobile sink is assumed to travel along a pre-defined or online-learned path, and the network throughput maximization (NTM) problems were investigated, e.g., through routing and time-slot scheduling [30, 38], joint speed and power control [23], and mobility planning [6, 28, 39, 40]. These works assumed that the sensor nodes harvest energy from either unstable environment sources, i.e., solar and wind, or energy based on magnetic resonance coupling with small charging distance. |