مشخصات مقاله | |
ترجمه عنوان مقاله | بارگذاری کار بهینه کارآمد از نظر انرژی در سیستم های چند رباتی شبکه ای ابر |
عنوان انگلیسی مقاله | Energy-efficient optimal task offloading in cloud networked multi-robot systems |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 22 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه الزویر |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.205 در سال 2018 |
شاخص H_index | 119 در سال 2019 |
شاخص SJR | 0.592 در سال 2018 |
شناسه ISSN | 1389-1286 |
شاخص Quartile (چارک) | Q1 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر |
گرایش های مرتبط | مهندسی الگوریتم و محاسبات، رایانش ابری |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | شبکه های کامپیوتری – Computer Networks |
دانشگاه | School of Software and Electrical Engineering, Swinburne University of Technology, VIC 3122, Australia |
کلمات کلیدی | رباتیک های شبکه ای ابر، سیستم های چند رباتی، بارگذاری کار، برنامه ریزی مسیر، الگوریتم ژنتیک |
کلمات کلیدی انگلیسی | Cloud networked robotics، Multi-robot systems، Task offloading، Path planning، Genetic algorithm |
شناسه دیجیتال – doi |
https://doi.org/10.1016/j.comnet.2019.05.016 |
کد محصول | E13668 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract 1. Introduction 2. An integrated framework for robotic task offloading 3. A use case for our framework: warehouse management 4. Problem formulation 5. GA based multi-layer decision-making scheme 6. Simulation results and analysis 7. Conclusion Declaration of Competing Interest References |
بخشی از متن مقاله: |
Abstract
Task offloading plays a critical role in cloud networked multi-robot systems for leveraging computation support from cloud infrastructure and benefiting greatly from the well-developed cloud network facilities. However, considering the delay constraint, the extra costs of data transmission and remote computation, it is not trivial to make optimized offloading decisions. In particular, task offloading for robots is more complex due to their on-demand mobility and network connectivity that significantly influence the robot–cloud communication links. Moreover, for multi-robot systems, a suitable balance of workload between local network (robot–robot) and global cloud (robot–cloud) is also required, so as to attain proper utilization of resources. Therefore, it is essential to establish more comprehensive offloading schemes for modeling systems that can handle these higher level of complications. With that view, this paper aims to develop a novel multi-layer decision-making scheme for task offloading which jointly considers the following four aspects: (i) selection of task for offloading, (ii) selection of robot to offload a task, (iii) selection of location to offload/perform task, (iv) selection of access point for offloaded task. An integrated framework for cloud networked multi-robot systems is presented to enable our task offloading scheme where the primary robot can aid from additional local robots to improve the offloading process. In particular, we consider a warehouse scenario with 36 cell workspace where a 40 node taskflow is motivated from a “parcel sorting and distribution” application, to be completed by the primary robot. The offloading decision for each task is formulated as part of a joint optimization problem and it is solved by developing a multi-layer genetic algorithm scheme that takes into account motion, network connectivity and local sharing for its offloading decisions. We evaluate the results of the scheme via comparison with two validated benchmarks. The outcome highlights a significant improvement in overall system performance due to joint involvement of motion (path planning), connectivity (bandwidth estimation) and robot–robot communication (local offloading) that facilitates energy-efficient offloading to cloud, faster completion of tasks and better utilization of available resources. Introduction The widespread innovation in robotic technology and subsequent increase in their computing capabilities are enabling their usage in different areas of modern society. Especially, in the industrial realm, the technical advancement in wireless network technology [1], Internet of Things (IoT) [2] and artificial intelligence have given rise to more progressive networked robotic applications that moves beyond their traditional deployment in production lines and deals with new challenges of industrial applications such as negotiation based decision-making, dynamic environmental disruptions, human–machine interaction and more personalized consumption demands etc. To combat all the complexity and diversity that it brings, significant hardware and software advancements are required for the robotic infrastructure. Unfortunately, there are still several limitation in the ways a robot hardware can actually be used or upgraded due to economical and functional constraints. As for the software advancements, this is where “cloud networked robotics” has made its mark. The introduction of cloud networked multi-robot system has merged the two ever-progressing domains of networked robotics and cloud computing. The added feature of cloud implies less dependence on human input and more support from ubiquitous resources [3] (i.e., computation, storage, crowdsourcing etc.). |