مقاله انگلیسی رایگان در مورد شناسایی مجدد شخص نیمه نظارت شده – IEEE 2019

 

مشخصات مقاله
ترجمه عنوان مقاله خود آموزی جزء به جزء Camera-Aware برای شناسایی مجدد شخص نیمه نظارت شده
عنوان انگلیسی مقاله Distilled Camera-Aware Self Training for Semi-Supervised Person Re-Identification
انتشار مقاله سال 2019
تعداد صفحات مقاله انگلیسی 12 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه IEEE
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
4.641 در سال 2018
شاخص H_index 56 در سال 2019
شاخص SJR 0.609 در سال 2018
شناسه ISSN 2169-3536
شاخص Quartile (چارک) Q2 در سال 2018
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط مهندسی کامپیوتر
گرایش های مرتبط مهندسی الگوریتم و محاسبات، هوش مصنوعی
نوع ارائه مقاله
ژورنال
مجله / کنفرانس دسترسی – IEEE Access
دانشگاه  School of Electronics and Information Technology, Sun Yat-sen University, Guangzhou 510006, China
کلمات کلیدی شناسایی مجدد شخص، یادگیری نیمه نظارت شده، تجزیه دانش، خوشه بندی
کلمات کلیدی انگلیسی  Person re-identification, semi-supervised learning, knowledge distillation, clustering
شناسه دیجیتال – doi
https://doi.org/10.1109/ACCESS.2019.2950122
کد محصول  E13935
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
I. Introduction
II. Related Work
III. Approach
IV. Experiments
V. Conclusion
Authors
Figures
References

 

بخشی از متن مقاله:
Abstract

Person re-identification (Re-ID), which is for matching pedestrians across disjoint camera views in surveillance, has made great progress in supervised learning. However, requirement of a large number of labelled identities leads to high cost for large-scale Re-ID systems. Consequently, it is significant to study learning Re-ID with unlabelled data and limited labelled data, that is, semi-supervised person re-identification. When labelled data is limited, the learned model tends to overfit the data and cannot generalize well. Moreover, the scene variations between cameras lead to domain shift in the feature space, which makes mining auxiliary supervision information from unlabelled data more difficult. To address these problems, we propose a Distilled Camera-Aware Self Training framework for semi-supervised person re-identification. To alleviate the overfitting problem for learning from limited labelled data, we propose a Multi-Teacher Selective Similarity Distillation Loss to selectively aggregate the knowledge of multiple weak teacher models trained with different subsets and distill a stronger student model. Then, we exploit the unlabelled data by learning pseudo labels by clustering based on the student model for self training. To alleviate the effect of scene variations between cameras, we propose a Camera-Aware Hierarchical Clustering (CAHC) algorithm to perform intra-camera clustering and cross-camera clustering hierarchically. Experiments show that our method outperformed the state-of-the-art semi-supervised person re-identification methods.

Introduction

Person re-identification (Re-ID) has received much attention in recent years due to its significance in video surveillance applications. When abundant labelled data is given, many works [1]–[7] have made great progress in supervised learning. However, labelling cost should be considered in largescale Re-ID system that consists of many cameras. To reduce labelling cost, studying semi-supervised learning to exploit unlabelled data and limited labelled data is a practical solution. Unsupervised person re-identification [8]–[15] has been studied to learn representation from unlabelled data, but how to effectively learn from limited labelled data is not considered in these methods. So far, semi-supervised person re-identification [16]–[20] is still under-explored. For semi-supervised Re-ID, exploiting unlabelled data and limited labelled data brings about some challenges. First, insufficient training data leads to overfitting for model learning and thus degrades generalization performance. Second, scene variations between cameras, such as illumination, background and viewpoint, cause domain shift in the feature space and create difficulty for mining auxiliary supervision information in unlabelled data to assist model training. The effect of scene variations is discussed in Section III-B later. To address the challenges for semi-supervised Re-ID, we propose a Distilled Camera-Aware Self Training framework, as shown in Figure 1.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا