مقاله انگلیسی رایگان در مورد بازی هایی با عوامل بیرونی – الزویر 2019

 

مشخصات مقاله
ترجمه عنوان مقاله عامل بی ارزش کامل برای بازی هایی با عوامل بیرونی
عنوان انگلیسی مقاله Complete null agent for games with externalities
انتشار مقاله سال 2019
تعداد صفحات مقاله انگلیسی 36 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه الزویر
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
5.891 در سال 2018
شاخص H_index 162 در سال 2019
شاخص SJR 1.190 در سال 2018
شناسه ISSN 0957-4174
شاخص Quartile (چارک) Q1 در سال 2018
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط مهندسی کامپیوتر
گرایش های مرتبط مهندسی نرم افزار
نوع ارائه مقاله
ژورنال
مجله / کنفرانس سیستم های خبره با کابردهای مربوطه – Expert Systems with Applications
دانشگاه  Dept. de Estatística, Análise Matemática e Optimización, Universidade de Santiago de Compostela, Spain
کلمات کلیدی نظریه بازی، سیستم های چند عاملی، عوامل بیرونی، عملکرد تفکیکی، مشارکت حاشیه ای
کلمات کلیدی انگلیسی game theory, multi-agent systems, externalities, partition function, marginal contribution
شناسه دیجیتال – doi
https://doi.org/10.1016/j.eswa.2019.05.056
کد محصول  E13550
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
1. Introduction
2. Preliminaries
3. The family of LS-values
4. Axiomatization of the family of LS-values
5. The covering value
6. Conclusions
Conflict of Interest
CRediT authorship contribution statement
Acknowledgments
References

 

بخشی از متن مقاله:
Abstract

Game theory provides valuable tools to examine expert multi-agent systems. In a cooperative game, collaboration among agents leads to better outcomes. The most important solution for such games is the Shapley value, that coincides with the expected marginal contribution assuming equiprobability. This assumption is not plausible when externalities are present in an expert system. Generalizing the concept of marginal contributions, we propose a new family of Shapley values for situations with externalities. The properties of the Shapley value offer a rationale for its application. This family of values is characterized by extensions of Shapley’s axioms: efficiency, additivity, symmetry, and the null player property. The first three axioms have widely accepted generalizations to the framework of games with externalities. However, different concepts of null players have been proposed in the literature and we contribute to this debate with a new one. The null player property that we use is weaker than the others. Finally, we present one particular value of the family, new in the literature, and characterize it by two additional properties.

Introduction

There are many successful applications of game theoretical tools to study expert or intelligent multi-agent problems (see for instance Parsons and Wooldridge, 2002; Pendharkar, 2012). The classic model of games with transferable utility has been thoroughly studied and today it is a theory with solid foundations. It has been widely applied to economic, social, or political problems binding the gap between these fields and mathematics. In particular, it has endowed social sciences with a formal framework in which meaningful statements can be done. One of the main research questions is how to distribute the gains obtained by a given group of agents. In this regard, the Shapley value (Shapley, 1953) is probably the most popular solution and has been used to study a variety of expert systems (Alonso-Meijide and Carreras, 2011; Torkaman et al., 2011). It is defined as the average contribution of a player to its predecessors in a permutation and supported by appealing axiomatic characterizations. The characterizations provide a normative foundation of the value and play an important role in its applications. Most of the contributions in the literature overlook a key fact in today’s globally interconnected societies, decisions within a group of agents can affect the outcomes of other groups of agents. Thrall and Lucas (1963) devised the partition function to incorporate coalitional externalities to classic cooperative games.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا