مشخصات مقاله | |
ترجمه عنوان مقاله | تسهیل همزیستی صنعتی برای دستیابی به اقتصاد دایره ای با استفاده از ارزش افزوده توسط طرح: مطالعه موردی در تبدیل پسماند فلز ورقه ای صنعت خودرو به سیستم های نمای Voronoi |
عنوان انگلیسی مقاله | Facilitating industrial symbiosis to achieve circular economy using value-added by design: A case study in transforming the automobile industry sheet metal waste-flow into Voronoi facade systems |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 12 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
7.096 در سال 2018 |
شاخص H_index | 150 در سال 2019 |
شاخص SJR | 1.620 در سال 2018 |
شناسه ISSN | 0959-6526 |
شاخص Quartile (چارک) | Q1 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | اقتصاد، مهندسی محیط زیست |
گرایش های مرتبط | اقتصاد مالی، بازیافت و مدیریت پسماند |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | مجله تولید پاک – Journal of Cleaner Production |
دانشگاه | Department of Architecture, Texas A&M University, College Station, TX, 77843, USA |
کلمات کلیدی | اقتصاد دایره ای، صنعت خودرو، استفاده مجدد، بازیافت، ضایعات فلزی ورقه گالوانیزه، نمای فلزی، نمای بیرونی ساختمان، هزینه سرمایه، مصرف انرژی، ساخت پایدار |
کلمات کلیدی انگلیسی | ،Circular economy، Automobile industry، Reuse، Recycle، Galvanized sheet metal scrap، Metal facade، Building exterior، Capital cost، Energy consumption Sustainable fabrication |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.jclepro.2019.06.202 |
کد محصول | E13184 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1. Introduction 2. Material and methods 3. Bio-inspired (Voronoi) metal facade system case study 4. Results and discussion 5. Conclusions Acknowledgements Appendix A. Supplementary data Research Data References |
بخشی از متن مقاله: |
Abstract
Today, a significant portion of steel production worldwide is coming from recycling practices. It is inevitable that the smelting process during steel recycling operations is expensive and consumes a tremendous amount of energy. Therefore, hypothetically, direct reuse of steel materials without smelting can be environmentally and economically advantageous over recycling. In this article, an innovative recovering path for size-specific sheet metal scrap from the automobile industry is being proposed. The idea is to directly use the sizable sheet metal scrap generated from the car-body manufacturing process in the automobile industry to design and fabricate new metal facade systems for buildings’ exteriors. An empirical case study was conducted, which is being presented to illustrate the benefits of reusing steel scrap over recycling with the same material using quantitative analysis. The required capital cost and energy consumption of generating a building metal facade system were evaluated. The results showed that reusing the sheet metal scrap over conventional recycling of the same material would lead to a cost reduction of approximately 40% (400 $/ton) and savings of approximately 67% (10 MJ/kg) of energy consumption. The tested concept promotes an innovative industrial symbiosis between the auto industry and the building and construction industry through creating a secondary closed supply-chain loop to achieve both circular economy and energy savings through adding value by design. Introduction The work presented in this study practically and further explains and illustrates the distinction between reuse and recycling that is expected to structure the proposed paradigm shift in the architectural products design process. Recycling involves the processing of material-waste and by-products in making new materials. This waste is considered to be part of the ingredients of making new materials that include recycled contents, and by allowing it to be part of the ingredients, two benefits might be achieved; firstly, the diversion of waste from the solid waste streams, and secondly, the reduction in demand for virgin resources. By virtue of recycling, the final product contains a percentage of what used to be called waste, and the physical characteristics of the recycled material are known to the product designer a priori. This information and data are widely accessible and ready to be specified for new architectural products similar to any other conventional materials. From the regulatory point of view, there are four methods of legislation for recycling: minimum recycled content mandates, utilization rates, procurement policies and recycled product labeling. As a result, manufacturers have to provide all pertinent data of these materials in a manner that is similar to the non-recycled materials. Recycled material can be cataloged for which a standard set of data is available, just like any standard building product (Ali, 2017). |