مقاله انگلیسی رایگان در مورد استراتژی کنترل افقی پس رونده فازی – IEEE 2019

 

مشخصات مقاله
ترجمه عنوان مقاله یک استراتژی کنترل افقی پس رونده فازی برای مشکل مسیریابی پویا وسایل نقلیه
عنوان انگلیسی مقاله A Fuzzy Receding Horizon Control Strategy for Dynamic Vehicle Routing Problem
انتشار مقاله سال 2019
تعداد صفحات مقاله انگلیسی 13 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه IEEE
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس میباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
4.641 در سال 2018
شاخص H_index 56 در سال 2019
شاخص SJR 0.609 در سال 2018
شناسه ISSN 2169-3536
شاخص Quartile (چارک) Q2 در سال 2018
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر دارد
رفرنس دارد
رشته های مرتبط مهندسی کامپیوتر، مهندسی فناوری ازلاعات
گرایش های مرتبط مهندسی الگوریتم و محاسبات، سامانه های شبکه ای
نوع ارائه مقاله
ژورنال
مجله / کنفرانس دسترسی – IEEE Access
دانشگاه  School of Computer and Information, Anqing Normal University, Anqing 246133, China
کلمات کلیدی مشکل مسیریابی پویا وسایل نقلیه، کنترل فازی، عملکرد عضویت، کنترل افقی پس رونده
کلمات کلیدی انگلیسی  Dynamic vehicle routing problem, fuzzy control, membership function, receding horizon control
شناسه دیجیتال – doi
https://doi.org/10.1109/ACCESS.2019.2948154
کد محصول  E13880
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
I. Introduction
II. Probkem Description and Mathematical Model
III. Methodology
IV. Experimental Studies
V. Conclusion
Authors
Figures
References

 

بخشی از متن مقاله:
Abstract

The receding horizon control (RHC) combining with the various intelligent algorithms is a common method for the dynamic vehicle routing problem (DVRP). However, the traditional RHC only considers the objects within each time window while making route plan, and can’t make adjustment according to the situations of the objects near the window. In order to deal with this problem, a fuzzy receding horizon control strategy (FRHC) is proposed. By combining the RHC and the membership function theory, the relationship between objects and time window is redefined. And the travel routes are planned by the genetic algorithm (GA) for each fuzzy time window. Finally, ten instances are selected from the DVRP standard test library to verify the proposed strategy. The experimental results show that when comparing with the RHC strategy, the FRHC can reduce the distance, the waiting time of all customers and the number of waiting customers dramatically. The FRHC combines with the GA (FRHC-GA) method is also reasonable and effective.

Introduction

The Vehicle Routing Problem (VRP) is a classical NP-hard problem in the field of operations research, is always a hot topic [1]–[6]. It arms to design an optimal route for a number of vehicles in serving a set of customers. The vehicles serve each customer in an orderly manner to get the plan with the shortest distance or the shortest waiting time under some constraints. The VRP is mainly divided into two categories according to its characteristics: the Static VRP (SVRP) and the Dynamic VRP (DVRP). The main feature of the SVRP is that all the information of the environment such as the customer demands and travel costs is known and unchanged. However, this assumption is rarely true in real life, where the environment is often changing over time, e.g. a new customer request arrives while the vehicles are on their routes. In such a dynamic environment, the theories and the solution methods of the SVRP are no longer applicable. The DVRP is first proposed by Psaraftis [7], [8]. The main difference between the DVRP and the SVRP is that the information of customers (e.g. demand, address, service time, etc.) may change with time. To solve DVRP, many scholars have proposed various optimization algorithms [9]–[25]. These approaches can be roughly divided into three categories. (1) The original travel route is generated at the beginning of the system. The system will modify the original travel route when the dynamic information generates [10].

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا