مشخصات مقاله | |
ترجمه عنوان مقاله | چارچوب استنباط نهفته برای کاربردهای شبکه عصبی پیچشی |
عنوان انگلیسی مقاله | An Embedded Inference Framework for Convolutional Neural Network Applications |
انتشار | مقاله سال 2019 |
تعداد صفحات مقاله انگلیسی | 11 صفحه |
هزینه | دانلود مقاله انگلیسی رایگان میباشد. |
پایگاه داده | نشریه IEEE |
نوع نگارش مقاله |
مقاله پژوهشی (Research Article) |
مقاله بیس | این مقاله بیس نمیباشد |
نمایه (index) | Scopus – Master Journals List – JCR |
نوع مقاله | ISI |
فرمت مقاله انگلیسی | |
ایمپکت فاکتور(IF) |
4.641 در سال 2018 |
شاخص H_index | 56 در سال 2019 |
شاخص SJR | 0.609 در سال 2018 |
شناسه ISSN | 2169-3536 |
شاخص Quartile (چارک) | Q2 در سال 2018 |
مدل مفهومی | ندارد |
پرسشنامه | ندارد |
متغیر | ندارد |
رفرنس | دارد |
رشته های مرتبط | مهندسی کامپیوتر، مهندسی فناوری اطلاعات |
گرایش های مرتبط | مهندسی الگوریتم و محاسبات، هوش مصنوعی، شبکه های کامپیوتری |
نوع ارائه مقاله |
ژورنال |
مجله / کنفرانس | دسترسی – IEEE Access |
دانشگاه | School of Computer Science and Engineering, South China University of Technology, Guangzhou 510006, China |
کلمات کلیدی | یادگیری عمیق، سیستم نهفته، رایانش موبایلی، سنجش موبایلی |
کلمات کلیدی انگلیسی | Deep learning, embedded system, mobile computing, mobile sensing |
شناسه دیجیتال – doi |
https://doi.org/10.1109/ACCESS.2019.2956080 |
کد محصول | E14059 |
وضعیت ترجمه مقاله | ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید. |
دانلود رایگان مقاله | دانلود رایگان مقاله انگلیسی |
سفارش ترجمه این مقاله | سفارش ترجمه این مقاله |
فهرست مطالب مقاله: |
Abstract I. Introduction II. Related Work III. Workload Characterization IV. Design Considerations V. Implementation Authors Figures References |
بخشی از متن مقاله: |
Abstract
With the rapid development of deep convolutional neural networks, more and more computer vision tasks have been well resolved. These convolutional neural network solutions rely heavily on the performance of the hardware. However, due to privacy issues or the network instability, we need to run convolutional neural networks on embedded platforms. Critical challenges will be raised by limited hardware resources on the embedded platform. In this paper, we design and implement an embedded inference framework to accelerate the inference of the convolutional neural network on the embedded platform. For this, we first analyzed the time-consuming layers in the inference process of the network, and then we design optimization methods for these layers. Also, we design a memory pool specifically for neural networks. Our experimental results show that our embedded inference framework can run a classification model MobileNet in 80ms and a detection model MobileNet-SSD in 155ms on Firefly-RK3399 development board. Introduction Convolutional neural network (CNN) plays a very important role in the field of computer vision. Deep Convolutional neural network has greatly promoted the development of computer vision, especially in object recognition, object detection and semantic segmentation. Since AlexNet [1] won the ImageNet Challenge: ILSVRC 2012 [2], in order to get higher accuracy, the CNN has become deeper and more complex, which has become the trend of designing network [3]–[5]. However, in many real word applications such as self-driving car, robotics and augmented reality, convolutional neural networks need to be deployed on an embedded platform with limited computing resources. Many embedded applications often rely on a cloud-based approach [6]–[12]. In cloud-based approach, embedded platform is only used to capture data, and the inference process is completed on the server. A cloud-based approach enables the user of embedded devices to enjoy the huge benefits of convolutional neural networks. However, a cloud-based approach has its disadvantages. First, due to the communication costs, the cloud-based applications depend heavily on network quality. Therefore, in order to ensure the practicability of the application, we need to limit the amount of data sent by the embedded platform. Second, cloud-based approaches may involve private data, and sending personal data to the cloud is a challenge [13]. With the rapid development of 5G, there will be a very attractive solution. However, uploading the data from embedded platforms to cloud can cause privacy problems. |