مقاله انگلیسی رایگان در مورد روش پیش بینی فعالیت فضایی و زمانی – IEEE 2019

 

مشخصات مقاله
ترجمه عنوان مقاله یک روش پیش بینی فعالیت فضایی و زمانی سبک وزن سریع
عنوان انگلیسی مقاله A Fast Lightweight Spatiotemporal Activity Prediction Method
انتشار مقاله سال 2019
تعداد صفحات مقاله انگلیسی 9 صفحه
هزینه دانلود مقاله انگلیسی رایگان میباشد.
پایگاه داده نشریه IEEE
نوع نگارش مقاله
مقاله پژوهشی (Research Article)
مقاله بیس این مقاله بیس نمیباشد
نمایه (index) Scopus – Master Journals List – JCR
نوع مقاله ISI
فرمت مقاله انگلیسی  PDF
ایمپکت فاکتور(IF)
4.641 در سال 2018
شاخص H_index 56 در سال 2019
شاخص SJR 0.609 در سال 2018
شناسه ISSN 2169-3536
شاخص Quartile (چارک) Q2 در سال 2018
مدل مفهومی ندارد
پرسشنامه ندارد
متغیر ندارد
رفرنس دارد
رشته های مرتبط مهندسی کامپیوتر
گرایش های مرتبط مهندسی الگوریتم و محاسبات
نوع ارائه مقاله
ژورنال
مجله / کنفرانس دسترسی – IEEE Access
دانشگاه  School of Computer Science, China University of Mining and Technology, Xuzhou 221116, China
کلمات کلیدی پیش بینی فعالیت فضایی و زمانی، دقت، سریع، سبک وزن
کلمات کلیدی انگلیسی   Spatiotemporal activity prediction, accuracy, fast, lightweight
شناسه دیجیتال – doi
https://doi.org/10.1109/ACCESS.2019.2957296
کد محصول  E14068
وضعیت ترجمه مقاله  ترجمه آماده این مقاله موجود نمیباشد. میتوانید از طریق دکمه پایین سفارش دهید.
دانلود رایگان مقاله دانلود رایگان مقاله انگلیسی
سفارش ترجمه این مقاله سفارش ترجمه این مقاله

 

فهرست مطالب مقاله:
ABSTRACT

I. INTRODUCTION

II. RELATED WORK

III. PROBLEM DEFINITION

IV. THE FRAMEWORK

V. FAST LIGHTWEIGHT SPATIOTEMPORAL ACTIVITY PREDICTION

VI. EXPERIMENT AND ANALYSIS

VII. CONCLUSION AND FUTURE WORK

REFERENCES

 

بخشی از متن مقاله:
ABSTRACT

How to predict spatiotemporal activity from geo-tagged social media is an urgent problem. Existing methods don’t make full use of spatiotemporal information and text sequence features. In view of above problem, we design a Fast Lightweight Spatiotemporal Activity Prediction method(FLSAP) based on Gated Recurrent Unit(GRU) neural network. While GRU structure can extract text sequence features, the model takes up a lot of space due to the numerous parameters. At the same time, due to the long sequence in the text, the convergence speed of GRU is slow. So, we design a novel GRU neuron, GRU with Tiny and Skip(GTS), which can quickly generate a lightweight model with higher accuracy. In GTS, we add a scalar weighted residual connection to stabilize the training. Furthermore, we extend the residual connection to a gate by reusing the parameter matrices to compress the model size. At last, in order to make the model converge faster, we add a binary gate, which determine whether to skip the current state update. According to the experimental results, compared with ReAct [1] in the spatiotemporal activity prediction task, FLSAP improves the accuracy by 3.3%, reduces the model space by 98.79% and accelerates 74.4% of convergence speed.

INTRODUCTION

Recently, big cities face a big challenge when people try to find their desired activities. Imagine if a tourist is in a strange city, how can he/she get information about the popular activity in his/her neighborhood at the time being quickly and accurately? Especially in the age of increasing information, even a local person can hardly answer this question accurately in a short time. However, geo-tagged social media(GTSM) has made it possible to solve this problem. Some studies [2]–[8] have demonstrated that GTSM has great potential in predicting spatiotemporal activity. GTSM includes not only timestamp and geographic coordinates, but also text generated by users using social media. Twitter is a geo-tagged social media, a large number of users use Twitter to generate a large number of messages with time and location tags every day. And these messages are adopted by studies [9]–[15] as data source. These messages contain information about main local activity. For instance, if there are many restaurants in a region, the chances of tweets related to food in this area will be much greater than areas with fewer restaurants. In addition to time and place, text plays a crucial role in the activity prediction process. So, capturing more information from the text will provide more help for activity prediction. In addition, GTSM typically relies on mobile smart terminals. Although the computing power of mobile intelligent terminals is gradually improving, how to quickly get a model that can accurately predict activity while occupying as little space as possible is still an urgent problem to be solved.

دیدگاهتان را بنویسید

نشانی ایمیل شما منتشر نخواهد شد. بخش‌های موردنیاز علامت‌گذاری شده‌اند *

دکمه بازگشت به بالا