مشخصات مقاله | |
ترجمه عنوان مقاله | یادگیری وزنی دشوار: یک رویکرد جدید مانند برنامه درسی مبتنی بر مثالهای دشوار برای آموزش شبکه عصبی |
عنوان انگلیسی مقاله | Difficulty-Weighted Learning: A Novel Curriculum-Like Approach Based on Difficult Examples for Neural Network Training |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 18 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
5.891 در سال 2018 |
شاخص H_index | 162 در سال 2019 |
شاخص SJR | 1.190 در سال 2018 |
شناسه ISSN | 0957-4174 |
شاخص Quartile (چارک) | Q1 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر، مهندسی فناوری اطلاعات |
گرایش های مرتبط | هوش مصنوعی، شبکه های کامپیوتری |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | سیستم های خبره با کابردهای مربوطه – Expert Systems with Applications |
دانشگاه | Artificial Intelligence Research Center, National Institute of Advanced Industrial Science and Technology, 2-4-7 Aomi, Koto-ku, Tokyo, Japan |
کلمات کلیدی | شبکه عصبی، یادگیری برنامه درسی، یادگیری نظارتی، یادگیری عمیق، ادراک چند لایه، طبقه بندی |
کلمات کلیدی انگلیسی | Neural network; Curriculum learning; Supervised learning; Deep learning; Multilayer perceptron; Classification |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.eswa.2019.06.017 |
کد محصول | E13555 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1. Introduction 2. Related work 3. Difficulty-weighted learning 4. Evaluation 5. Results and discussion 6. Summary and future work CRediT authorship contribution statement Conflict of interest Acknowledgement References |
بخشی از متن مقاله: |
Abstract
Curriculum learning, in which training examples gradually proceed from easy to difficulty, has been applied to various tasks and demonstrated better performance than other machine learning approaches. However, identifying the difficulty level in advance often requires domain knowledge and is a time-consuming process. We dynamically decide the difficulty of examples based on outputs from neural networks during training and propose a loss function to promote training with difficult examples. Experimental results verify that the proposed method improves the generalization ability across several datasets. Introduction Neural networks have been demonstrating excellent classification performance for various datasets of images, audio, language, among others. This performance has relied on the development of robust training methods such as fine-tuning (Hinton and Salakhutdinov, 2006; Mesnil et al., 2012; Yosinski et al., 2014) and generative adversarial networks (Goodfellow et al., 2014; Radford, Metz, and Chintala, 2015). Curriculum learning, proposed by Bengio et al. (2009), is another powerful training method, in which learning gradually proceeds from easy to difficult examples, aiming to resemble human learning. Its proponents successfully applied curriculum learning to classification of geometric shapes and language processing. In this paper, we prioritize the classification of difficult examples over easy examples. Therefore, we focus on the training of difficult examples and employ the conventional curriculum learning (Bengio et al., 2009) to train easy examples. A training strategy based on difficulty can be easily implemented in neural networks, because the classification outputs represent the degree of confidence, that is, the difficulty of the examples. To increase the weight of difficult examples over easy ones, we use a loss function weighted by the network outputs. As the loss function is determined at each iteration, it can reflect the varying difficulty of examples, establishing the proposed method, which we call difficulty-weighted learning (DWL). DWL is strongly related to expert systems because it automatically retrieves the difficulty level of examples based on the devised loss function, whereas conventional methods, such as curriculum learning (Bengio et al., 2009), require domain knowledge for each task. Furthermore, as DWL is supported by neural networks, which are powerful intelligent systems, the DWL implementation can be regarded as an expert and intelligent system. |