مشخصات مقاله | |
ترجمه عنوان مقاله | خوشه بندی چند نمایی خود گام از طریق یک تنظیم کننده وزنی نرم جدید |
عنوان انگلیسی مقاله | Self-Paced Multi-View Clustering via a Novel Soft Weighted Regularizer |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 8 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه IEEE |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.641 در سال 2018 |
شاخص H_index | 56 در سال 2019 |
شاخص SJR | 0.609 در سال 2018 |
شناسه ISSN | 2169-3536 |
شاخص Quartile (چارک) | Q2 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر |
گرایش های مرتبط | مهندسی الگوریتم و محاسبات |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | دسترسی – IEEE Access |
دانشگاه | School of Computer Science and Engineering, University of Electronic Science and Technology of China, Chengdu 611731, China |
کلمات کلیدی | خوشه بندی چند نمایی، یادگیری خود گام، سنجش وزنی نرم |
کلمات کلیدی انگلیسی | Multi-view clustering, self-paced learning, soft weighting |
شناسه دیجیتال – doi |
https://doi.org/10.1109/ACCESS.2019.2954559 |
کد محصول | E14047 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract I. Introduction II. Related Work III. Proposed Approach IV. Experimental Results V. Conclusion Authors Figures References |
بخشی از متن مقاله: |
Abstract
Multi-view clustering (MVC), which can exploit complementary information of different views to enhance the clustering performance, has attracted people’s increasing attentions in recent years. However, existing multi-view clustering methods typically solve a non-convex problem, therefore are easily stuck into bad local minima. In addition, noisy data and outliers affect the clustering process negatively. In this paper, we propose self-paced multi-view clustering via a novel soft weighted regularizer (SPMVC) to address these issues. Specifically, SPMVC progressively selects samples to train the MVC model from simplicity to complexity in a self-paced manner. A novel soft weighted regularizer is proposed to further reduce the negative impact of outliers and noisy data. Experimental results on real-world data sets demonstrate the effectiveness of the proposed method. Introduction The aim of clustering [1] is to divide a set of objects into different groups such that similar objects will be grouped into the same cluster, while dissimilar ones are placed into different clusters. Clustering has been widely used in different fields, including pattern recognition, social network analysis, astronomical data analysis, information retrieval, and bioinformatics, etc. In the past couple of decades, a large number of clustering models have been proposed, such as k-means [2], fuzzy clustering [3], density-based clustering [4], [5], distribution-based clustering [6], [7], mean shift clustering [8], [9], consensus clustering [10]–[12], clustering based on deep neural networks [13], [14] etc. However, these conventional algorithms can only deal with single view clustering problems. In real-world clustering tasks, data sets are often described by multiple views, each providing a specific aspect of data. To take full advantage of complementary information from different views, multi-view clustering was proposed [15]. Recently, a number of multi-view clustering methods [16]–[23] have been proposed and have been proved to be effective in solving multi-view clustering problems. However, existing multi-view clustering methods typically solve a non-convex optimization problem [24], which results in the consequence that they get trapped in bad local minima easily. To address the non-convexity issue, an effective and efficient way is to use curriculum learning [25] and self-paced learning [26]. The core idea of curriculum learning and self-paced learning is imitating the mechanisms of cognition of humans. |