مقاله انگلیسی رایگان در مورد تأثیر همپوشانی در شبکه های چندگانه – IEEE 2019

 

مشخصات مقاله
ترجمه عنوان مقاله شناسایی کاربران تأثیرگذار متعدد بر اساس تأثیر همپوشانی در شبکه های چندگانه
عنوان انگلیسی مقاله Identifying Multiple Influential Users Based on the Overlapping Influence in Multiplex Networks
انتشار مقاله سال 2019
تعداد صفحات مقاله انگلیسی 10 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه IEEE
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
4.641 در سال 2018
شاخص H_index 56 در سال 2019
شاخص SJR 0.609 در سال 2018
شناسه ISSN 2169-3536
شاخص Quartile (چارک) Q2 در سال 2018
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط مهندسی کامپیوتر، مهندسی فناوری اطلاعات
گرایش های مرتبط اینترنت و شبکه های گسترده
نوع ارائه مقاله
ژورنال
مجله / کنفرانس دسترسی – IEEE Access
دانشگاه  College of Computer and Information Science, Southwest University, Chongqing 400715, China
کلمات کلیدی شبکه های چندگانه، کاربران تاثیرگذار، تأثیر همپوشانی، کوتاهترین مسیر
کلمات کلیدی انگلیسی  Multiplex networks, influential users, overlapping influence, shortest path
شناسه دیجیتال – doi
https://doi.org/10.1109/ACCESS.2019.2949678
کد محصول  E13929
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
I. Introduction
II. Related Work
III. OI-Based Method
IV. Experiments and Results
V. Conclusion
Authors
Figures
References

 

بخشی از متن مقاله:
Abstract

Online social networks (OSNs) are interaction platforms that can promote knowledge spreading, rumor propagation, and virus diffusion. Identifying influential users in OSNs is of great significance for accelerating the information propagation especially when information is able to travel across multiple channels. However, most previous studies are limited to a single network or select multiple influential users based on the centrality ranking result of each user, not addressing the overlapping influence (OI) among users. In practice, the collective influence of multiple users is not equal to the total sum of these users’ influences. In this paper, we propose a novel OI-based method for identifying multiple influential users in multiplex social networks. We first define the effective spreading shortest path (ESSP) by utilizing the concept of spreading rate in order to denote the relative location of users. Then, the collective influence is quantified by taking the topological factor and the location distribution of users into account. The identified users based on our proposed method are central and relatively scattered with a low overlapping influence. With the Susceptible-Infected-Recovered (SIR) model, we estimate our proposed method with other benchmark algorithms. Experimental results in both synthetic and real-world networks verify that our proposed method has a better performance in terms of the spreading efficiency.

Introduction

The development of online social networks (OSNs) has created a new major interaction medium and formed promising landscape for information dissemination. The engagement of online users generates a huge volume of data for investigating the human behavioral patterns [1]. More importantly, the fact that an opinion or decision of individuals is influenced by their neighbors or friends has a considerable impact on the popularity of new products or brands [2], [3]. Targeting influential users is vital for designing techniques for either accelerating the information diffusion in marketing applications or suppressing the propagation of unwanted contents [4], [5]. The crucial problem is how to select multiple users, called central users, who can influence a massive number of users [6]. The measurement of influential users is beneficial for advertisers to implement effective campaigns. Central users are believed to play a key role in the propagation process. In practice, if a virus attacks a central user with a large degree, betweenness, PageRank or k-shell [7], [8], it would quickly pervade the whole network [9]. If we protect or immunize these users, the propagation scale would be greatly alleviated [10]. Although the propagation dynamics have received more and more attention, most of the studies still remain in a single network [11]. However, in fact, a user often has more than one social account such as Twitter, Facebook and Instagram.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا