مشخصات مقاله | |
ترجمه عنوان مقاله | خود آموزی جزء به جزء Camera-Aware برای شناسایی مجدد شخص نیمه نظارت شده |
عنوان انگلیسی مقاله | Distilled Camera-Aware Self Training for Semi-Supervised Person Re-Identification |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 12 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه IEEE |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.641 در سال 2018 |
شاخص H_index | 56 در سال 2019 |
شاخص SJR | 0.609 در سال 2018 |
شناسه ISSN | 2169-3536 |
شاخص Quartile (چارک) | Q2 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر |
گرایش های مرتبط | مهندسی الگوریتم و محاسبات، هوش مصنوعی |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | دسترسی – IEEE Access |
دانشگاه | School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China |
کلمات کلیدی | شناسایی مجدد شخص، یادگیری نیمه نظارت شده، تجزیه دانش، خوشه بندی |
کلمات کلیدی انگلیسی | Person re-identification, semi-supervised learning, knowledge distillation, clustering |
شناسه دیجیتال – doi |
https://doi.org/10.1109/ACCESS.2019.2950122 |
کد محصول | E13935 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract I. Introduction II. Related Work III. Approach IV. Experiments V. Conclusion Authors Figures References |
بخشی از متن مقاله: |
Abstract
Person re-identification (Re-ID), which is for matching pedestrians across disjoint camera views in surveillance, has made great progress in supervised learning. However, requirement of a large number of labelled identities leads to high cost for large-scale Re-ID systems. Consequently, it is significant to study learning Re-ID with unlabelled data and limited labelled data, that is, semi-supervised person re-identification. When labelled data is limited, the learned model tends to overfit the data and cannot generalize well. Moreover, the scene variations between cameras lead to domain shift in the feature space, which makes mining auxiliary supervision information from unlabelled data more difficult. To address these problems, we propose a Distilled Camera-Aware Self Training framework for semi-supervised person re-identification. To alleviate the overfitting problem for learning from limited labelled data, we propose a Multi-Teacher Selective Similarity Distillation Loss to selectively aggregate the knowledge of multiple weak teacher models trained with different subsets and distill a stronger student model. Then, we exploit the unlabelled data by learning pseudo labels by clustering based on the student model for self training. To alleviate the effect of scene variations between cameras, we propose a Camera-Aware Hierarchical Clustering (CAHC) algorithm to perform intra-camera clustering and cross-camera clustering hierarchically. Experiments show that our method outperformed the state-of-the-art semi-supervised person re-identification methods. Introduction Person re-identification (Re-ID) has received much attention in recent years due to its significance in video surveillance applications. When abundant labelled data is given, many works [1]–[7] have made great progress in supervised learning. However, labelling cost should be considered in largescale Re-ID system that consists of many cameras. To reduce labelling cost, studying semi-supervised learning to exploit unlabelled data and limited labelled data is a practical solution. Unsupervised person re-identification [8]–[15] has been studied to learn representation from unlabelled data, but how to effectively learn from limited labelled data is not considered in these methods. So far, semi-supervised person re-identification [16]–[20] is still under-explored. For semi-supervised Re-ID, exploiting unlabelled data and limited labelled data brings about some challenges. First, insufficient training data leads to overfitting for model learning and thus degrades generalization performance. Second, scene variations between cameras, such as illumination, background and viewpoint, cause domain shift in the feature space and create difficulty for mining auxiliary supervision information in unlabelled data to assist model training. The effect of scene variations is discussed in Section III-B later. To address the challenges for semi-supervised Re-ID, we propose a Distilled Camera-Aware Self Training framework, as shown in Figure 1. |