مشخصات مقاله | |
ترجمه عنوان مقاله | بخش بندی تصویر تعاملی با استفاده از انتشار برچسب از طریق شبکه های پیچیده |
عنوان انگلیسی مقاله | Interactive image segmentation using label propagation through complex networks |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 16 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس میباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
5.891 در سال 2018 |
شاخص H_index | 162 در سال 2019 |
شاخص SJR | 1.190 در سال 2018 |
شناسه ISSN | 0957-4174 |
شاخص Quartile (چارک) | Q1 در سال 2018 |
مدل مفهومی | دارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر |
گرایش های مرتبط | هوش مصنوعی، مهندسی نرم افزار، مهندسی الگوریتم ها و محاسبات |
نوع ارائه مقاله |
ژورنال |
مجله | سیستم های خبره با برنامه های کاربردی – Expert Systems with Applications |
دانشگاه | Institute of Geosciences and Exact Sciences, São Paulo State University (UNESP), Rio Claro, SP 13506-900, Brazil |
کلمات کلیدی | بخش بندی تصویر تعاملی، انتشار برچسب، شبکه های پیچیده |
کلمات کلیدی انگلیسی | Interactive image segmentation، Label propagation، Complex networks |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.eswa.2019.01.031 |
کد محصول | E11586 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract
1- Introduction 2- Model description 3- Computer simulations 4- Computational time and storage complexity 5- Benchmark 6- Conclusions References |
بخشی از متن مقاله: |
Abstract Interactive image segmentation is a topic of many studies in image processing. In a conventional approach, a user marks some pixels of the object(s) of interest and background, and an algorithm propagates these labels to the rest of the image. This paper presents a new graph-based method for interactive segmentation with two stages. In the first stage, nodes representing pixels are connected to their k-nearest neighbors to build a complex network with the small-world property to propagate the labels quickly. In the second stage, a regular network in a grid format is used to refine the segmentation on the object borders. Despite its simplicity, the proposed method can perform the task with high accuracy. Computer simulations are performed using some real-world images to show its effectiveness in both two-classes and multi-classes problems. It is also applied to all the images from the Microsoft GrabCut dataset for comparison, and the segmentation accuracy is comparable to those achieved by some state-of-the-art methods, while it is faster than them. In particular, it outperforms some recent approaches when the user input is composed only by a few “scribbles” draw over the objects. Its computational complexity is only linear on the image size at the best-case scenario and linearithmic in the worst case. Introduction Image segmentation is the process of dividing an image in parts, identifying objects or other relevant information (Shapiro & Stockman, 2001). It is one of the most difficult tasks in image processing (Gonzalez & Woods, 2008). Fully automatic segmentation is still very challenging and difficult to accomplish. Many automatic approaches are domain-dependant, usually applied in the medical field (Avendi, Kheradvar, & Jafarkhani, 2016; Bozkurt, Kse, & Sar, 2018; Christ et al., 2016; Martinez-Muoz, Ruiz-Fernandez, & Galiana-Merino, 2016; Moeskops et al., 2016; Patino-Correa, Pogrebnyak, Martinez-Castro, & Felipe-Riveron, 2014). Therefore interactive image segmentation, in which a user supplies some information regarding the objects of interest, is experiencing increasing interest in the last decades (Artan, 2011; Blake, Rother, Brown, Perez, & Torr, 2004; Boykov & Jolly, 2001; Breve, Quiles, & Zhao, 2015a,b; Ding & Yilmaz, 2010; Ding, Yilmaz, & Yan, 2012; Dong, Shen, Shao, & Gool, 2016; Ducournau & Bretto, 2014; Grady, 2006; Li, Bioucas-Dias, & Plaza, 2010; Liew, Wei, Xiong, Ong, & Feng, 2017; Lin, Dai, Jia, He, & Sun, 2016; Oh, Ham, & Sohn, 2017; Price, Morse, & Cohen, 2010; Rother, Kolmogorov, & Blake, 2004; Wang, Zuluaga et al., 2018; Wang, Ji et al., 2018; Wang, Ji, Sun, Chen, & Jing, 2016; Wang, Sun, Ji, Chen, & Fu, 2016). |