مقاله انگلیسی رایگان در مورد خوشه بندی رفتار کاربر با برچسب گذاری خودکار – IEEE 2019

 

مشخصات مقاله
ترجمه عنوان مقاله طرح خوشه بندی رفتار کاربر با برچسب گذاری خودکار بر روی داده های رمزگذاری شده
عنوان انگلیسی مقاله User Behavior Clustering Scheme With Automatic Tagging Over Encrypted Data
انتشار مقاله سال 2019
تعداد صفحات مقاله انگلیسی 10 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه IEEE
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
4.641 در سال 2018
شاخص H_index 56 در سال 2019
شاخص SJR 0.609 در سال 2018
شناسه ISSN 2169-3536
شاخص Quartile (چارک) Q2 در سال 2018
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط مهندسی کامپیوتر
گرایش های مرتبط مهندسی الگوریتم و محاسبات، امنیت اطلاعات
نوع ارائه مقاله
ژورنال
مجله / کنفرانس دسترسی – IEEE Access
دانشگاه  China NARI Group Corporation (State Grid Electronic Power Research Institute), Nanjing 210003, China
کلمات کلیدی خوشه بندی رفتار کاربر، داده های رمزگذاری شده، خوشه بندی با برچسب گذاری
کلمات کلیدی انگلیسی  User behavior clustering, encrypted data, clustering with tagging
شناسه دیجیتال – doi
https://doi.org/10.1109/ACCESS.2019.2956019
کد محصول  E14064
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
Abstract
I. Introduction
II. Preliminaries
III. Design
IV. Experiment and Analysis
V. Conclusion
Authors
Figures
References

 

بخشی از متن مقاله:
Abstract

User behavior clustering analysis has a wide range of applications in business intelligence, information retrieval, and image pattern recognition and fault diagnosis. Most of existing methods of user behavior have some problems such as weak generality and the lack of tags of clustering. With the increasing awareness of privacy protection, user behavior analysis also needs to support for ciphertext to protect user data. Based on clustering algorithm, homomorphic encryption technology and information security, in this paper, we propose a user behavior clustering scheme that supports automatic tags on ciphertext. Firstly, design a security protocol corresponding to the basic operations such as addition, multiplication and comparison and apply to the scheme. Then, the relevant features of the user behavior are merged with the clustering process, the latent factor model, and matrix decomposition. We have implemented our method and evaluated its performance using K-means and K-means++ clustering. The results show that the scheme can auto tags over encrypted data, and the tag also meets the actual situation, which proves the validity and generality of the scheme.

Introduction

With the increasing maturity of mobile Internet technology, people use various mobile devices and wireless communication networks to browse the web, read news and carry out social activities at any time and any place, and information exchange is more and more convenient. Massive data is constantly generated in various fields, which makes the Internet data and resources show massive characteristics. How to get useful information and knowledge from redundant data to help us make more objective and effective decisions has become an important problem. User behavior analysis can solve the above problems, which refers to the statistics and analysis of user interest. Clustering algorithm is a common means to achieve it, which is widely used in data statistical analysis fields such as business intelligence, information retrieval, image pattern recognition and fault diagnosis [1]. At present, most clustering algorithms still exit two problems: the number of clustering and the tags after clustering is unknown. Without iterating through the data in each group, the category represented by the group cannot be known. After clustering user behavior data, there is no suitable method to mark each group directly. For example, shopping websites usually record members to buy the product information or comments, and also has a product category. They wants to get each group of tags after clustering to combine them, so they can obtain information about what kind of products the users in the group like. Company can offer different marketing plans to different groups. While user behavior clustering is widely applied, it also causes serious privacy disclosure, which will bring harm to the data owner [2], [3]. For example, when using clustering for stock analysis, if the behavior information of individual stock is leaked in the process of clustering, it will bring chaos to the stock market. Criminals steal user behavior data, which often reflects the user’s interests and hobbies, criminals for this fraud.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا